lOMoARcPSD| 58833082
BÀI TẬP: GIẢI TÍCH I
CHƯƠNG III: GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM SỐ
GIẢI BÀI TOÁN TÌM GIỚI HẠN
Bài 1: CMR khi x 0
1) 1cosax a x2 2 (a 0)
2
2) sinax+ sin bx2 ax (a 0)
3) ax 1 xlna (1 a 0)
4) ln 1( + ax) ax a( 0)
5) (1+kx)α 1 kαx (kα 0 )
6) axα + a x1 α 1+ + +... a xn α n+ axα (α 0,a 0)
ớng dẫn giải
1) Ta có: 1cosax = 2sin
2
ax
2.
ax
2
=
a x
2 2
khi x 0, đpcm.
2 2 2
2) limx 0 sinax+sin bx
2
= limx 0
sinax + sin bx
2
= limx 0
sinaxax +limx 0
sin bxax
2
= +1
limx 0
(bxax)
2
= + =1 0 1
ax
ax ax
sinax+sin bx
2
ax, đpcm.
3) limx 0
axlna 0x 1 0
=L limx 0
a lnaxlna = limax 0
x =1 đpcm.
4) limx 0 ( ) =L limx 0 ( a ) = limx 01+1ax = 1 đpcm. ln 1+ ax 0
a / 1+ ax ax 0
1+kx 1
5) limx 0 ( )α
0 =L limx 0 α 1( +kakx)α 1k = lim 1 kxx 0( +
)α 1=1 đpcm.
kαx 0
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 1
α
α1
x0
0
lim
0
ax
a
=
α
α
α1
αn
1
n
ax
ax
...
ax
ax
+
+
+
++
,
đpcm
.
x
0
lim
x
x
x
=
+
2
7
/
4
1
/
4
sinx
x/2
x
x
6) limx 0 1 n 1( ) n( ) = lim 1( + o x( ))= 1
axα + a xα 1+ + +...a xα n+ L aαxα 1+ a α+1 xα + +... a α+n xα n 1+ −
x 0
Bài 2: Khi x 0, cặp VCB sau có tương đương không?
1) α x( )= +x x , β x( )= e
sinx
cosx
2) α x( )= ln cosx( ), β x( )=−
3) α x( )= arctan sin2x( ) , β x( )= etanx cos2x
4) α x( )= 3 xx , β x( )= cosx1
ớng dẫn giải
1) limx0 esinx cosx esinx − + −1 1 cosx = limx0 esinx1/41+1cosx1/4 = limx0
esinxx1/41+limx0 1xcosx1/4
x x
= lim 1/4 +lx 0im = limx 0 1/4 +lx 0im = limxx 0
3/4
+limx 0
x
7/4
= 0 β
x( )= o(α( )x ) x 0x x x 2 2
ln 1 2sin 2 x 2 x
ln cosx ln cosx 2sin x/ 2
2) lim (
2
) =−2lim ( 2 ) =−2limx 0 2 2 =−2limx 0 2 2 = 4limx 0 ( 2 )2 =1 x 0tan x x 0
tan x tan x x x
2
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 2
α x ~ β x( )
( ) e
cos2x
3) lim
tanx
= lim e
tanx
− + −1 1 cos2x = lim tanx +lim 2sin x
2
= lim x +lim 2x
2
= 1 x0 arctan
sin2x( ) x0 arctan sin2x( ) x0 sin2x x0 sin2x x0 2x x0 2x 2
α x ,β x( )( ) là các VCB cùng bậc
4) lim cosx 1= lim 1cosx = lim x / 2
2
1/3
=−
1limxx 0
5/3
=0 β x( )= o(α( )x ) x 03 x x x 0x
3 x x 0x 2
Bài 3: So sánh cặp VCB sau đây:
1) Khi x 0
+
: α x( )= x− −
3
x
4
x , β x( )= − −1 x 1
2) Khi x→+ : α x( )= +1 12 , β x( )= ln x2 +2 1 x x x
3) Khi x 0: α x( )=
3
x x
2
+
3
, β x( )= e
sinx
1
4) Khi x 0: α x( )= tanx, β x( )= e
sinx
− −x
2
1
5) Khi x 0: α x( )= 3x
3
2x
2
, β x( )= ln cos2x( )
6) Khi x 0
+
: α x( )= x x
3
+
2
, β x( )= e
sinx
cos2x
ớng dẫn giải
x( ( )) x~ x
1/4
) 1) Đáp án: β x( )=o α
x
2
+1
2) L = lim= lim x→+ 1 x→+
x x2 x2
(G
i ý:
3
4
x
x
−−
2
1
ln1
x
1
1
x
+
+
2
ln
x
1
+
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 3
Đặt:
1
= t L = lim
+
ln 1 t
(
+
2
2
) = lim
+
t
2
= limt
+
= 0 β x( )=o α( ( )x )
x t0 t+t t0 t t0
3) Đáp án: β x( )=o α x( ( )) (Gợi ý: α x( )=
3
x x ~x
2
+
3 2/3
)
4) Đáp án: α x ~β x( ) ( )
5) Đáp án: α x ~β x( ) ( )
6) Đáp án: α x ~ β x( ) ( )
Bài 4: Với α x ,β x ,γ x( ) ( ) ( ) là các VCB trong cùng một quá
trình x a, hãy chứng minh:
a) Nếu α x β x( ) ( ) β x γ x( ) ( ) thì α x γ x( ) ( ).
b) Nếu α x( ) β x( ) β x( )= o γ x
( )
thì α x( )=o γ x
( )
.
ớng dẫn giải
α x
( )
α x
( )
a) limx aβ x( ) =1 limx a γ x( ) =1 (Vì β x( ) γ x( )) α x( ) γ x( ) , đpcm.
b) β x( )= o γ x ( ) limx aγ xβ x( )( ) =0 limx aα xγ x( )( ) =0 (Vì α x β x( ) ( ) )
α x( )=o γ x ( ) , đpcm.
Bài 5: Tính các giới hạn sau:
1) lim x
2
+ + −3x 1 5x 4) limx ( x
2
+ 4x− −1 x
2
+ −x 5) x→−3 2x+1
1
2x+ −1 1
2) limx 0
3 x+ −1 1 5) limx 54xx22 + +− +xx 11 x
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
___________________________________________________________________________________________________________________________________________________________________________________________________
______________
___________________________________________________________________________________________________________________________________________________________________________________________________
______________
Thầy Phạm Ngọc Lam Trường 4
3) xlim→− ( x2 2x + x) 6) limx 3 1 5(xsin x) (2 1)
0 tan x ln cos3x
ớng dẫn giải
2 + + − (− + − + − −3)
2
3. 3 1 5. 3
1) lim x 3x 1 5x = = 16
x
→−
3
2x+1
2.− +3 1 5
2) lim 3 2x+ −11 = lim (2x+ −1 1)( x+ +1 1) = lim
2( x+ +1 1) = 4
x0 x+ −1 1 x0 (x+ −1 1) 3 (2x+1)2 + 3 2x+ +11 x0 3 (2x+1)2 + 3 2x+ +11 3
3) Đáp án: xlim ( x
2
− + =2x x) (Gợi ý: nhân liên hợp)
→−
4) lim( x
2
+ − −4x 1 x
2
+ − =x 5)
3
(Gợi ý: nhân
liên hợp) x 2
1 ln 5x + +x 1
5) lim 5x22 + +− +xx 11 x = exlim 4x22x− +x 1 = exlim ln 5
14 1+− /x 1/x/x 1/xx ++ 22 = e0 =1 (Chú ý: xlim A xx0
( )B x( ) = ex xlim B x lnA x0 ( ) ( ) )
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 5
x 4x
= 5x
2
Bài 6: Tìm các giới hạn sau
1 2tanx(ex
+
cosx ) 1) limx 0 sinx3x 7) lim
x 0
ln
13) lim
x 0
3xln 1 2xx2 (4
+
sin x3)
e 1
2) limx 0 8) lim 1 2x( + )cotx 14) limx 0
x0
3) limx 0 arcsinx2 9) limx 0 (arcsin x(
6
))ln 1( 2x
10
)
6)
(
)
(
)
)
(
(
)
)
(
2
3
2
x0
x0
2
3
2
2
2
3
5
1
1
xsinx
1
5
xsinx
1
lim
lim
tan
xlncos3x
3
x
x.ln1
2
sin
5
xsinx
1
5
xsinx
1
1
2
=
+
+
)
(
2
x0
2
3
2
2
2
3
5
sinx
lim
x
3
1
ln12sin
15
xsinx
15
xsinx
2
=
+
+
)
(
x0
2
3
2
2
2
3
lim
3
x
xsinx
15
xsinx
15
2
sin
1
2
+
+
(
)
2
2
x0
2
3
2
2
3
5
x
lim
x
3
1
5
xsinx
1
xsinx
1
5
.
2.
2
=
+
+
)
(
x0
2
3
2
2
3
1
10
7
lim
9
5
xsinx
1
1
1
5
xsi
0
2
nx
1
=
=
+
+
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 6
x+ 2x
x
( ) 15) limx 0 16 e2x 1 e cosxln 1 x
+
sin x
4) lim ( ) 1 4+ −x 1
x 0
ln
13x16) lim
x 0
ln 1( +3x)
0lim
+
5) x
xe2x2+−x13 17) limx 0 eαx x eβx
6) limx 0 18) lim eαx eβx
x 0
sinαxsinβx ớng dẫn giải sinx3x = limx 0 x
=
1
1) Cách 1: Thay VCB tương đương: lim
x 0
e 1
3x 3
Cách 2: Sử dụng quy tắc L’Hospital: lim sinx3x = limx 0
cosx
3x
=
1
x 0e 1
3e 3
2) lim tanx
=
1
(Gi ý: tương tự ý 1)
x 0
ln 1( + 4x) 4
3) lim arcsinx = lim x = 1(Ở đây đã sử dụng quy tắc ngắt bỏ VCB bậc cao:
x 2x ~x
+
2
) x 0x+ 2x2 x 0
x
e
2x
1 =2
4) lim
x
0
ln(1 3x) 3
5) lim+ e2x2 13 =1 x0 x +x
x
10)
2
x0
lim
x
11)
x
2
x0
e
1
lim
x
x
+
+
12)
(
)
2
2
x0
1
lnsinx
sinx
x
lim
tanx
xcosx
++
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 7
6) limx 0 1(cosx2) = limx 0
2
(
sin
2
22) = limx 0 x / 2
2
2 = 1
ln 1+x ln 1+x x 2
1
ln 1+ 2tanx
7) lx 0im
(
ex cosx
)
= limx 0
ex2tanxcosx
00 =
L
limx 0
e
2
x cos x+sinx2 = =12 2
8) lim 1( + 2x)
cotx
= e
2
(Gợi ý: Giải tương tự Bài 3, ý 5) x0
9) limarctanx = 1 (Gợi ý: tương tự ý 3) x 02x+x2 2
x
0
x
x2 ( ) 00 =L limx 0 x
+
sinx
1+1x 0 =L l mx 0ie
x
+cosx2
+
(1+
1
x)
2
= 23 e
cosxln 1+ x
e
10) lim 2x 0
11) x 0lim
+
e
x
1
2
=
x 0lim
+
x
=1
x+ x x
sinxln sinx( + +1 x
2
)
12) lim
x 0
2
tanxxcos x
sinx = − +x
x
3
o x(
3
) 1+x
2
− =1
1
x
2
+o x(
3
) ln 1 u( + = − + +) u
u
2
u
3
o u(
3
)
6 2 2 3
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 8
ln sinx( + 1+x
2
)=(sinx+ 1+x
2
− −1)
1
(sinx+ 1+x
2
1)
2
+
1
(sinx+ 1+x
2
1)
3
+o x(
3
)
23
= xx3 +x2 +o x( 3) 1 xx3 + x2 +o x( 3) 2 +1 xx3 + x2 +o x( 3) 3 +o x( 3)= −x x3 +o
x( 3)
6 2 2 6 2 3 6 2 3
TuSo
= +
x
3
o
x(
3
) 6
tanx = + +x
x
3
o x(
3
) cosx = −1
x
2
+o x(
2
) xcos x
2
= x 1
x
2
+o x(
2
)
2
= −xx
3
+o x(
3
)
3 2 2
MauSo =
4x
3
+o x(
3
)
3
Từ đó lim sinxln(sinx
+ +
2 1 x
2
)
= limx 0 x /633 = 1 x
0
tanxxcos x
4x / 3 8
13) limx xln 12 ( + 2x3
)
= limx 0 x.2x2 = 2
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 9
0 3x 4sin x
3x 3
14) lim 1cos2x = lim 2sin x2 = lim 2x2 = lim 2x2 = 2
x 0
ln 1( 3xarctanx)
x 0
ln
1( 3xar tc anx)
x 0
3xarctanx
x 0
3x.x 3
(arcsin x(
6
))ln 1( 2x
10
) x .
6
(2x
10
)
15) lx 0im 16 = limx 0 16 =2
sin x x
16) lim 1 4+ −x 1 = lim 1 4+ x 1 = lim 1 4+ −x 1 = lim 4 = 2 x 0
ln 1 3x(
+
) x 0
3x x 0
3x( 1 4
+ +
x 1)
x 0
3( 1
+ +
4x 1) 3
1) limx 2
7) lim x
x→+ x3 − +4x
8
2) xlim sin x( + −1 sin x)
2
1
→+ limx 1+ sin
8)
3) xlim 3xsin5x2x x 0 x
→+ e sin2x+cos2x
9) lim
e
αx
eβx
17) lim =αβ (Tương tự ý 1) x 0
x
eαx −−esinβx 0βx
lim
0 = =L ... 1
18)
x 0
sinαx
Bài 7: Tìm các giới hạn sau
( 1)
x
.cos2x
x x + −1 cosx
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 10
4) lim x( 2)cos 2
x
x 2x6 + 5
x 2 x
− +
5x 6 sin(2x+7).cos(x2)+cos (42 x )3
1 10)
lim
5) limx e2 sin x x x
x0
2 3
x (sinx+cos x)
6) limx ( 1)2
x
11) xlim→− (x2 +1)(x3)
2x +7
ớng dẫn giải
lim x
=0
x→+
Gợi ý: 2cos
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 11
x→+
7) lim
= xlim→+ 1 4
1
1
/ x+2 +
/ x
8/ x3 xlim→+ x3
cosx
4x+8 = − =1 0 1
Ở đây, xlim→+
x3
cosx
4x+8
=0 theo nguyên lý kẹp, các bạn tự chứng minh.
Các ý 8), 9), 10), 11) giải tương tự.
8) Đáp án: 0
9) Đáp án: 5
10) Đáp án: 0
11) Đáp án: 0
Bài 8: Tính các giới hạn sau:
1) xlim→+ π 2ln 1 arctanx+ 1 8) limx 1
m
xm
1
n
xn
(m,n N
*
)
1
x
9) lim(a R
*
)
2) lim
(π 2x)cosx
x 0
1
) xlim π 2 arctanx+ x = xlim π2arctanxx 0 =L xlim→+ 1+−x12x2
= xlim→+ 12+xx22 = xlim→+ 1/ x22 +1 = 2
→+ ln 1 1 →+ 1 0
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 12
x
)
x
10) lim lnx
3) lim tanx
( )
1
cosx x 0+ ln sinx( )
xx e
x
e
4) xlim→+
(π 2arctanx lnx)
11)
limx 0
5)
lim
x 1
xx1lnx1 12) limx 0 sinx x2
1
6) limx 0
13) lim ex 0(
x
+ x
x
7) x 1lim lnxln x 1+ ( ( )) 14) xlim→+ π2 arctanx x
ớng dẫn giải
2
+ x. 1
1
1
) lim
(π 2x)
cosx
=1 (Gợi ý: Giải tương tự Bài 3, ý 5).
x 3) lim tanx
( )
2cosx
=1 (Gợi ý: Giải tương tự Bài
3, ý 5).
xx→+ (π2arctanx lnx) = xlim
→+
π
2arctanx
0
0
= =
L
... 0 4) lim
lnx
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 13
5) limx 1
x1 = limx 1
xlnx( − − +)x1 0 =L limx 1
lnx
x
=
limx 1
lnx
0 =L limx 1
1/ x1+/ x1/ x2 = 12
x 1 lnx x 1 lnx
0 lnx+ x 1 lnx+
1 1 0 x x
ln
sin2x
6) lim
x 0
ln sinx(( )) =
L
lim
x 0
= lim
x 0
2sin2x.cosxcos2x.sinx = lim
x 0
22cos2x.sinxsinxcos x2
= limx 0
cos2xcos x2 = 1
ln x( 1)
7) x 1lim lnxln x+ ( ( 1))
=
x 1lim+
= =
L
... 0
lnx
8) limx 1 m m − −n n = limx 1m(1−−mxxmn)(− +1nxnxn)m = limx 1
m1−−xmxn nx− +mn+xnxm n+m 00
1 x 1 x
=L limx 1n 1mnxmxm 1n 1−− ++nmx(m+m 1n x) m n 1+ −
00 = =L ... m2n
nx
9) limx 0
ln 1ax( + xax) = limx 0
eax xeax 00
=L lim aex 0
( ax + aeax)= 2a e elnx
L
10) x 0lim
+
ln sinx( )
= =... 1
1
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 14
11) limx 0
sinxcosxex ex = 2limx 0
esin2xx ex = limx 0
ex xex 00 =L lim
ex 0( x +ex)= 2
Các ý 12), 13), 14) giải tương tự Bài 3, ý 5
1
12) l mx 0i
sinxx x2 = 61
1
13) l mi (e
x
+x)
x
= e
2
x 0
14) xlim→+ π2 arctanx x = eπ2
Bài 9: Giải thích vì sao các giới hạn sau không dùng được quy tắc L’Hospital rồi tìm chúng bằng
cách khác
xsinx x+cosx
1) lim 3) lim x→+ x+sinx x→+ x
2) limx 0x sin 1/ x
2
sinx(
)
4)
limx
0x+cotxsinx
ớng dẫn giải
Không dùng được quy tắc L’Hospital vì khi x→+ các hàm sinx và cosx không tồn tại giới hạn.
x 1sinx
sinx
=1
1) lim
sinx
= lim
x
, có lim
sinx
= 0 (Theo
nguyên lý kẹp) nên lim
x
x→+ x+sinx x→+ 1+ sinx x→+ x x→+ x+sinx
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 15
x
2) x2 x sin 1/ x2 ( ) x2 lim x2 = lim x2
=0 lim x sin 1/ x2
( ) =0 (Nguyên lý kẹp) sinx
sinx sinx
x
0
sinx
x
0
sinx
x
0
sinx
x1 x+cosx x+1 x+1 = x 1= x+cosx =
3) lim lim 1 lim x x x x→+ x x→+ x x→+
1 (Theo nguyên lý kẹp)
x
4) lim x+sinx = lim(x+sinx sinx)
=0
x0 cotx x0 cosx
Bài 10: Tính các giới hạn sau
1) lim x
0
2) limx 1 sin3 πx
x 1
5) lim x
x
3
+8
6) xlim
2
2
→−
x 3x10
8) lim x 0
x
arcsin
9) lim 1x2 x 0ln
1 x( )
10) lim x 0
11) lim
x1/2
12) lim
x 0
+
2( 2(3)x)
ln 1
sin
tan 5x
18) lim n a+ − −x n a
x
x 0 x
19) limx0 +
1+tanxsinx
1
22) limsin2x+2arctan
3x+3x
2
x 0
ln
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
___________________________________________________________________________________________________________________________________________________________________________________________________
______________
___________________________________________________________________________________________________________________________________________________________________________________________________
______________
Thầy Phạm Ngọc Lam Trường 16
1( +3x+sin x
2
)+xe
x
23) xlim x→+
π
2 arcsin
x2
x
+1
cosxcos3x
3) limx 0 x2
4) lim x 0
7) xlim 2x→− ( +1) x43x++x1
5
(1 3+ x)
2
1
13) lim
x 0
sinx+2sin x2 sin 2x(
2
4x 6)
14) lim x 3ln x( 3 26)
15) lim
3
x
16) lim
2 x
17) limx0 x2 +sin x3
2x+ 2 3x
+
2
20) limx 2x2
3
1+tan x
2
3
1tan x
2
21) lim
x 0 x+ 3 x2
24) lim x
4/3
(
3
x
2
+ −1
3
x
2
1)
x→+
tanxsinx
25) limx 0 sin x3
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 17
ớng dẫn giải
1) limtan3x = lim 3x = 3 x 0tan2x x 02x 2
2) limx 1 sin3 πx 0 =
L
limx 1 πcosπx3x2 =
x 1 0
3) Cách 1: Sử dụng quy tắc L’Hospital:
cosxx2cos3x 0
limx
0
0 =
L
limx 0sinx+2x3sin3x 00 =
L
limx 0
cosx+29cos3x = 4
Cách 2: Thay VCB tương đương: limcosx2cos3x = lim2sin2xsin2(x) = limx 0 4x22 = 4
x 0 x x 0
x x
4) limx 0sin5xsin3x = limx 0sin5xsin3x 0 = =L ... 2 (Có thể dùng thay
VCB như ý 3) sinx x 0
5) limx 3x
3
3 + +5x2 1 = limx 3+ 5 / x
2
+1/ x3
3
= 3
2x + −x 9
2 1+ / x9/ x 2
6) xl→−im2 2 x
3
+8 0 = =
L
... 12 x 3x10 0 7
7) xlim 2x( +1) 43x+1 = xlim 2( +1/ x) 4+1/ x2 = 4
→− x + x →− 1+1/ x
8) limx 12 cos3x3 4 = limx 0 2sin2
2
(33x / 2)4 = limx 0 2. 3( x /2 2)
2
= 9
0 2x + 3x x 2x + 3x x 2x 4 x
x arcsin
9) lim 1x2 = lim 1x2 = lim 1 =1 x 0ln 1 x(
) x 0x x 01x2
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 18
10) lim ln 1(( + 4x22 5x33) = lim 4x22 5x33 = limx 0 4x22 = 2 x 0ln 1+ 2x + 3x ) x 02x + 3x
2x
11) xlim1/2 arcsin 1(2 −− 2x) = xlim1/2 41x22x 0 =L xlim1/2
8x2 = 21
4x 1 1 0
ln 1 sin
12) lim
x 0
+ 2( 2(3)x) = limx 0 sin22((3x)) = limx 0 ((3x))22 = 9
tan 5x
tan 5x
5x 25
13) limx 0
sinx5 (1++32xsi)2n2 x1 = limx 0
5 (1+ 3xx)2 1 00 = =L ... 65
14) lim sin 2x
(
2
4x
6
)
= lim sin 2x
(
2
4x6
)
2x234x6 0
= =L ...
8
x 3
ln x( 3 26) x 3
ln 1( + x3 27) = limx 3
x 27
0 27
15) lx 0im
ln 1ln cos3x
(
(+tan x2)
)
= limx 0
ln cos3xtan x( 2 ) = limx 0
ln cos3x( x2 )
0
0
= =
L
...
2
9
16) limx
2 sin 3xtan 4( (2 −−2xx2) 8) = limx
2 3x24−−2xx28 0 0 = =L ... 25
17) limx 0ln 1 xtx(2 ++sin xanx3 ) = limx 0xtanxx2 =1
lOMoARcPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 19
18) lim
n a+ −x x n ax 00 = =L ... n2 a1/n1
x 0
19) limx 0 +
+1 tanx
1+tanxsinx = ex 0limln 1sinx+sinx
= =... 1
1
1 1
2 2
= 2limx4/3 =0
3 x0
22) Cách 1: Thay tương đương
Khi x 0,sin2x + 2arctan3x + 3x ~ 8x
2
ln 1 3x( + +sin x
2
)+xe ~ 4x
x
(Các bạn tự chứng
minh). sin2x+2arctan3x+3x
2
= lim8x = 2
Nên lim x 0ln 1 3x( + +sin x2 )+xex x 0
4x
sin2x+2arctan3x+3x
2
0 Sử dụng quy tắc L’Hospital. Cách 2:
lim
x 0
ln 1 3x( + +sin x
2
)+xe
x
0
π
x
20)
x
ln
l
2
6
im
x
3
1
3
2
x
x
x
2
2
...
e
lim
e
2
x
2
+
+
+
+
==
=
21)
(
)
3
3
2
2
3
3
2
2
2
/
3
3
2
0
0
x
x
1
1
1
1
tanx
tanx
1
tanx
1
tanx
lim
lim
x
x
x
+
−−
−−
+
=
+
3
3
2
2
2
2
2
2
/
2
/
3
2
2
3
3
/
2
2
3
2
/
3
3
/
/
x
0
x
x
0
x
0
x
0
x
0
0
x
tanx
1
tanx
1
1
tanx
1
tanx
tanx
lim
lim
lim
lim
lim
lim
3
3
3
3
x
x
x
x
x
x
+
=
=
+
=
=

Preview text:

lOMoAR cPSD| 58833082
BÀI TẬP: GIẢI TÍCH I
CHƯƠNG III: GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM SỐ
GIẢI BÀI TOÁN TÌM GIỚI HẠN
Bài 1: CMR khi x 0→ 1) 1cosax a x ( 2 2 a 0) 2
2) sinax+ sin bx2 ax (a 0) 3) ax 1 xlna (1 a 0)
4) ln 1( + ax) ax a(  0) 5) (1+kx) − α 1 kαx (kα 0 ) 6) ax (
α + a x1 α 1+ + +... a xn α n+ axα
α 0,a 0)
Hướng dẫn giải
1) Ta có: 1cosax = 2sin2 ax 2.  ax   2 = a x2 2 khi x 0→ , đpcm. 2 2 2  
2) limx 0 sinax+sin bx2 = limx 0 sinax + sin bx2
 = limx 0sinaxax +limx 0sin bxax2 = +1 lim (
x 0bxax)2 = + =1 0 1ax →  ax ax
sinax+sin bx2 ax, đpcm.   3) lim → = → → x 0
axlna 0x 1 0 
L limx 0 a lnaxlna = limax 0 x =1 đpcm.   4) lim ( ) ( x 0→   =L limx 0a
) = limx 01+1ax = 1 đpcm. ln 1+ ax  0 a / 1+ ax ax   0
1+kx 1    5) lim ( ) ( + x 0 α 0 =L limx 0
α 1( +kakx)α 1k = lim 1 kxx 0
)α 1− =1 đpcm. → kαx   0 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ 0  6) lim ( ) ( ) = x 0 1 n 1 lim =   n
lim 1( + o x( ))= 1 αα1x0 + ax0a αx + ax + α
a xα 1+ + +...a xα n+ L
aαxα 1− + a α+1 xα
... a α+n xα n 1+ − → α α1 + αn + αx 0ax + ++ 1 ax ... n ax ax , đpcm .
Bài 2: Khi x 0→ , cặp VCB sau có tương đương không?
1) α x( )= +x x , β x( )= esinx cosx
2) α x( )= ln cosx( ), β x( )=−
3) α x( )= arctan sin2x(
) , β x( )= etanx cos2x
4) α x( )= 3 xx , β x( )= cosx1
Hướng dẫn giải
1) limx0 esinx cos =
x l im esinx − + −1 1 cosx = limx0    esinx1/41+1cosx1/4   = limx0 x0 esinxx1/4x +
1+lxi mx0 1xcosx1/4 x 2 7 / 4 sinx x/2 x x 1 /4 x x = lim x 1 + + /4 lx 0im = limx 0 1/4 lx 0im
= limxx 0 3/4 +limx 0
7/4 = 0 β
x( )= o(α( )x ) x 0x x x 2 → → 2
ln 1 2sin  2 x2 x ln cosx ln cosx −  −2sin x/ 2 2) lim ( ) ) ( ) 2 =−2lim ( → 2
=−2limx 0 2 2 =−2limx 0 2 2 = 4limx 0 2 2 =1 x 0→ −tan x x 0
tan x tan x x x 2
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 1 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ α x ~ β x( ) ( ) e cos2x
3) lim tanx = lim etanx − + −1 1 cos2x = lim tanx +lim 2sin x2 = lim x +lim 2x2 = 1 x0 arctan
sin2x( ) x0 arctan sin2x( ) x0 sin2x x0 sin2x x0 2x x0 2x 2
α x ,β x( )( ) là các VCB cùng bậc =−
4) lim cosx 1− = lim 1cosx = lim x / 22 1/3
1limxx 0 5/3 =0 β x( )= o(α( )x ) x 03 x x x 0x
3 x x 0→ −x 2
Bài 3: So sánh cặp VCB sau đây:
1) Khi x 0→ +: α x( )= x− −3 x 4 x , β x( )= − −1 x 1
2) Khi x→+ : α x( )= +1 12 , β x( )= ln x2 +2 1 x x x
3) Khi x 0→ : α x( )= 3 x x2 + 3 , β x( )= esinx 1
4) Khi x 0→ : α x( )= tanx, β x( )= esinx − −x2 1
5) Khi x 0→ : α x( )= 3x3 2x2 , β x( )= ln cos2x( )
6) Khi x 0→ +: α x( )= x x3 + 2 , β x( )= esinx cos2x
Hướng dẫn giải (G ợ i ý: 3 4 x −− x
1) Đáp án: β x( )=o α (
x ( )) x~ x1/4 )  1ln1 +   ln 2 2xx 1 1 1 + + x2 +1 x
2) L = lim= lim x→+ 1 x→+ x x2 x2
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 2 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Đặt: 1 = t L = lim ln 1 t( ) = t2 = = + +2 2 lim+
limt+ 0 β x( )=o α( ( )x ) x t0 t+t t0 t t0
3) Đáp án: β x( )=o α x( ( )) (Gợi ý: α x( )= 3 x x ~x2 + 3 2/3 )
4) Đáp án: α x ~β x( ) ( )
5) Đáp án: α x ~β x( ) ( )
6) Đáp án: α x ~ β x( ) ( )
Bài 4: Với α x ,β x ,γ x( )
( ) ( ) là các VCB trong cùng một quá
trình x a, hãy chứng minh: a) Nếu α x β x( ) ( ) và β x γ x( ) ( ) thì α x γ x( ) ( ).
b) Nếu α x( ) β x( ) và β x( )= o γ x  ( )  thì α x( )=o γ x  ( )  .
Hướng dẫn giải α x( ) α x( )
a) limx aβ x( ) =1limx a γ x( ) =1 (Vì β x( ) γ x( ))  α x( ) γ x( ) , đpcm. →
b) β x( )= o γ x  ( )   limx aγ xβ x( )( ) =0 limx aα xγ x( )( ) =0 (Vì α x β x( ) ( ) )
α x( )=o γ x  ( )  , đpcm.
Bài 5: Tính các giới hạn sau: ( )
1) lim x2 + + −3x 1 5x 4) limx→
x2 + 4x− −1
x2 + −x 5 x→−3 2x+1 1 2x+ −1 1  2) lim x 0 3 x+ −1 1
5) limx→  54xx22 + +− +xx 11   x
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 3 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________ ( ) 3) xlim→−
x2 2x + x
6) limx 3 1 5(− xsin x) (2 1)
0 tan x ln cos3x
Hướng dẫn giải 2 + + −
(− + − + − −3)2 3. 3 1 5. 3 − 1) lim x 3x 1 5x =
= 16 x→−3 2x+1 2.− +3 1 5 )
2) lim 3 2x+ −11 = lim (2x+ −1 1)( x+ +1 1 = lim ( ) 2 x+ +1 1 = 4 ( ( ( x0
x+ −1 1 x0 x+ −1 1)  3 2x+1)2 + 3 2x+ +11  x0   3 2x+1)2 + 3 2x+ +11  3     ( )
3) Đáp án: xlim x2 − + =2x x
− (Gợi ý: nhân liên hợp) →− ( ) 3 4) lim
x2 + − −4x 1 x2 + − =x 5 (Gợi ý: nhân
liên hợp) x→ 21
ln5x + +x 1  
5) lim5x22 + +− +xx 11   x = exlim→  4x22x− +x 1 = exlim→ln 5
14 1+− /x 1/x/x 1/xx ++
22     = e0 =1 (Chú ý: xlim A xx0 ( ) ( ) ( )
B x( ) = ex xlim B x lnA x0 )
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________
Thầy Phạm Ngọc Lam Trường 4 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ x→  4x − − ( 2 3 2 15 xsinx 1 − )
1 5 xsinx 1 6) lim =l im x0tan( − ) xl nc ( os3x ) x0 → (    2  − ) 2 3 x3
x.ln12 sin   ( 2 15 xsinx ) 3 2
+ 15 xsinx 1 +   2    2 5 sinx =lim x0 →     2 x 33 ln12sin   ( 2 2 15xsinx ) 3 2
+ 15xsinx 1 +   2    = 5x2 lim x0 →   2 3 x3 2 sin ( 2 2 15xsinx ) 3 2
+ 15xsinx 1 +   2   2 5 x =lim2 x0x 3    − 3
2.   .  ( 2 2 15 xs inx ) 3 2
+ 15 xsinx 1 +   2    101 10 = lim = x0 9 →   27 3  ( 2 2 15 xsinx ) 3 2
+ 15 xsi nx +1   
Bài 6: Tìm các giới hạn sau + 1) limx 0 sinx3x 7) limx 0ln 1 2tanx(e x cosx ) + 13) lim )
x 03xln 1 2xx −( 2 4 sin x3 e 1
2) limx 0 8) lim 1 2x( + )cotx 14) limx 0x0 → ( 3) lim )) ) x 0 arcsinx2 9) limx 0
arcsin x( 6 ln 1( −2x10
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 5 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ ( ) + → x+ 2x x 15) limx 0 16 e2x 1
e cosxln 1 x sin x 10) → 2 x0 lim x
4) lim ( ) 1 4+ −x 1 x 0ln
13x16) lim x e 1 − 11) lim + x02 x 0→ + ln 1( +3x) x x sinxl ( 2 nsinx ++1 x ) 5) x 0lim→ + 12) lim2 x0 tanxxc osx xe +− 2x2 x13 17) limx 0eαx x eβx 6) limx 0
18) lim eαx eβx =
x 0sinαxsinβx Hướng dẫn giải sinx = 3x limx 0 x 1
1) Cách 1: Thay VCB tương đương: lim
x 0e 1 3x 3 =
Cách 2: Sử dụng quy tắc L’Hospital: lim sinx = cosx 1 3x limx 0 3x
x 0e 1 3e 3 =
2) lim tanx 1 (Gợi ý: tương tự ý 1) x 0ln 1( + 4x) 4
3) lim arcsinx = lim x = 1(Ở đây đã sử dụng quy tắc ngắt bỏ VCB bậc cao: x 2x ~x+ 2 ) x 0x+ 2x2 x 0x
e2x 1 =−2 4) lim
x 0ln(1 3x) 3 5) lim − = +
e2x2 13 1 x0 x +x x
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 6 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ 6) lim ) = 2(sin ) = = x 0 1(−cosx2 limx 0 2 22 limx 0 x / 22 2 1ln 1+x ln 1+x x 2 1 ln 1+ 2tanx ( )   7) l → →
x 0imex cosx
= limx 0 ex2tanxcosx 
  00 =L limx 0 e2x cos x+sinx2 = =12 2
8) lim 1( + 2x)cotx = e2(Gợi ý: Giải tương tự Bài 3, ý 5) x0
9) limarctanx = 1 (Gợi ý: tương tự ý 3) x 02x+x2 2 ( ) + +( x sinx0 x x2
  00 =L limx 0 x
1+1x     0 =L l mx 0iex +cosx2
1+1x)2 = 23 e
cosxln 1+ x   e
10) lim   → 2x   0 = 11) e x x 0lim x 1 = + 2 x 0lim+ 1x+ x x ( ) sinxln sinx + +1 x2 12) limx 0 2 tanxxcos x sinx = − + ) ) x x3
o x( 3 1+x2 − =1
1x2 +o x( 3 ln 1 u( + = − + +) u u2 ) u3o u( 3 6 2 2 3
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 7 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ ( ) ) ) + )  ln sinx + 1+x 1( 1( ) 2
=(sinx+ 1+x2 − −1
sinx+ 1+x2 1 2
sinx+ 1+x2 1 3 +o x( 3 23  = xx ) ) ) )
3 +x2 +o x( 3   −1  xx3 + x2 +o x( 3   2 +1  xx3 + x2 +o x( 3   3 +o x( 3 = −x x3 +o x( ) 3 6 2 26 2 36 2 3 = +  TuSo x3 o x( ) 3 6 tanx = + + ) ) x x3 o x( 3 cosx = −1
x2 +o x( 2 xcos x2 = x 1 − x ) )
2 +o x( 2   2 = −xx3 +o x( 3 3 2 2   MauSo = 4x )
3 +o x( 3 3 ( ) + +
Từ đó lim sinxln sinx 2 1 x2
= limx 0 x /633 = 1 x 0
tanxxcos x 4x / 3 8 ) 13) lim ( + = = x xln 12 2x3 limx 0 x.2x2 2
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 8 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
0 3x 4sin x 3x 3
14) lim 1cos2x = lim 2sin x = = = − 2 lim 2x2 lim 2x2
2 x 0ln 1( − 3xarctanx) x 0ln
1( −3xar tc anx) x 0→ −3xarctanx x 0→ −3x.x 3 ( arcsin x( )) ) ( ) 6 ln 1( − 2x10 x .6 2x10 15) lx 0im = 16 limx 0 16 =−2sin x x ( + + )
16) lim 1 4+ −x 1 = lim 1 4+ −x 1 = lim 1 4+ −x 1 = lim 4 = 2 → → → x 0
ln 1 3x( + ) x 0 3x x 0 3x 1 4 x 1 + + → ( ) x 0 3 1 4x 1 3 eαx eβx 17) lim
=αβ (Tương tự ý 1) x 0x lim
eαx −−esinβx 0βx
    0 = =L ... 1 18) x 0sinαx   1) limx 2 7) lim → x
Bài 7: Tìm các giới hạn sau x→+ x3 − +4x 8 ( 1)x.cos2x x x + −1 cosx ( ) 2) + − xlim sin x 1 sin x 2   1
→+ limx 1+ sin   8)
3) xlim 3xsin5x2x x 0→    x  →+ e sin2x+cos2x  9) lim
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 9 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
4) lim x( −2)cos x 2
x→   2x6 + 5  x 2x − +5x 6
sin(2x+7).cos(x2)+cos (42 x )3   1 10) lim  
5) limx e2 sin x x→ x x0 2 3 x (sinx+cos x) 6) lim + x
( 1)2 x 11) xlim→− (x2 1)(x3) → 2x +7
Hướng dẫn giải lim x→ =0 x→+ Gợi ý: 2cos
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 10 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ x→+ 7) lim = cosx
xlim→+ 1 41 1/ x+2 +/ x8/ x3 xlim→+     x3
4x+8     = − =1 0 1   Ở đây, cosx xlim→+    x3
4x+8    =0 theo nguyên lý kẹp, các bạn tự chứng minh.
Các ý 8), 9), 10), 11) giải tương tự. 8) Đáp án: 0 9) Đáp án: 5 10) Đáp án: 0 11) Đáp án: 0
Bài 8: Tính các giới hạn sau:  −  1) ( )
xlim→+ π 2ln 1−   arctanx+ 1  8) limx 1
mxm 1nxn   m,nN* →  1x
9) lim(aR ) * 2) lim (
π 2x)cosx x 01 ) xlim
π 2−  arctanx+ x   = xlim
π2arctanxx     0 =L xlim→+ 1+−x12x2 = xlim→+
12+xx22 = xlim→+
1/ x22 +1 = 2
→+ ln 1  1 →+ 1   0
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 11 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ x→ 10) lim lnx 3) lim tanx ( )1cosx
x 0→ + ln sinx( ) x→ − x ex e  4) xlim→+
 (π 2arctanx lnx)   11) limx 0→  5) lim →  x 1
xx1lnx1   
12) limx 0→    sinx x21 x  ) 6) lim → (
x 0 13) lim ex 0x + x x 7) ( ( − )) x 1lim lnxln x 1→ +
14) xlim→+   π2 arctanx   x
Hướng dẫn giải 2 + x. 1 1 1 ) lim (
π 2x)cosx =1 (Gợi ý: Giải tương tự Bài 3, ý 5). ( ) x→ 3) lim tanx 2cosx = −
1 (Gợi ý: Giải tương tự Bài 3, ý 5). π
xx→+   (π2arctanx lnx)   = xlim→+ −  2arctanx = =
      00 L ... 0 4) lim lnx
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 12 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ 5) lim lnx
x 1→   x− − 1   = limx 1xlnx( − − +)x1 0    =L limx 1x− = limx 1lnx
    0 =L limx 11/ x1+/ x1/ x2 = 12x 1 lnx x 1 lnx
  0 lnx+ x 1 lnx+
1 1   0 x x ln sin2x  6) limx 0 ln sinx((
))   =L limx 0→= limx 02sin2x.cosxcos2x.sinx = limx 022cos2x.sinxsinxcos x2
= limx 0 cos2xcos x2 = 1
ln x( −1)   7) ( 1 ( x 1lim lnxln x+
1))= x 1lim+   = =L ... 0 → → lnx  8) lim )( )
x 1→   −m m − −n n    = limx 1m(1−−mxxmn
− +1nxnxn m = limx 1
m1−−xmxn nx− +mn+xnxm n+m       00 1 x 1 x − = )
L limx 1n 1− −mnxmxm 1n 1−− ++nmx(m+m 1n xm n 1+ −
      00 = =L ... m2n → −nx 9) lim → ( + ) = → − x 0 ln 1ax xax
limx 0 eax xeax       00 = → ( + )= L lim aex 0 ax aeax
2a e elnx    L
10) x 0lim→ + ln sinx( )     = =... 1
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 13 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ 11) lim → → → x 0
sinxcosxex ex = 2limx 0 esin2xx ex = limx 0 ex xex       00 =L lim e ( ) x 0
x +ex = 2
Các ý 12), 13), 14) giải tương tự Bài 3, ý 5 1
12) l mx 0i→    sinxx    x = − 2 61 1
13) l mi (ex +x)x = e2 x 0→ 14)
xlim→+    π2 arctanx   x = eπ2
Bài 9: Giải thích vì sao các giới hạn sau không dùng được quy tắc L’Hospital rồi tìm chúng bằng cách khác xsinx x+cosx 1) lim
3) lim x→+ x+sinx x→+ x
2) limx 0x sin 1/ x2 sinx( ) 4) limx
0x+cotxsinx
Hướng dẫn giải
Không dùng được quy tắc L’Hospital vì khi x→+ các hàm sinx và cosx không tồn tại giới hạn. x1sinx sinx =1 1) lim sinx = lim x
, có lim sinx = 0 (Theo
nguyên lý kẹp) nên lim x
x→+ x+sinx
x→+ 1+ sinx x→+ x
x→+ x+sinx
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 14 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________ x 2) −x ( ) = =
2 x sin 1/ x2
x2 lim x2 lim x2
0 lim x sin 1/ x2 ( ) =
0 (Nguyên lý kẹp) sinx sinx sinx x0 sinx
x0 sinx x0
sinx x1 x+cosx x+1
x+1 = x 1− =  x+cosx =
3) mà lim lim 1 lim x x x x→+ x x→+ x x→+
1 (Theo nguyên lý kẹp) x
4) lim x+sinx = lim(x+sinx sinx) =0 10) lim x 0x0 cotx x0 cosx
Bài 10: Tính các giới hạn sau 1) lim 11) lim x x1/2 0→ 12) limx 0  + ( (3)x) 2) lim 2 2 x 1 sin3 πx   ln 1 x 1 sin 5) lim x→ → tan 5x x3 +8
18) lim n a+ − −x n a 6) xlim2 2 x
→− x 3x10 x 0x 8) lim x 0→ 19) limx0   +  x
1+tanxsinx   arcsin →  1 9) lim
1x2 x 0ln 1 x( − )
22) limsin2x+2arctan
3x+3x2 x 0ln
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 15 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________
1( +3x+sin x ) 2 +xex
20) limx→  2x2 
23) xlim x→+    π2 arcsin
3 1+tan x2 3 1tan x2 21) lim x x
2 +1     x 0x+ 3 x2 cosxcos3x 3) limx 0x2 ( ) 24) lim x4/3
3 x2 + −1 3 x2 1 4) lim x 0x→+ tanxsinx 7) ( xlim 2x→−
+1) x43x++x1 25) limx 0sin x3
(5 1 3+ x)2 1
13) limx 0sinx+2sin x2 sin 2x( 2 − −4x 6)
14) lim x 3ln x( 3 26) 15) lim x 3→ 16) lim x 2→ 17) lim + x0 x2 sin x32x+ 2 + 3x 2
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________
Thầy Phạm Ngọc Lam Trường 16 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Hướng dẫn giải
1) limtan3x = lim 3x = 3 x 0tan2x x 02x 2 2) limx 1
sin3 πx 0    =L limx 1πcosπx3x2 = −
x 1   0
3) Cách 1: Sử dụng quy tắc L’Hospital: limx 0
cosxx2cos3x 0  
0 =L limx 0→ −sinx+2x3sin3x       00 =L limx 0→ −cosx+29cos3x = 4  
Cách 2: Thay VCB tương đương: limcosx− (− =
2cos3x = lim2sin2xsin2
x) = limx 0 4x22 4 x 0x x 0x x
4) limx 0sin5xsin3x = limx 0sin5xsin3x 0      = =L ...
2 (Có thể dùng thay VCB như ý 3) sinx x 0 5) limx 3x33 + +5x2 1 = limx
3+ 5 / x2 +1/ x33 = 3
→ 2x + −x 9
→ 2 1+ / x9/ x 2
6) xl→−im2 2 x3 +8      0  = =L ... 12 x 3x10 0 7 7) xlim 2x(
+1) 43x+1 = xlim 2( +1/ x) 4+1/ x2 = 4 →− x + x →− 1+1/ x 8) lim − = ( = x 12 cos3x3 4
limx 0 2sin2 2 33x / 2)4 limx
0 2. 3( x /2 2)2 = 9
0 2x + 3x x
2x + 3x x 2x 4 x x arcsin
9) lim 1x2 = lim 1x2 = lim 1 =−1 x 0ln 1 x( − ) x 0→ −x x 01x2
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 17 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
10) lim ln 1(( + 4x ) 22 5x33
= lim 4x22 5x33 = limx 0 4x22 = 2 x 0ln 1+ 2x + 3x ) x 02x + 3x 2x 11) −− xlim1/2 arcsin 1(2
2x) = xlim1/2
41x22x    0  =L xlim1/2
8x2 = −21 4x 1 10 ln 1 sin 12) lim ( ( (( (( x 0
 + 2 2 3)x)  = limx 0 sin22 3x)) = limx 0 3x))22 = 9tan 5x tan 5x 5x 25 13) lim → ( → ( x 0
sinx5 1++32xsi)2n2 x1 = limx 0 5 1+ 3xx)2 1      00 = =L ... 65 ( ) ( ) − −  
14) lim sin 2x 2 4x 6 = lim sin 2x 2 4x6
2x234x6 0 = =L ... 8 → → → x 3
ln x( 3 26) x 3
ln 1( + x3 27) = limx 3
x 27     0 27 15) l ) ) → ) → )
x 0imln 1ln cos3x( (+tan x = = 2
limx 0 ln cos3xtan x( 2
limx 0 ln cos3x( x2     = = −  00 L ... 29 16) lim → →
x 2 sin 3xtan 4( (2 −−2xx2−) 8) = limx 2 3x24−−2xx28 0      0 = =L ... 25 17) lim ++ ) = =
x 0ln 1 xtx(2 sin xanx3
limx 0xtanxx2 1
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 18 lOMoAR cPSD| 58833082
Học online tại: https://mapstudy.vn
_________________________________________________________________________________________________________________________________________________________________________________________________________________
18) limn a+ −x x n ax       00 = =L ... n2 a1/n1 x 0 19) limx 0  +  +1 tanx
1+tanxsinx  = ex 0limln1sinx+sinx   = =... 1 →  1   + ln     + l 3 2 imx x1
2 x +2  + 20) 6 = 3 x 2 lim   e ... == e
x →  2 x23 2 + −− − 3 2 3 2 + −− 1 t anx 11 tanx 1 tanx (3 2 1 tanx ) 1 21) lim =l im → → 2 x 0 3 /3 2 x 0 + x x x 3 2 3 2 2 2 2 2 1 +t anx 1
1t anx 1tanx tanx tanx x =l iml im = lim + lim = lim = lim2 /32 /32 /32/ 32/ 32 /3 x 0 x 0 x 0 x 0 x 0 x 0 x x 3 x 3 x 3 x 3 x 1 1 2 2 = 2limx = 4/3 0 3 x0
22) Cách 1: Thay tương đương
Khi x 0,sin2x + 2arctan3x + 3x ~ 8x )
2ln 1 3x( + +sin x2 +xe ~ 4xx (Các bạn tự chứng
minh). sin2x+2arctan3x+3x2 = lim8x = 2 Nên lim )
x 0ln 1 3x( + +sin x2 +xex x 04x
sin2x+2arctan3x+3x2   0  Sử dụng quy tắc L’Hospital. Cách 2: lim )
x 0ln 1 3x( + +sin x2 +xex     0 πx
_________________________________________________________________________________________________________________________________________________________________________________________________________________
Thầy Phạm Ngọc Lam Trường 19