



















Preview text:
  lOMoAR cPSD| 58833082  
BÀI TẬP: GIẢI TÍCH I 
CHƯƠNG III: GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM SỐ  
GIẢI BÀI TOÁN TÌM GIỚI HẠN        
Bài 1: CMR khi x 0→  1) 1−cosax  a x ( 2 2  a  0)  2 
2) sinax+ sin bx2  ax  (a  0)  3) ax −1  xlna  (1 a 0) 
4) ln 1( + ax) ax a(  0)  5) (1+kx) − α  1 kαx  (kα 0 )  6) ax (
α + a x1 α 1+ + +... a xn α n+ axα 
α  0,a  0) 
Hướng dẫn giải  
1) Ta có: 1−cosax = 2sin2 ax 2.  ax   2 = a x2 2 khi x 0→ , đpcm.    2   2   2   
2) limx 0 sinax+sin bx2 = limx 0  sinax + sin bx2 
 = limx 0→ sinaxax +limx 0→ sin bxax2 = +1  lim (
x 0→ bxax)2 = + =1 0  1    →  ax  →  ax  ax    
 sinax+sin bx2 ax, đpcm.    3) lim →  = →  →  x 0
axlna 0x −1 0 
L limx 0 a lnaxlna = limax 0 x =1 đpcm.     4) lim ( ) (  x 0→    =L limx 0→  a 
) = limx 0→ 1+1ax = 1 đpcm. ln 1+ ax  0   a / 1+ ax ax    0 
1+kx −1     5) lim ( ) ( + x 0  α  0 =L limx 0→ 
α 1( +kakx)α 1− k = lim 1 kxx 0→   
)α 1− =1 đpcm.    →  kαx    0      lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       0   6) lim (  )  (  )  =  x 0  1  n  1 lim =       n
lim 1( + o x( ))= 1  α  →  α1  − x0    +  ax  0    a αx +  ax + α 
a xα 1+ + +...a xα n+  L 
aαxα 1− + a α+1 xα 
... a α+n xα n 1+ −    →  α  α1  + αn  + α    x 0→  ax +  ++  1  ax  ... n  ax ax , đpcm . 
Bài 2: Khi x 0→ , cặp VCB sau có tương đương không? 
1) α x( )= +x x , β x( )= esinx −cosx 
2) α x( )= ln cosx( ), β x( )=−  
3) α x( )= arctan sin2x( 
) , β x( )= etanx −cos2x 
4) α x( )= 3 x− x , β x( )= cosx−1 
Hướng dẫn giải 
1) limx→0 esinx −cos =
x l im esinx − + −1 1 cosx = limx→0    esinx1/4−1+1−cosx1/4   = limx→0  x → 0   esinxx1/4x + 
−1+lxi mx→0 1−xcosx1/4 x  2  7 / 4  sinx  x/2  x  x    1 /4  x  x  = lim  x 1 + + /4  lx 0im  = limx 0 1/4 lx 0im 
= limxx 0 3/4 +limx 0 
7/4 = 0  β 
x( )= o(α( )x ) x 0→ x  → x  → x  →  2  →  →  2   
ln 1 2sin  2 x  2 x    ln cosx  ln cosx  −    −2sin  x/ 2  2) lim ( )  )  ( ) 2  =−2lim  (  →  2 
=−2limx 0  2 2 =−2limx 0 2 2 = 4limx 0 2 2 =1 x 0→ −tan x x 0
tan x → tan x → x → x  2 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    1       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________        α x ~ β x( )   ( ) e  −cos2x 
3) lim tanx = lim etanx − + −1 1 cos2x = lim tanx +lim 2sin x2 = lim x +lim 2x2 = 1 x→0 arctan 
sin2x( ) x→0 arctan sin2x( ) x→0 sin2x x→0 sin2x x→0 2x x→0 2x 2   
 α x ,β x( )( ) là các VCB cùng bậc  =− 
4) lim cosx 1− = lim 1−cosx = lim x / 22 1/3 
1limxx 0 5/3 =0  β x( )= o(α( )x ) x 0→ 3 x − x x 0→ x 
− 3 x x 0→ −x 2 → 
Bài 3: So sánh cặp VCB sau đây: 
1) Khi x 0→ +: α x( )= x− −3 x 4 x , β x( )= − −1 x 1 
2) Khi x→+ : α x( )= +1 12 , β x( )= ln x2 +2 1 x x x 
3) Khi x 0→ : α x( )= 3 x x2 + 3 , β x( )= esinx −1 
4) Khi x 0→ : α x( )= tanx, β x( )= esinx − −x2  1 
5) Khi x 0→ : α x( )= 3x3 −2x2 , β x( )= ln cos2x(  ) 
6) Khi x 0→ +: α x( )= x x3 + 2 , β x( )= esinx −cos2x 
Hướng dẫn giải   (G ợ i ý:  3  4  x −− x  
1) Đáp án: β x( )=o α  ( 
x ( )) x~ x− 1/4 )    1   ln1 +      ln  2  2    x   x    1  1  1  +  +  x2 +1  x 
2) L = lim= lim x→+ 1 x→+    x x2  x2 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    2       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________      
Đặt: 1 = t  L = lim ln 1 t(  ) = t2 = =  +  +2 2  lim+ 
limt+ 0  β x( )=o α( ( )x )    x  t→0  t+t  t→0 t  t→0 
3) Đáp án: β x( )=o α x( ( )) (Gợi ý: α x( )= 3 x x ~x2 + 3 2/3 ) 
4) Đáp án: α x ~β x( )  ( ) 
5) Đáp án: α x ~β x( )  ( ) 
6) Đáp án: α x ~ β x( )  ( ) 
Bài 4: Với α x ,β x ,γ x( ) 
( ) ( ) là các VCB trong cùng một quá 
trình x → a, hãy chứng minh:  a) Nếu α x β x( )  ( ) và β x γ x( )  ( ) thì α x γ x( )  ( ). 
b) Nếu α x( ) β x( ) và β x( )= o γ x  ( )  thì α x( )=o γ x  ( )  . 
Hướng dẫn giải     α x( )  α x( ) 
a) limx a→ β x( ) =1 limx a γ x( ) =1 (Vì β x( ) γ x( ))  α x( ) γ x( ) , đpcm.  → 
b) β x( )= o γ x  ( )   limx a→ γ xβ x( )( ) =0  limx a→ α xγ x( )( ) =0 (Vì α x β x( ) ( ) ) 
 α x( )=o γ x  ( )  , đpcm. 
Bài 5: Tính các giới hạn sau:  (  )
1) lim x2 + + −3x  1  5x  4) limx→
x2 + 4x− −1 
x2 + −x 5  x→−3 2x+1   1    2x+ −1 1    2) lim →  x 0 3 x+ −1  1 
5) limx→  54xx22 + +− +xx 11   x 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    3       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________       (  ) 3) xlim→−
x2 −2x + x  
6) limx 3 1 5(− xsin x) (2 −1) 
→0 tan −x ln cos3x 
Hướng dẫn giải        2 + + − 
(− + − + − −3)2 3. 3  1  5.  3 −  1) lim x  3x  1  5x = 
= 16 x→−3  2x+1   2.− +3 1  5  ) 
2) lim 3 2x+ −11 = lim (2x+ −1 1)( x+ +1 1 = lim (  )    2 x+ +1  1 = 4    ( ( ( x→0 
x+ −1 1 x→0 x+ −1 1)  3 2x+1)2 + 3 2x+ +11  x→0   3 2x+1)2 + 3 2x+ +11  3            (  ) 
3) Đáp án: xlim  x2 − + =2x x
− (Gợi ý: nhân liên hợp)  →−  (  ) 3 4) lim
x2 + − −4x 1 x2 + − =x  5  (Gợi ý: nhân 
liên hợp) x→ 2      1 
ln 5x + +x 1     
5) lim 5x22 + +− +xx 11   x = exlim→  4x22x− +x 1 = exlim→ln 5 
14 1+− /x 1/x/x 1/xx ++ 
22     = e0 =1 (Chú ý: xlim A x→x0 ( ) ( ) ( )  
B x( ) = ex xlim B x lnA x→ 0   ) 
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________  
Thầy Phạm Ngọc Lam Trường    4       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       x→  4x  −  −  (  2  3  2  1 −5  xsinx  1 − ) 
1 5 xsinx  1  6) lim  =l im    x0  → tan( − ) xl  nc (  os3x  ) x0 → (      2     − )  2 3 x  − 3    
x.ln1  2 sin    (  2  1 −5  xsinx ) 3  2 
+ 1 −5 xsinx 1 +     2      2  5 sinx  =lim       x0  →         2 x 3  − 3     ln12s  in    ( 2    2  15  − xsinx ) 3  2 
+ 15 − xsinx 1 +     2         =  5x2  lim    x0  →      2 3 x  − 3     2 sin  ( 2    2  15  − xsinx ) 3  2 
+ 15 − xsinx 1 +       2     2  5 x  =lim       →  2  x0   x 3      − 3    
2.   .  ( 2    2  1 −5  xs  inx )  3  2 
+ 1 −5 xsinx 1 +    2      10 −  1  1 − 0  =  lim  =    x0  9 →    27  3   ( 2    2  1 −5  xsinx ) 3  2 
+ 1 −5 xsi nx +1      
Bài 6: Tìm các giới hạn sau  + 1) limx 0  sinx3x   7) limx 0→ ln  1 2tanx(e − x cosx )  +   13) lim )
x 0→ 3xln 1 2xx −( 2  4 sin x3   → e −1 
2) limx 0 8) lim 1 2x( + )cotx  14) limx 0    →x→0  →  ( 3) lim )) ) x 0  arcsinx2  9) limx 0→   
arcsin x( 6 ln 1( −2x10  
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    5       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       ( )  +  → x+ 2x x  15) lim − x 0 16 e2x 1 
e −cosx−ln 1 x → sin x  10) →    2  x0  lim  x 
4) lim ( ) 1 4+ −x 1 x 0→ ln 
1−3x16) lim  x  e  1 −  11) lim    +  x0  →  2  x 0→  +  ln 1( +3x)  x x  sinx −l ( 2 nsinx ++1  x )       5) x  0lim→ +  12) lim  →  2  x0  tanx −xc  osx  xe +− 2x2 x13 17)  limx 0→  eαx −x eβx  6) limx 0 
18) lim eαx −eβx   = 
→ x 0→ sinαx−sinβx Hướng dẫn giải sinx =  3x  limx 0 x 1 
1) Cách 1: Thay VCB tương đương: lim   
x 0→ e −1 → 3x  3  =   
Cách 2: Sử dụng quy tắc L’Hospital: lim sinx =  cosx 1 3x  limx 0  3x     
x 0→ e −1 → 3e  3  = 
2) lim tanx 1 (Gợi ý: tương tự ý 1) x 0→ ln 1( + 4x) 4 
3) lim arcsinx = lim x = 1(Ở đây đã sử dụng quy tắc ngắt bỏ VCB bậc cao: x 2x ~x+ 2 ) x 0→ x+ 2x2 x 0→  x 
e2x −1 =−2  4) lim 
x 0→ ln(1 3− x)  3  5) lim − = + 
e2x2 13 1 x→0 x +x  x 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    6       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       6) lim ) =  2(sin ) =  =  x 0 1(−cosx2 limx 0  2 22 limx 0 x / 22 2 1    → ln 1+x  → ln 1+x  → x  2  1    ln 1+ 2tanx    ( )    7) l →  → 
x 0im→ ex −cosx 
= limx 0 ex2−tanxcosx 
  00 =L limx 0 e2x cos x+sinx2  = =12 2 
8) lim 1( + 2x)cotx = e2(Gợi ý: Giải tương tự Bài 3, ý 5) x→0 
9) limarctanx = 1 (Gợi ý: tương tự ý 3) x 0→ 2x+x2 2  ( ) +  +( x →  sinx−  0 x x2 
  00 =L limx 0 x 
1+1x     0 =L l mx 0i→ ex +cosx2
1+1x)2 = 23 e 
−cosx−ln 1+ x   e 
10) lim   → 2x    0  =  11)  e  x  x 0lim x −1 = +  2  x 0lim+  1    → x+ x  → x  (  )   sinx−ln sinx + +1 x2   12) limx 0  2      →  tanx− xcos x    sinx = − + ) ) x  x3 
o x( 3  1+x2 − =1 
1x2 +o x( 3  ln 1 u( + = − + +) u u2 )   u3o u( 3     6  2  2  3 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    7       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       (  ) )  ) +  )   ln sinx + 1+x 1( 1( ) 2 
=(sinx+ 1+x2 − −1
sinx+ 1+x2 −1 2 
sinx+ 1+x2 −1 3 +o x( 3   23     = x−x ) ) ) )
3 +x2 +o x( 3   −1  x−x3 + x2 +o x( 3   2 +1  x−x3 + x2 +o x( 3   3 +o x( 3 = −x  x3 +o  x( ) 3       6  2   2  6  2   3  6  2    3  = +  TuSo  x3  o  x( ) 3  6    tanx = + + ) ) x  x3  o x( 3   cosx = −1 
x2 +o x( 2  xcos x2 = x 1 −  x ) )
2 +o x( 2   2 = −xx3 +o x( 3     3  2    2     MauSo =  4x )
3 +o x( 3   3  ( )  + +
Từ đó lim sinx−ln sinx 2 1 x2 
= limx 0 x /633 = 1 x  →  0
tanx− xcos x → 4x / 3 8  )  13) lim ( +  =  =  x  xln 12  2x3 limx 0 x.2x2 2 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    8       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________        
→0 3x −4sin x → 3x  3 
14) lim 1−cos2x  = lim 2sin x =  =  = − 2  lim 2x2  lim 2x2 
2 x 0→ ln 1( − 3xarctanx) x 0→ ln 
1( −3xar tc anx) x 0→ −3xarctanx x 0→ −3x.x  3  (   arcsin x( )) )  ( ) 6 ln 1( − 2x10 x .6 −2x10   15) lx 0im  =  16  limx 0  16  =−2    →  sin x  →  x  ( + + ) 
16) lim 1 4+ −x 1 = lim 1 4+ −x 1 = lim 1 4+ −x 1 = lim 4 = 2 →  →  →  x 0
ln 1 3x( + ) x 0 3x x 0 3x 1 4 x 1 + + → ( )  x 0 3 1 4x 1 3  eαx −eβx    17) lim 
=α−β (Tương tự ý 1) x 0→   x   lim
eαx −−esinβx 0βx
    0 = =L ... 1  18)    x 0→ sinαx     1)  limx  2      7) lim →  x
Bài 7: Tìm các giới hạn sau    x→+  x3 − +4x   8    ( 1)− x.cos2x    x x + −1 cosx  (  ) 2)  + − xlim sin x 1 sin x  2    1  
→+ limx  1+ sin    8) 
3) xlim 3x−sin5x2x    x 0→      x     →+  e   sin2x+cos2x    9) lim   
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    9       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________      
4) lim x( −2)cos  x  2   
x→   2x−6  + 5     x 2→  x − +5x 6 
sin(2x+7).cos(x2)+cos (42 −x )3      1  10) lim      
5) limx e2 sin x  x→  x    x→0  2  3  x (sinx+cos x)    6) lim + x 
( 1)−2 x 11) xlim→− (x2 1)(x−3)  → 2x +7 
Hướng dẫn giải    lim x→  =0  x→+  Gợi ý: 2cos 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    10       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       x→+  7) lim   =  cosx
xlim→+ 1 4− 1 1/ x+2 +/ x8/ x3 −xlim→+     x3
−4x+8     = − =1 0 1    Ở đây,  cosx xlim→+    x3
−4x+8    =0 theo nguyên lý kẹp, các bạn tự chứng minh. 
Các ý 8), 9), 10), 11) giải tương tự.  8) Đáp án: 0  9) Đáp án: 5  10) Đáp án: 0  11) Đáp án: 0 
Bài 8: Tính các giới hạn sau:    −    1)  ( )
xlim→+ π 2ln 1−   arctanx+ 1  8) limx 1
−mxm 1−nxn   m,n N*   →  1      x 
9) lim(a R ) *   2) lim (
− π 2− x)cosx  x 0→    1 ) xlim 
π 2−  arctanx+ x   = xlim 
π−2arctanxx     0 =L xlim→+ 1+−x12x2  = xlim→+
12+xx22 = xlim→+
1/ x22 +1 = 2    
→+ ln 1  1  →+  1    0 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    11       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       x→  10) lim  lnx    3)  lim tanx (  )1 −  cosx 
x 0→ + ln sinx(  )  x→ − x  e−x  e     4)    xlim→+
 (π 2− arctanx lnx)    11) limx 0→      5) lim →  x 1
 xx−1− lnx1    
12) limx 0→    sinx  x2    1  x   )  6) lim → ( 
x 0  13) lim ex 0→  x + x x  7)  ( ( − )) x 1lim lnxln x 1→ + 
 14) xlim→+   π2 arctanx   x 
Hướng dẫn giải   −2  + x. 1 −1    1 ) lim (
− π 2− x)cosx =1 (Gợi ý: Giải tương tự Bài 3, ý 5).  (  ) x→ 3) lim tanx 2cosx = − 
1 (Gợi ý: Giải tương tự Bài  3, ý 5).   π
x→ x→+   (π− 2arctanx lnx)    = xlim→+ −    2arctanx  = =
      00  L ... 0 4) lim    lnx 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    12       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       5) lim lnx 
x 1→   x− − 1   = limx 1→ xlnx( − − +)x1 0    =L limx 1→  x−  = limx 1→  lnx  
    0 =L limx 1→ 1/ x1+/ x1/ x2 = 12   x  1  lnx  x  1 lnx 
  0 lnx+ x 1  lnx+ 
−1 1   0 x  x    ln sin2x     6) limx 0 ln sinx(( 
))   =L limx 0→= limx 0→ 2sin2x.cosxcos2x.sinx = limx 0→ 22cos2x.sinxsinxcos x2 →   
= limx 0 cos2xcos x2 = 1    →   
ln x( −1)    7)  ( 1    (  x 1lim lnxln x+ 
−1))= x 1lim+   = =L ...  0    →  →  lnx    8) lim )( )
x 1→   −m m − −n n    = limx 1→ m(1−−mxxmn
− +1n−xnxn m = limx 1→ 
m1−−xmxn −nx− +mn+xnxm n+m       00    1 x  1 x  −   = ) 
L limx 1n 1− −mnxmxm 1n 1−− ++nmx(m+m 1n x− m n 1+ − 
      00 = =L ...  m2−n  → −nx  9) lim →  ( + ) =  →  − x 0 ln 1ax xax
limx 0 eax xe−ax       00  = → ( +  )=  L lim aex 0 ax  ae−ax
2a e −e− lnx     L 
10) x 0lim→ + ln sinx( )     = =...  1 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    13       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       11) lim →  →  →  x 0
sinxcosxex −e−x = 2limx 0 esin2xx −e−x = limx 0 ex −xe−x       00 =L lim  e (  ) x 0→ 
x +e−x = 2 
Các ý 12), 13), 14) giải tương tự Bài 3, ý 5  1 
12) l mx 0i→    sinxx    x = − 2  61  1 
13) l mi (ex +x)x = e2  x 0→  14) 
xlim→+    π2 arctanx   x = e−π2 
Bài 9: Giải thích vì sao các giới hạn sau không dùng được quy tắc L’Hospital rồi tìm chúng bằng  cách khác    x−sinx  x+cosx  1) lim 
3) lim x→+ x+sinx  x→+ x 
2) limx 0→ x sin 1/ x2 sinx( )  4) limx 
0→ x+cotxsinx 
Hướng dẫn giải  
Không dùng được quy tắc L’Hospital vì khi x→+ các hàm sinx và cosx không tồn tại giới hạn.    x−  1− sinx  −sinx =1  1)  lim  sinx =  lim  x 
, có lim sinx = 0  (Theo 
nguyên lý kẹp) nên lim x   
x→+ x+sinx 
x→+ 1+ sinx  x→+ x 
x→+ x+sinx 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    14       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________       x  2) −x (  )  =  =
2  x sin 1/ x2 
 x2  mà lim x2 lim −x2 
0  lim x sin 1/ x2 (  ) =  
0 (Nguyên lý kẹp) sinx   sinx  sinx  x→0 sinx
 x→0 sinx x→0 
sinx  x−1  x+cosx  x+1 
x+1 = x 1− =   x+cosx = 
3) mà lim lim 1 lim x x x x→+ x x→+ x x→+ 
1 (Theo nguyên lý kẹp)  x 
4) lim x+sinx = lim(x+sinx sinx)  =0    10) lim x 0→  x→0  cotx  x→0  cosx   
Bài 10: Tính các giới hạn sau  1) lim  11) lim  x  x→1/2  0→  12) limx 0  +  ( (3)x) 2) lim 2 2 x 1  sin3 πx    ln 1  → x −1  sin  5) lim  x→    →  tan 5x  x3 +8   
18) lim n a+ − −x n a 6) xlim2  2     x 
→− x −3x−10    x 0→  x    8) lim x 0→    19) limx0   +  x 
1+tanxsinx      arcsin  →  1  9) lim 
1−x2 x 0→ ln  1 x( − ) 
22) limsin2x+2arctan
3x+3x2 x 0→ ln 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    15       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________      
1( +3x+sin x ) 2 +xex 
20) limx→  2x−2  
23) xlim x→+    π2 −arcsin    
3 1+tan x2 − 3 1−tan x2  21) lim   x x
2 +1        x 0→  x+ 3 x2  cosx−cos3x  3) limx 0→  x2   (  ) 24) lim x4/3 
3 x2 + −1 3 x2 −1   4) lim x 0→  x→+  tanx−sinx  7)  (  xlim 2x→−
+1) x43x++x1  25) limx 0→  sin x3 
(5 1 3+ x)2 −1 
13) limx 0→ sinx+2sin x2 sin 2x( 2 −  −4x 6) 
14) lim  x 3→ ln x( 3 −26)  15)  lim  x  3→  16) lim  x  2→  17) lim + x→0  x2 sin x3   2x+ 2 + 3x 2 
___________________________________________________________________________________________________________________________________________________________________________________________________ ______________  
Thầy Phạm Ngọc Lam Trường    16       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________      
Hướng dẫn giải  
1) limtan3x = lim 3x = 3 x 0→ tan2x x 0→ 2x 2  2) limx 1 
sin3 πx 0    =L limx 1→  πcosπx3x2  = −3π 
→ x −1   0 
3) Cách 1: Sử dụng quy tắc L’Hospital:  limx  0→ 
cosx−x2cos3x 0   
 0 =L limx 0→ −sinx+2x3sin3x       00 =L limx 0→ −cosx+29cos3x = 4      
Cách 2: Thay VCB tương đương: limcosx− (− = 
2cos3x = lim−2sin2xsin2
x) = limx 0 4x22 4    x 0→  x  x 0→  x  → x 
4) limx 0→ sin5x−sin3x = limx 0→ sin5x−sin3x 0      = =L ... 
2 (Có thể dùng thay  VCB như ý 3) sinx x  0  5) limx  3x33 + +5x2  1 = limx 
3+ 5 / x2 +1/ x33 = 3   
→ 2x + −x 9 
→ 2 1+ / x−9/ x  2 
6) xl→−im2 2 x3 +8      0  = =L ... −12 x −3x−10 0 7  7) xlim 2x( 
+1) 43x+1 = xlim 2( +1/ x) 4+1/ x2 = 4    →−  x + x  →−  1+1/ x  8) lim − =  ( =  x  12 cos3x3  4 
limx 0 2sin2 2 33x / 2)4 limx 
0 2. 3( x /2 2)2 = 9 
→0 2x + 3x − x 
→ 2x + 3x − x →  2x  4 x  x arcsin  − 
9) lim 1−x2 = lim 1−x2 = lim 1 =−1 x 0→ ln 1 x( − ) x 0→ −x x 0→ 1−x2 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    17       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________      
10) lim ln 1(( + 4x )  22 − 5x33
= lim 4x22 − 5x33 = limx 0 4x22 = 2 x 0→ ln 1+ 2x + 3x ) x 0→ 2x + 3x  → 2x  11)  −−  xlim→1/2  arcsin 1(2 
2x) = xlim→1/2 
41x−22−x    0  =L xlim→1/2 
8−x2 = −21    4x 1  1 0   ln 1 sin  12) lim ( ( (( (( x 0 
 + 2 2 3)x)  = limx 0 sin22 3x)) = limx 0 3x))22 =  9    →  tan 5x  → tan 5x  → 5x  25  13) lim →  ( → ( x 0
sinx5 1++32xsi)2n−2 x1 = limx 0 5 1+ 3xx)2 −1      00 = =L ...  65  (  )  (  )  − −   
14) lim sin 2x 2 − 4x 6 = lim sin 2x 2  4x−6
2x23− 4x−6 0 = =L ...   8    →  →  → x 3
ln x( 3 − 26) x 3
ln 1( + x3 − 27) = limx 3
 x − 27     0  27  15) l ) )  →  )  →  )
x 0im→ ln 1ln cos3x( (+tan x =  =  2
limx 0 ln cos3xtan x( 2 
limx 0 ln cos3x( x2      = = −  00  L ... 29  16) lim → →
x 2 sin 3xtan 4( (2 −−2xx2−) 8) = limx 2 3x24−−2xx2−8 0      0 = =L ... −25  17) lim ++ ) =  =
x 0→ ln 1 xtx(2  sin xanx3 
limx 0→ xtanxx2 1 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    18       lOMoAR cPSD| 58833082  
 Học online tại: https://mapstudy.vn    
_________________________________________________________________________________________________________________________________________________________________________________________________________________      
18) lim→ n a+ −x x n a− x       00 = =L ...  n2 a1/n−1  x 0  19) limx 0  +  +1 tanx 
1+tanxsinx  = ex 0lim→ ln1sinx+sinx    = =... 1    →  1     +  ln         +  l  3 2  im →  x  x   1 
 2 x +2   +  20)  6 = 3    x 2    lim     e  ... == e 
x →  2 x −2    3  2  + −− − 3  2  3  2  +  −−  1 t anx  1    −  1 tanx  1 tanx  (3 2  1 tanx  )   1  21) lim  =l im    →  →  2 x 0  3   /3  2  x 0  +  x  x  x  3  2  3  2  2  2  2  2  1 +t anx  1 − 
1 −t anx  1 −  tanx  tanx  tanx  x  =l im  −l im  = lim  + lim  = lim  = lim    →  2 /3  →  2 /3  →  2 /3   →  2/ 3   →  2/ 3  →  2 /3   x 0  x 0  x 0  x 0  x 0  x 0  x  x  3  x  3  x  3  x  3  x  1 1   2  2  = 2limx = 4/3  0  3 x→0 
22) Cách 1: Thay tương đương 
Khi x → 0,sin2x + 2arctan3x + 3x ~ 8x )
2 và ln 1 3x( + +sin x2 +xe ~ 4xx (Các bạn tự chứng 
minh). sin2x+2arctan3x+3x2 = lim8x = 2  Nên lim  )
x 0→ ln 1 3x( + +sin x2 +xex x 0→  4x 
sin2x+2arctan3x+3x2   0  Sử dụng quy tắc L’Hospital. Cách 2:  lim )
x 0→ ln 1 3x( + +sin x2 +xex     0  π−  x 
_________________________________________________________________________________________________________________________________________________________________________________________________________________  
Thầy Phạm Ngọc Lam Trường    19