Bài tập ôn tập - Vật lý đại cương | Trường Đại Học Duy Tân

Bài tập ôn tập - Vật lý đại cương | Trường Đại Học Duy Tân được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Trường:

Đại học Duy Tân 1.8 K tài liệu

Thông tin:
79 trang 4 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Bài tập ôn tập - Vật lý đại cương | Trường Đại Học Duy Tân

Bài tập ôn tập - Vật lý đại cương | Trường Đại Học Duy Tân được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

30 15 lượt tải Tải xuống





!" #ω ϕ
$" $

%
!" #ω ϕ
%
$"%$
&'()*+,-!
$ϕ
.ϕ
%
%/π0 /12!345
6$ϕ
.ϕ
%
"%/# $π5
$ϕ
.ϕ
%
"%/# $
2
π
5
($ϕ
.ϕ
%
7'6/8

9:;06<,()*27
-= 7 >12-6(?3)@ 
AB07C/D6<+8E7062B-27
12!8
$Fϕ
ϕ
%
#%/πA2" $7

!" #ω ϕ
$
!" #ω ϕ
%
#%/ $π
!" #ω ϕ
%
$0

%
!" #ω ϕ
%
$
FG7
21
a
y
a
x
=

x
a
a
y
1
2
=
H.
!"
ω
#
ϕ
$
 4.


HB-I$24J6(?6K
x
a
a
y
1
2
=
 AL .



6$92M-I$

!"
ω
#
ϕ
$
!"
ω
#
ϕ
%
#%/
π
#
π
$.
!"
ω
#
ϕ
%
$
FG7N4J6(?6K
x
a
a
y
1
2
=
AL .


$F
ϕ

ϕ
%
#"%/# $
2
π
(?(2N6>
1
a
y
a
x
2
2
2
2
1
2
=+
26(?+41O-AP071LA2Q;
48
($=/D-" $A2"%$8R3</2!3!
" $A2"%$
11
1
sin.sincos.cos
ϕωϕω
tt
a
x
=
 "S$
22
2
tt
a
y
ϕωϕω
sin.sincos.cos
=
 "T$
UV"S$AL!
ϕ
%
A2"T$AL.!
ϕ
WA<ALA<

)sin(.sincoscos
121
2
2
1
t
a
y
a
x
ϕϕωϕϕ
=
"X$
9V"S$AL!
ϕ
%
A2"T$AL.!
ϕ
WA<ALA<
)sin(cossinsin
121
2
2
1
t
a
y
a
x
ϕϕωϕϕ
=
"Y$
Z-"X$A2"Y$WA<ALA<
)(sin)cos(
12
2
12
21
2
2
2
2
1
2
aa
xy2
a
y
a
x
ϕϕϕϕ
=+
"[$
"[$6(?+41O-8
  ! "!#$%#$#%&!'
ϕ
(
)
ϕ
*
%&+,-./012#3
RPPG\]<\ZALAB3A
T^/_+W1G\
ZKA\]ALAB3A
%
S^/_+8
FAB36PP4+A]Z0Z]7`

a)C+]Z6;!8F!bOAB36cP>
0'45.4++!5+6
4+45.6
=v
F,
./, sm539
vv
vv2
v
1
v
1
2
v
s
v
s
ss
tt
ss
v
21
21
2121
=
+
=
+
=
+
+
=
+
+
=
A(
F!3,
./,
sm539v =
R+>R+J/=X^+
PP5/PPd
%^^  +  6e I  
+  a- PP "f .%$8 Z< PP
ALAB3SY/_+8
fQ $ U+  -=  c
L 2  a- N PP` Z< ;
+ALAB3A
%
 ^0g/_+5
6$U+ -= ALAB 3Q
6;647a-,PP`

$R3a-NPPZ++GRLZ-=6;+
PPG]LZ

12
v
AB
v
MB
=
" $
hD('1:2!3!]ZR7
,
sinsin
αβ
ABMB
=
 AL
a
h
=
β
sin
"%$
FG" $A2"%$N
]
R
Z
α
if E
f
.
%

8330
v
v
a
h
2
1
,.sin ==
α
 
α
XY
^
S^ja
α
 %S
^
S^j8
775+0''89:;<0
α
=>:; ? <.
'
'
30
123
30
56
00
α
3@+
'
'
30
123
30
56
00
<<
α
5+ 0' '
5?++8<AB3
C/'+?DE5+'+<F?<.+G0'
2
1
v
v
a
h
.sin >
α
3
:0
MD
v
v
AD
h
a
v
v
a
h
MD
1
AD
ADMD
2
1
2
1
.....
sin
.sin
sinsin
=
>==
β
α
αβ
8
21
v
MD
v
AD
>
1-05++!8'F95++!5+'F#3
6$7a-,PPALAB3Qk2;1N2+
<+l121NcPPL"+a-NPP2/P-=+,1C-O
+$0AAB0c-I$@LA2AB3+-=7)
2
1
v
v
a
h
.sin =
α
HALm
α
!"
α
$
 4
12
2
1
v
a
h
v1
v
v
a
h
..
h
hkm9sm52
hv
v
1
2
//,
min
===
8
9N20+-=cLRi0ALRi
]R8
RAB,=G/OI6KS^^8fQ!61V
ABLa0<
$nOI614"cLJ>$ALAB3X_!5
6$nOI3"c-J>$ALAB3X_!5
$nOI>48

n/OI0ABK4/OIcAB3/OI8U</O
I 3(L ALAB3A
^
+ 2ABL= C
-6B+
htg
2
1
tv
2
0
=+ ..
8
om(-27/<)=
g
vgh2v
t
0
2
0
+
=
8
n/OI14403(La>40-(6>
2ALAB36IA
^
.X_!0A
^
X_!5aA
^
^A27/<)=
$g0T!5 6$[0S!5 $[0g!8
RAB,=Gf#c-J>EEj"Ep12V
f#$8oq1N7AB>,r14GEpc-J>
ALAB3A
^
8
$fQAB3A
^
-=6;64ABa-K`

6$FO/=@ABL1Na-c+`
$U</P7AB>AB>1L6;64`

oIL1P> M(
$F+ AB  G E < a- 12
g
H2
t =
l
6;+AB%GEj<s0(7
gH2
H
2
hH
2
gt
t
h
vtg
2
1
tvh
0
2
0
+
=+==
..
6$n=@AB+L/a-,
Oc)C+!A2!jAB,
"f#$."!#!j$8
( ) ( )
).(
...
tgH2H2
H
2
hH
tvhHtg
2
1
tvgt
2
1
hHx
0
2
0
2
+
=
+=
+=
$ hD ( P > )  A0 0 !    J 6< t 
sa2vv
2
0
2
..=
ALAB3KM6;A^0.0!

!0</P
7!M=KAB 0AB%14<M12
H4
hH
g2
v
h
22
)(
max
+
==
8
F=M(ABG u0Yr8FO
$vC+2AB,^0 VIA2^0 V3+
8
6$F+I<AB< IA2 38

hD(P> A)C+AB,!+/G 1N6eI
,=
2
gt
2
1
s =
!b7P>)cA+AB,
+7/GA'O=12
g
h2
t =
8-(P>2!b=1+
,VQ62B-2
$vC+2AB,^0 !I
m04901089
2
1
tg
2
1
s
22
1
,,.,. ===
8
Ft+AB
( )
s2
89
6192
g
h2
t ===
,
,.
8
vC+AB,^0 !3q0,Oc)C+,
%.^0  0u!I
( ) ( ) ( )
m9110289
2
1
61910tg
2
1
hs
22
2
,,.,.,, ===
8
f
E
Ej
s

6$FM4
F+AB, I
s450
89
12
g
s2
t
3
3
,
,
.
===
8
F+AB< 3
s050
89
6182
2ttt
4
,
,
,.
===
H"(I$J<6
FG6]0Z0o4Add+W+=6AB8HB
>c-J>]R)VAdd"f .S$0AB>c(V
ZR0AB>6c(VoR8fQAB2LRL40<6Q)!`

vC+A2 3 AB>!
%w0
0AB>!
%

%w!
^
AMB
0
%
!
^
AMB
0AB>6!
S
%w!
^
AMB
0
S
!
^
AMC
8
UB0+<RAB12
3
3
32
2
2
1
1
1
a
s2
tt
a
s2
g
R4
a
s2
t ======
HB06ABqLR1N8
=rAB c-J>G T^ALAB3A
^
6;647La
$FL
τ
 V!AL+,-ABM(`
6$h
τ
 V!AL+,-ABM(`
9 ^_!
%
8

hD(P>O+</62X
g
vgh2v
t
0
2
0
+
=
A2P>+M(
g
h2
t =

 AB   !L0  -= r AB 3 (L AL AB 3 A
^
= C
-
( )
gh2vggh2v
g
vgh2v
g
h2
0
2
0
0
2
0
+=+=
+
ττ
]

Z

o
R
f
.
S

Z-A<-,
( )
( )
(
)
( )
τ
ττ
ττ
ggh22
ggh22g
v0gh2v2gh2vg2g
000
2
==++
$AB!L0-(AL
τ
 !7
(
)
( )
( )
sm712
110401022
110401022110
v
0
/,
...
....
=
=
HBAB,rJ>3(L8
6$AB0-(AL
τ
. !7
(
)
( )
( )
sm78
110401022
110401022110
v
0
/,
...
....
=
+
+
=
HBAB,rJ>1448
RABJt<)C+]ZYV8
HB3AB/)]6;X_!/)Z6; X_!8F(2)C
+]Z8

(
Fc'x03AB
( )
2
AB
sm
3
5
6
515
t
vv
t
v
a /=
=
=
=
8
FG77O)C+]ZcP>
2
A
at
2
1
tvAB +=
F!3,]ZY^8
*
9:;0AB36J6<t7P>
a606;
2
vv
v
BA
+
=
04]Z7(2
( )
m606
2
155
t
2
vv
tvAB
BA
=
+
=
+
== ...
Rc1D@";4+J$ 0X/8
FD+I0c1D(I0D+!
c1DB(I8HB31Lc1D@76;
X^/_+8
Z<;'!3334+6;8FO
$s3c1D8
6$F+c1D<)C+@8

HB36c1D12
h
km
25
2
50
v
/
==
8
F+c1D< 0X/212
*(JDB ===== 63h0602551vst ,,/,/
8
s3c1D
( )
(
)
( )
2
sm1290
s6081
sm6350
81
hkm50
2t
v
a /,
.,
/,/
,
/
/
max
====
B
8

K+!L!8E!HM!/0<L+!N/$!$D !'AO
%+6+G
sa2vv
2
0
2
..=
(
)
2
22
0
2
sm1290
km51
hkm50
s2
vv
a /,
,
/
==
=
8
1PQ'D0E!.5($R<#
Rc1D6eI(I4+J
)La+)!>ALI>8Z<;c
>)La+)!<+
τ
YV8fQ>!b
)La+)!61V`
-(+,-[8

sm112(2y0

12+I)La+
)!8 -(-Jt07
o(2>
22
1
a
2
1
at
1
l τ==

o(2". $
2
1n
at
2
1
l)1n(
=
o(2I
2
n
at
2
1
nl =
8
FG 7 !  +    >   ) L a + ) !
1nn(ttt
1nnn
τ==
$8
HL[07
[
 0 g!8
Rd,rc-;ALAB3A
^
 X_!8FO
3--<A23<-<d!1Nr V8

HB3ABc->!/r !A

u0g_!8
s7
α
@AB3ABA2-J>=C
y
x
v
v
tg =
α
8&c
Ab648
FG703--<A23<-<AB1N2O12@2
-I<3

A

A
^
α
α
8!
α

8!
α
A
A

( )
( )
222
2
n
2
t
2
222
y
2
x
x
n
sm452889agga
sm28
8915
1589
vv
vg
ga
/,,,cos
/,
,
.,.
sin
====
=
+
=
+
==
α
α
U+r)=67ALAB3A
^
 ^_!c-,-ALa
-J;7
α
T^
^
8s=!D)=67,rGa8fQ
$1L2)=677,8
6$FI)=678
$F+G1Nr67L1N678

',@1,62a0I1:;07
AB6W/1B-c-
J>A2c-8
oc-J>12J6<tAL
36;0AB36I6;A
^
A
^
8!
α
8oc-12
JALAB3/Pt6;A
A
^
8!
α
8
$MA2+AB\14)<AB36Ic
-J>A
^

( )
m12
g2
v
g2
v
y
22
0
2
y0
,
sin.
max
===
α
$F+6AB
( )
s31
g
v2
g
v
2t
0
y0
,
sin.
. ===
α
6$oP>IABr4
m10
g
2v
g
v2
vtvL
2
00
0x
====
αα
α
sin.sin
.cos
FG\-f%X+rd14-O4ALAB
3A
^
 X_!c-,-ALa-J;7
α
S^
^
8&'
$F+d5
6$n=GV-<yd5
$HB3d1N8

FG\-A4d144,
(
)
(
)
m872
892
3015
g2
v
g2
v
h
2
0
2
0
2
y0
,
,.
sin.
sin
====
α
z
f
α
A
^
9

+d
(
)
(
)
( )
s153
89
782252
89
57
g
hH2
g
v
t
y0
,
,
,
,
,
=
+
+=
+
+=
FI
(
)
m411533015tvL
0
0
=== ,.cos..cos
α
HB31N
(
)
(
)
(
)
( )
( )
sm7263015323vvv
sm32378225892hHg2v
2
02
2
x
2
y
y
/,cos.,
/,,.,.
=+=+=
=+=+=
C!+?+'%0+8%&HSA3
TNUAV'/9+V&<+Q/W3
X'A !/8U0'
2
0
2
y
0x
tg
2
1
tvHtg
2
1
tvHy
tvtvx
..sin..
.cos
+=+=
=
=
α
α
Y<5++!+$+?+'=Z3
Y<"<!<?[/,K+9+Q$!!'</0
%+- !K3
Y</LB<\$97-
tgvv
constvv
0y
0x
.sin
cos
=
=
=
α
α

!#]$(JD^%#_($(<^#*J$2<`D3
FG\-fS^0+rd3ALAB
3A
^
 ^_!c-,-ALa-J;7
α
S^
^
8F
$F+dLa/GNr`
6$n=GV-<yd`
$E)*d`

F(q---362 . T8
omzALz;V-8
$ABc2
)(..sin..
)(.cos
2tg
2
1
tvHtg
2
1
tvHy
1tvtvx
2
0
2
y
0x
==
=
=
α
α
+0=-^
0t5t5300t10
2
1
t301030
220
== ...sin.
om(,+d%!8
6$I{A'OV-640,O8
m317m31023010tvx
0
0
,.cos..cos ===
α

$6<()*A40I-)*
2"-)@A2C/D6<+$
nD+-" $A2"%$6;NG-" $W
A2"%$
(
)
m310x0
15
x
3
x
30
v2
xg
tgxH
v
x
g
2
1
v
x
vHtg
2
1
tvHy2
v
x
t1
2
2
2
0
2
2
00
0
2
0
0
=
=
==
=
/9+
α
α
αα
αα
α
cos
.
.
coscos
.sin...sin.)(
cos
)(
2\;0)*A412-618
fQ-=rABc-,-ALa-J;7
α
6;64ALAB36IL0IAB12M8

hD(P>OIAB,r4C1B-,62 . S
g
v
g
2v
L
2
0
2
0
=
α
sin.
HB!b,IM6;
g
v
L
2
0
=
max
/!%
α
 0
α
TX
^
8
n|1}Kf2U12 %0Y[r8fQ<t>K&4c6
/ M"qAB3 6IA27 4$0 /|14 !b126
4`
o6<"f2U$u0[%[_!
%
5"&4c6$u0g ^_!
%
8

FG P > I
g
2v
L
2
0
α
sin.
=
 B 0 AL 1M } /P t " A
^
/Pt$A27r/Pt"r/7r6;TX
^
$I9!b\
1'AL3m+8E77',/\1}2
-3&cr6
( )
m56126712
8109
7279
L
g
g
L
HN
XP
HN
XP
,,.
,
,
===
FAB37
$F))7"F)Ad)
7%T+$8
6$/+A2/-NWW5

$RaF~))F"RaF~))F
Ad%[24$5
($AVF)4)*dAL/6;gg
-N8

hD(P>OAB37
T
2
π
ω
=
A21:/•-=tN3
AL12V"!$!b,
$HB37M))
( )
srad10267
3600
24
2
5
/.,
.
.
==
π
ω
6$o/•)/-N12 8n+)<Ad12 %<4AB
37/+A2/-N12 T0X8 ^
.X
(_!5 0[T8 ^
.S
(_!
$ol-(P>4AL/•/7AB37
a~)12%0[8 ^
.Y
(_!5
($oA7/)12gg-N12 0 u8 ^
.S
(_!
AB3(2)4af2U8
Z<;Axf2U12
α
%
^
8

Fc62 . gAB37M)712
ω
[0%Y8 ^
.X
(_!8Z/O)*f2U"c$12
α
cos
R
r
=
8
FG77AB3(2f2U12
A
ω
8
ω
8w8!
α
F!3A2,ATS^_!8
Y0<%0+ + 8 "Ba7- !'A!'!
b<H"Gc+L/9+7- !'AO%+6+G/9+
DM-!'
ϕ
!'.5D$/L
ω
!'/LH0+/$
+!L
β
!'+!L5!Bde!<A&DL%&%
Kf3
z
 ω
α
w
f62 .
u

 R AP1~! /6eI ) , -N, AB3 [^^
Ad_-N8FO37AP1~A2!3Ad2AP1~C),-N
<AP1~12(I8

HB37AP1~
ω
[^^Ad_-N[^^8%
π
_Y^"(_!$!+
τ

-NY^!8
R2
ω

β
8
τ


( )
2
srad221
3600
1400
60
601400
/,
/
====
π
π
τ
ω
β
8
s7),!+
τ
 -N12
( )
rad70060221
2
1
2
1
22
πτβϕ
=== .,..
EAB0!3Ad), -N12
/f]RZ
*
===
π
π
π
ϕ
2
700
8
R6c)B(I0!-NAB3 7=GS^^
Ad_-N3 g^Ad_-N8F36cA2!3Ad26cC)
,-N8

Fc'xA3771P372
( )
2
0
srad210
60
602300602180
/,
/./.
=
=
=
π
π
τ
ω
ω
β
8
s7),(MA23)MAL)A..!
J6<tN
(
)
(
)
1/f#
240
2102
602300602180
2
222
0
2
=
=
=
,.
/./.
ππ
β
ωω
ϕ
8
fa(MA2P>AB376
1/f#
2401
2
300180
2
0
=
+
=
+
= ..
τ
ω
ω
ϕ
R6c76/Ow ^1NI>40!7))
7AL376;S0 T(_!
%
8fQ0!V>
$HB37A2AB3(24A26`
6$s 3--<03 <-< A2 32-I 4
A26`
$s7@32-IA26/O6c">ALq4
A26`

$hV>0AB37A2AB3(24A2612
(
)
( )
sm314010143Rv
srad1431143t
/,,.,.
/,.,.
===
=
=
=
ω
β
ω
s3<-<7'/PtA23--<
1N2
α
f



(
)
( )
222
n
2
t
sm986010143Ra
sm314010143Ra
/,,.,.
/,,.,.
===
===
ω
β
od32-I6;
(
)
2
2
n
2
t
sm031aaa /,=+=
8
$s7@32-IA26/O12
α
=C
031
3140
a
a
t
,
,
sin ==
α

α
 [
^
TYj8
o/)6c6/OX^12^0 V8F
$HB3(2A2AB37A265
6$s3--<@6/O8

HB3(2A2AB374A26
( )
( )
srad862
50
431
R
v
sm431
10
502
T
R2
v
/,
,
,
/,
,
,.
===
====
ω
π
π
f/f<A4A'+!5+
f45 !H0++G
6$s3--<{3LV@6/O
(
)
2222
n
sm9862508622Rra //,.,/. ====
ωω
8
R226eIA2+d06/O /0(2Y^^0
ALAB3XT/_+822<)C+7S^V8FAB3(20
3--<03<-<032-IA23722K3
)C+78o2212(I8

ow / ^^^0A
^
XT/_ X_!0!Y^^0S^!8
hD(P>AJA2d6<t!b
O,1,I<8
(
)
(
)
( )
2
22
0
t
2
t0
sm
3
1
30
30156002
t
tvs2
ata
2
1
tvs /
.
=
=
=
+=
8
HB3I3+Ad
( ) ( )
hkm90sm2530
3
1
15tavv
t0
//. ==+=+=
8
s3--<{3LVI
( )
2
22
2
n
sm6250
1000
25
R
v
Ra /,====
ω
od32-I12
( )
2
22
2
n
2
t
sm7080
8
5
3
1
aaa
/,
=
+
=+=
s372I

( )
24
t
srad1033
1000
31
R
a
/.,
/
==
β
HB341c4DP6;A%0%8 ^
g
_!8FOAB
37A23--<41c<c)*712Add6
/O^0X8 ^
.g
8

€1cA%0%8 ^
g
_!%0%8 ^
Y
_!5w^0X8 ^
.g
^0X8 ^
. ^
8
HB37A23LV{3--<1I1,
ω
A_wT0T8 ^
Y
(_!5

ω
%
wu0Yg8 ^
%%
_!
%
R+3•)!P7(dL=8U<+•
cLGA'O]!A'OZ"]Z
AL(d!P0 .T$!+

 ^-N!bLA'OoZ/=! %^8U<+•
A-O,(d!+
%
 %0X-N!bLNA'OZ8
oAB33AL(dL12/Pt8FO
$Z1!P5
6$HB3A3AL(dL5
$HB3(dL3AL6+!P5
($s7
γ
8

FG]<o<+
 ^-N0]<Z<+
%
 %0X-N0Zo7(2!Zo %^8
V 1262 t ,- AB38 F  W
+    q AL (d L AL AB 3
u
A2
!AL(dL"( +•$ALAB 3
v
8
ot,-O123AL
6+!PALAB3
+=
uvV
8
F+,->62>AL .T0+
,->>AL .T68
FcAb07-!
!8
51A8
51"A8!
γ
$8
%
5A8!
γ
5
( )
sm20
600
120
t
s
u
1
/,
===
8
'
,
cos.cos..
5336
5
4
512
10
t
t
tvtvl
0
2
1
21
======
γγγ
( )
sm330
3
1
53
20u
v
v
u
5
3
/,
/
,
sin
sin
======
γ
γ
8
o(d!P
m2006010330tvl
1
=
=
=
)..(,.
8

]

Z

o
R
f .T
γ
A

H
]

Z

o
γ
A
H
!

1
f
.
T6

U+•)!PcLAP7AL6+!PAL
AB3[0%/_8UL=CA-OP(d/= X^8
F
$HB3(dL3AL6+!P5
6$ F+  I   ) , !P8 o 6<    !P 6;
^0X/8

Z(d!P1^0X/X^^8! X^0H[0%/_%_!8
FGAb
( )
sm6002
500
150
v
l
s
u
l
s
v
u
/,..
====
8
F+<!!P
( )
s250
2
500
v
l
v
AB
V
AC
t =====
8
-!3$^0Y^_!56$%X^!8
R66GA'O]LA'OZ8]Z;cLFVPA2
/=S^^/8&'+6<
$nP775
6$o77tcLUZe5
$o77tcLFVP8
o6<AB376;A
%^_!0AB363AL/P/OA
%
Y^^/_8

]ZS^^/07A
%^_![%/_0A
%
Y^^/_8
$F+66M<-G]<Z
( )
1B#
30h50
600
300
v
l
t
2
====
,
8
6$FM62 .%Y063LA'OZ07-=6<A-O
7
α
!AL-]Z8F7
( )
hkm59672600vvV
22
2
1
2
2
/===
8
F+66G]<Z12
( )
B
230h5030
596
300
V
s
t ,, ====
8
$s7PGFV!P8F+6
I(q12
( )
B826h4460
72600
300
vv
s
t
12
,, ==
+
=
+
=
8
f .XP=68
$o6<O78
6$ x@W'A28
$h!AB368

]

Z

o
f62
.
%[

A

H
!

1

Z
]
A
%
A
α
f62 .%g


$UA2W'=6212(I
8
6$sW'AL+6<+-
8
$Z012AqL8HB3yABG1N
B/8W'AB32(33AB21L"3
6<!37+J$8FGW'07!!3AB
S
‚
‚
%
8
f .YW'AB38fC6<
4yz]0]Z0Zo0oE8

z]AB-+^W(IAL
3/1L8
W']Z6<AB!8
W'Zo6ABB(I8
W'oEAB<-B(IAL31L
/Zo8HB(G1328

A

z
]
Z
o
E
f
.
Y
f
.
X
A

 
S
%
z
f .Xj
A
S
%
z



%. 8Rc7/31,%^^^^/0B(I(L(
1M6;Y^^^U0AB36Ic6; X_!8fQ
$s3c5
6$h61Vc(G15
$+cC,/G1NC</c(GJ8

$s3c,Oc'1BiiUcƒ
„_.Y^^^_%^^^^.^0S_!
%
8
6$F+/G1NC</(G1
( )
3DRZ
Z$])
(R)Z
!
/
 ==
== t
$vC+/G1NC</(G1
!A
^
8#8
%
_%888S[X8
%.%8 R  y a TuU 6' /…- @  a -J J
>" %.T$89M r-J74 ya 12 T[U8
fQ 1MQ  I Va  y` f !3! @
yA2ar-/^0%8

9MV ^[0gU51Mu0gU
n3y3I1M„
f
L3(L01M!
4ayL144"f%.T$0d/3Vy14
41M!1L3(L"f%.T6$8
FGAb201M(q"„
f
$A2V„
U
y-=7
'Q
f

(
)
N8949147202PNk2PFF
2ms1ms
,.,..
=
=
×
=
+
U

(
)
N810749147202PNk2PFF
2ms1ms
,.,..
=
+
=
+
×
=
+
+
%.S8fQ-=(1M6;64142>47
(IA2!+S^V7, 8o6<1M!
26;X†m1,28

sm„121M(1428&rc-01MV3
20c'1BU%06; „.‡
!

F712/31,A2
2
t
s2
a =
123I8
f
„
U
!
!%

f%
.
T

f%
.
T
6
f%.T

FG7!
2
ms
t
ms2
mg5mafF
..
% +=+=
8
F!3! 0S^!0 X0Y XY^^/,„
g%^^U8
1C"G%0++L+ !!"%&<=(R$J\#3
%.T8R+(<cALAB3/Pt89NI+/r
cA-OL0!7+}cA-O!8F=+,-02c
,-ALa-J;7
α
8fQ+,-2+-=a14
c1M1L`Z<;m1,c120!3!@6cA2a
+12/8

H<-'1BiiUcƒ1M(A2c8F2-I1M
t ,-< c - J >A2 ;  6; ^. /P 7
c-J>0c-./P73
c-4
F+,- /rcA-OL"%. j$ 1MrAP7 c14a
+12
P - F.
N
0
P
F.
N
sin
sin
=
=
+
H2
msms
FF0FF
=
=
α
α
cos.cos.
R201M!(14c
!
/U/".„!
α
$
(
)
α
α
sincos FPkF
=
αα
sin
cos
k
kP
F
+
=
F+,-}cA-O!"%. j6$
Z;-VOM0O,1M!a14c+,-
212
!
/Uj/"#„!
α
$
H21M„jIa142c
αα
sin
cos
'
k
kP
F
=
wk2„j
‚„8UAB+,-}cA-O!+-=(q
1M1L8
%.X8RAB7/31,X/,a4a-J4,-AL
a-J;7
α
S^
^
8f!3!@ABA2a-J46;
/^0%8F3AB4a-J48

U
„
!
Uj
„j
„j
!
α
f%
.
j
f%
.
j6

F-VO1M(A2ABW S1MJ
>0 U AP 7 AL a 4 A2
!
; 4 a
48
'1BiiUcƒAB
a
m
F
N
P
ms
.
=++
o< -  2 c - AP 7 AL a
-J4"-z$A2-!!ALa-J
4"-z$,
=
=+
maFP
0NP
ms
α
α
sin
cos

=
=
m
FP
a
PN
ms
α
α
sin
cos
R2„
!
/8U4
( )
αα
α
α
α
α
cossin
cossincossin
kg
m
kmgmg
m
kPP
a =
=
=
8
F
α
S^
^
0/^0%0u0gO,S0%T_!
%
8
[7-e!\'$+!L !/e<bO+e
7UA/0L+ !/3
%.Y8RAB,34a-J4,-ALa-J;
7
α
TX
^
8n,,)C+!SY0T0AB,AB3A%_!8&
'!3!@ABA2a-J48

-(P>3AB62%.X7
(
)
α
α
cossin kga
=


α
α
α
α
coscos
sin
g
a
tg
g
ag
k =
=
8
hD(/<>iA3)A..!73AB,2
12
S
2
v
S
2
0v
S
2
vv
a
222
2
0
2
.
.
.
=
=
=
8
α
α
cos.gS2
v
tgk
2
=
FP!3C
α
TX
^
0A%_!0!SY0T^0SYT,/
^0%8
%.[8R!,(VG,a4a62!-I76Pk
38h,(V6eI,4a62/(2-I6Pk6;
%X†(2(V8&'!3!/@!,(VA2a628

!
f62%.[
!
α
U
z

f62%.X

sm12m1,=(V0
12m1,-I6Pk8FcI
620(2-I6Pk6;%X†(2(V

%X†8
&rc-!,(V0(V'(1M
A2
!
8
R3(V6eI,-=7
‡
!
‡
!
%X†8
R20‡
!
/8U/8"[X†$8
FG7%X†/8"[X†$
330
3
1
75
25
k ,==
8
%.g8 $RPP/31,4+6;0!3!
@6PPA2a+12^0 8FO1M/rPP+,-
$ˆP5
6$ˆP(IAL36;%_!
%
5
%$olVQ4+,-PPA2
$94(37(3T†56$&3(378
f!3!6;^0 !3+8

Ft,-1M(14PPW1M/r
F
PP0m1M
P
0-=
1M--<
N
a+A21M!a+
ms
f
8
'1BiiUcƒPP12
+
+
+
=
a
m
ms
fNPF
om(12c8o<-214-
,
$ nc4+;
kmgmafmaFmafF
msms
+
=
+
=
=
F!3  ^^^/5/^0 5u0g_!
%
5A2
$n0^
„ug^U8
6$n(IAL3%_!
%
„%ug^U8
%$ nc4+(3
$ˆP14(3
α
α
α
α
sincossinsin
mgkmgmaPfmaFmaPfF
msms
+
+
=
+
+
=
=
F70!
α
^0^T12(3(3
!
α
 010401
2
,,
(
)
N137204089100018910001001000F
=
+
+
×
=
,.,..,..,
6$ˆP3(3„"/!
α
.!
α
$8
α
α
α
α
sincossinsin
mgkmgmaPfmaFmaPfF
msms
+
=
+
=
=
+
F!3
(
)
N588,041000.9,8.0,8.10,1.1000.901000F
=
+
×
=

U
!
„j
Uj
‡p
!
α
f62%
.
g
| 1/79

Preview text:

 


 !"ω# $" $ ϕ
 !"ω# $"%$ % ϕ%
&'()*+,-! $ϕ . %/ ϕ% π0
/12!345
6$ϕ . "%/# $ ϕ% π5 $ π
ϕ . "%/# $ 5 ϕ% 2
($ϕ . 7'6/8 ϕ%  
9:;06<,()*27
-=7>12-6(?3)@
AB07C/D6<+8E7062B-27
12!8
$Fϕ  #%/  ϕ%
πA2" $7
 !"ω# $ !"ω# #%/π$ !"ω# $0 ϕ ϕ% ϕ%
 !"ω# $ % ϕ% FG7 x y a =  y 2 = x  a a a 1 2 1
H. ≤!"ω#ϕ $≤ 4. ≤≤ 
HB-I$24J6(?6K a y 2 = x  AL .  ≤≤ a1
6$92M-I$  !" $ !" #%/ !" $ ω#ϕ ω#ϕ% π#π$. ω#ϕ%
FG7N4J6(?6K a y 2 = − x  AL
. ≤≤  a1 $F π
ϕ  #"%/# $
(?(2N6> ϕ% 2 x 2 y 2 + = 1 a 2 a 2 1 2
26(?+41O-AP071LA2Q;
48
($=/D-" $A2"%$8R3</2!3!
" $A2"%$
x = cosωt.cosϕ −sinωt.sinϕ  "S$ 1 1 a1
y = cosωt.cosϕ − sinωt.sinϕ  "T$ 2 2 a 2
UV"S$AL!ϕ A2"T$AL.! WA<ALA< % ϕ
   x y cosϕ − cosϕ = sin t
ω .sin(ϕ − ϕ )"X$ 2 1 2 1 a a 1 2
9V"S$AL!ϕ A2"T$AL.! WA<ALA< % ϕ x y sinϕ − ϕ = t ω ϕ − ϕ  "Y$ 2 sin 1 cos sin( 2 1 ) a a 1 2
Z-"X$A2"Y$WA<ALA< 2 2 x y 2xy + −
cos( ϕ − ϕ ) = sin2 (ϕ − ϕ ) "[$ 2 2 2 1 2 1 a a a a 1 2 1 2
"[$6(?+41O-8
  ! "!#$%#$#%&!' ϕ )  ( ϕ*
%&+,-./012#3 
RPPG\]<\ZALAB3A T^/_+W1G\
ZKA\]ALAB3A S^/_+8 %
FAB36PP4+A]Z0Z]7`  
a)C+]Z6;!8F!bOAB36cP> 6   . 4  5 4  + v =  6 5  + +! 4  +      . 4  5   0' F, s + s s+ s 2 2v v v 1 2 = = = = = 9,5 m 3 / s. t + t s s 1 1 v + v ( A 1 2 + + v v v v 1 2 1 2
F!3, v = 9 ,5 m 3 / s . 
R+>  R +J /=X^ +
PP5/PPd f i E Z
%^^  +  6e I   β
+  a- PP "f .%$8 Z< PP ] 
ALAB3SY/_+8 
fQ $ U+  -=  c α
L 2  a- N PP` Z< ; R
+ALAB3A  ^0g/_+5 % f .%
6$ U+ -= ALAB 3 Q
6;647a-,PP` 
$R3a-NPPZ++GRLZ-=6;+
PPG]LZ
 MB AB =      " $ v v 2 1
hD('1:2!3!]ZR7 MB AB h = ,  AL sin β =   "%$ sin β sin α a
FG" $A2"%$N
   h v1 sinα = . = 0 8
, 33αXY^S^jaα  %S^ S^j8 a v2
775+0''89:;<0
α = >:; ? <. 56 3 0 ' 0 ≤ α ≤ 123 3 0 ' 0 3 @+ 56 3 0 ' 0 < α < 12303 '
0   5+ 0' '
5?++8h v
C/'+?DE5+'+<F?<.+G0' 1 sin α > . 3 a v2 MD AD 1  h v    1 a v :0 = → AD = sinα . M . D > . .  A . D 1 = M . D   8 sinβ sinα sinβ  a v   h  v 2 2  AD MD >
1-05++!8'F95++!5+'F#3 v v 1 2
6$7a-,PPALAB3Qk2;1N2+
<+l121NcPPL"+a-NPP2/P-=+,1C-O
+$0AAB0c-I$@LA2AB3+-=7) h v  1 sinα = .  a v2 HALm h v h
α!"α$≤ 4 1 . ≤ 1  v ≥ .v  2 1 a v a 2
h hv v 1 = = 2 5
, m / s = 9km / h 8 2 min a
9N20+-=cLRi0ALRi⊥]R8 
RAB,=G/OI6KS^^8fQ!61V
ABLa0<
$nOI614"cLJ>$ALAB3X_!5
6$nOI3"c-J>$ALAB3X_!5
$nOI>48  
n/OI0ABK4/OIcAB3/OI8U</O
I 3(L ALAB3 A + 2ABL = C ^
-6B+ 1 v .t + g t 2 . = h 8 0 2 v 2 + 2gh − v
om(-27/<)= t 0 0 = 8 g
n/OI14403(La>40-(6>
2ALAB36IA .X_!0A X_!5aA ^A27/<)= ^ ^ ^ $g0T!5  6$[0S!5  $[0g!8 
RAB,=Gf#c-J>EEj"Ep12V
f#$8oq1N7AB>,r14GEpc-J>
ALAB3A 8 ^
$fQAB3A -=6;64ABa-K` ^
  
6$FO/=@ABL1Na-c+`
$U</P7AB>AB>1L6;64`  
oIL1P>M(
$ F+  AB   G E <  a-  12 2H t =  l g
6;+AB%GEj<s0(7 E 1 + f 2 h gt H h
h = v .t − g.t → v = + = g 2 H  0 s 2 0 t 2 H 2
6$n=@AB+L/a-,
Oc)C+!A2!jAB, 
"f#$."!#!j$8 Ej   x = (H + h) 1 2 1 − gt − v .t − .
g t2  = (H + h) − v .t 0 0  2  2   H+ h = ( 2H − g 2 H.t ) H 2
$ hD ( P > )  A0 0 !    J 6< t  2 2 v − v
= 2.a.sALAB3KM6;A^0.0!
!0</P 0 
7!M=KAB 0AB%14<M12 v2 ( H + h 2 ) h = = 8 max 2g 4H 
F=M(ABG u0Yr8FO
$vC+2AB,^0 VIA2^0 V3+
8 6$F+I<AB< IA2 38  
hD(P> A)C+AB,!+ /G 1N6eI ,= 1 2
s = gt !b7P>)cA+AB, 2
+7/GA'O=12 2h t =
8-(P>2!b=1+ g
,VQ62B-2
$vC+2AB,^0 !I 1 2 1 s = g t. = 9 8 , 0 . 12 , = 0 0 , 49m 8 1 2 2
Ft+AB 2h 2 1 . 9 6 , t = = = 2(s)8 g 9 8 ,
vC+AB,^0 !3q0,Oc)C+,
%.^0  0u!I 1 s = h − g(t − 0, )2 1 1 = 19,6− .9 8 , .(2 − 0 1 , )2 = 1 9 , (m )8 2 2 2
  
6$FM4
F+AB, I 2s 2.1 t 3 = = = 0 4 , s 5 8 3 g 9 8 ,
F+AB< 3 2 1 . 8 6 , t =t −t =2 − = 0,0 s 5  4 6 (I$J  < H" 9 8 ,
FG6]0Z0o4Add+W+=6AB8HB
>c-J>]R)VAdd"f .S$0AB>c(V
ZR0AB>6c(VoR8fQAB2LRL40<6Q)!`   ] Z o R f .S  
vC+A2 3  AB> ! %w0  0AB>!   % %w! ^
AMB 0 ! ^ %w! ^ ! ^ %
AMB 0AB>6! S AMB 0S AMC 8
UB0+<RAB12 s 2 4R s 2 s 2 1 2 3 t = = = = t = t =  1 2 3 a g a a 1 2 3
HB06ABqLR1N8 
 = r  AB c - J > G     T^ AL AB 3 A  ^
6;647La
$FLτ V!AL+,-ABM(`
6$h τ V!AL+,-ABM(`
9 ^_!%8  
hD(P>O+</62X 2 v + 2gh − v 2h t 0 0 =
A2P>+M( t =  g g
 AB   !L0  -= r AB 3 (L AL AB 3 A  = C ^
- 2 2h v + g 2 h − v 0 0 2 − = τ → v + 2gh = gτ − +  0 (v g 2 h 0 ) g g
  
Z-A<-, ( 2 g 2 2gh − g τ g ) − τ g 2 (v + gh 2 + = → =  0 ) τ( τ ) 2v 2gh 0 v 0 0 2( 2gh − τ g )
$AB!L0-(ALτ !7 10. (
1 2 2. 10.40 −10. ) 1 v = = , /  0 2( 2 1 . 0 4 . 0 −10 1 . ) 12 ( 7 m s)
HBAB,rJ>3(L8
6$AB0-(ALτ. !7 −10. ( 1 2 2 1 . 0 4 . 0 +10 . ) 1 v = = − , /  0 2( 2.10.40 1 + 0. ) 8 ( 7 m ) s 1
HBAB,rJ>1448 
RABJt<)C+]ZYV8
HB3AB/)]6;X_!/)Z6; X_!8F(2)C +]Z8   (
Fc'x03AB v ∆ v − v 15 − 5 5 B A a = = = = ( 2 m / s ) 8 ∆t t 6 3
FG77O)C+]ZcP> 1 2 AB = v t + at  A 2
F!3,]ZY^8 *
9:;0AB36J6<t7P>
a606; v + v v A B =
04]Z7(2 2 v + v 5 +15 AB = v.t A B = .t = .6 = 60(m ) 2 2 
Rc1D@";4+J$ 0X/8
FD+I0c1D(I0D+!
c1DB(I8HB31Lc1D@76; X^/_+8
Z<;'!3334+6;8FO
$s3c1D8
6$F+c1D<)C+@8  
HB36c1D12 v = 50 / 2 = 25km / h8
F+c1D< 0X/212 t = s / v = 1 5 , / 25 = 0 0 , h 6 = 3,  6 B = *(JD 8 v 50km / h max (50 /3, )
s3c1D 6 m / s a = = = = 0 1 , 2 ( 2 9 m / s ) 8 (t / 2) 18 , B 18 , 6 . s 0
  
K+!L !8E!HM!/02 2 v − v 50km / h 0 ( )2
%+6+G v 2 − v 2 = 2.a s .  2 a = = = 0 1 , 29m / s 8 0 2s 15 , km
1PQ'D0E!.5($R<# 
Rc1D6eI(I4+J
)La+)!>ALI>8Z<;c
>)La+)!<+τYV8fQ>!b
)La+)!61V`
-(+,-[8  
sm112(2y0 12+I)La+ 
)!8-(-Jt07
o(2> 1 1 2 2 l = at = aτ  1 2 2
o(2". $ 1 2 (n − ) 1 l = at  n 1 − 2
o(2I 1 2 nl = at 8 n 2
FG 7 !   +    >   ) L a + ) ! ∆t = − = τ − − $8 n t n t n 1 ( n n 1 −
HL[07∆[ 0 g!8 
Rd,rc-;ALAB3A^ X_!8FO
3--<A23<-<d!1Nr V8 
HB3ABc->!/r !A u0g_!8  s7 v
α@AB3ABA2-J>=C x tgα =
8&c v y Ab648  A ^ A   α A A  α A 8!α 8!α  
FG703--<A23<-<AB1N2O12@2
-I<3
   g.v 9 8 , 1 . 5 x a = g sinα = = = 8 2 , m / s n ( 2 ) 2 2 2 2 v + v 15 + 9 8 , x y  2 2 2 2 a = gcos α = g − a =
9,8 − 8,2 = 5, ( 2 4 m/ s ) t n 
 U+  r  )= 67 ALAB 3 A  ^_! c - ,- AL a ^
-J;7αT^^8s=!D)=67,rGa8fQ
$1L2)=677,8
6$FI)=678
$F+G1Nr67L1N678  
',@1,62a0I1:;07
AB6W/1B-c-
J>A2c-8
oc-J>12J6<tAL
36;0AB36I6;A A 8! ^ ^
α 8oc-12
JALAB3/Pt6;A A 8!  ^ α 8
$MA2+AB\14)<AB36Ic
-J>A  ^ v 2 0 y v2 2 .sin α y 0 = = = 2,max ( 1 ) m 2g 2g v α
$F+6AB 0 y 2 v . sin t = 2 0 . = = 1, ( 3 s ) g g
6$oP>IABr4 2v si α n v 2 .sin2α L = v t = v 0 0 cos α . = =10m  x 0 g g 
FG\-f%X+rd14-O4ALAB
3A  X_!c-,-ALa-J;7 ^
α S^^8&'
$F+d5
6$n=GV-<yd5
$HB3d1N8    A^ f α z 9   
FG\-A4d144, 2 v sinα 0 y ( 2 2 v .sin 0 ) (15 300 ) h = = = = 2 8 , 7m 2g 2g 2 9 . 8 ,
  
+d v0 2(H + ) h 7 5 , 2 (25 + 2 7 , 8) t y = + = + = 31, ( 5 s) g g 9 8 , 9 8 , FI
L = v cosα t. = 15.cos 30 0.31 , 5 = 4  0 ( 1 m)
HB31N v = g 2 + = . , . + , = , / y (H h) 2 9 8 (25 2 78 ) 23 ( 3 m s)  2 2 2  v = v + v = 23 32 , + .cos = , / y x (15 30 0 ) 26 7 (m s )
C!+?+'%0+8%&HSA3
TNUAV'/9+V&<+Q/W3
X'A !/8U0' x = v t = v cosα t . x 0 1  2 1 2
y = H + v t − g t. = H +v .sin α t. − g t . y 0 2 2
Y<5++!+$+?+'=Z3
Y<"<!<?[/,K+9+Q$!!'</0
%+- !K3
Y</LB<\$97- v = v cosα = const x 0  v = sinα − . y v 0 g t
!#]$(JD^%#_($(<^#*J$2<`D3 
FG\-fS^0+rd3ALAB
3A  ^_!c-,-ALa-J;7 ^
α S^^8F
$F+dLa/GNr`
6$n=GV-<yd`
$E)*d`  
F(q---362 . T8
omzALz;V-8
$ABc2
x = v t = v cosα .t (1) x 0 1  2 1 y = H − v t − g = − α − y .t H v .sin .t g .t 2 0 ( 2 ) 2 2
+0=-^ 0 1
30 −10.sin30 t. .10 t2 .
= 0 ↔ 30 − 5t − 5t2 = 0  2
om(,+d%!8
6$I{A'OV-640,O8 x =v cosα t. 1 = 0 .co 3 s 00 2 . 1 = 0 m 3 1 ≈ 7 3,m  0
  
$6<()*A40I-)*
2"-)@A2C/D6<+$
nD+-" $A2"%$6;NG-" $W
A2"%$ x
( 1) → t = v co α s 0 2 1   2 x 1 x
( 2 )→ y = H − v .sinα t . − g t .
= H − v .sinα . − g 0   2 0 v co α s 2 v co α s 0  0   g x2 .
= H − x t.g α − 2v 2 2 cos α 0 x x2 = 30 − −
( /9+ 0 ≤ x ≤10 m 3 ) 3 15
2\;0)*A412-618 
fQ-=rABc-,-ALa-J;7α
6;64ALAB36IL0IAB12M8  
hD(P>OIAB,r4C1B-,62 . S v2 .sin 2α v2 L 0 0 = ≤  g g v 2
HB!b,IM6; L 0
/!%α 0αTX^8 max = g 
 n| 1 }  K f2 U 12 %0Y[ r8 fQ < t > K & 4c6 
 / M"qAB3 6 IA2 7 4$0 /|1 4 !b 126 4`
o6<"f2U$u0[%[_!%5"&4c6$u0g ^_!%8   v2 .sin
FG P > I  L 0 =
  B 0 AL 1M } /P t " A ^ g
/Pt$A27r/Pt"r/7r6;TX^$I9!b\
1'AL3m+8E77',/\1}2
-3&cr6 g 9 7 , 27 L HN = L = 1 . 2 6 , 7 =12 5 , 6(m) XP g HN 9 8 , 10 XP 
FAB37
$F))7"F)Ad)
7%T+$8
6$/+A2/-NWW5
  
$RaF~))F"RaF~))F
Ad%[24$5
($AVF)4)*dAL/6;gg -N8  
hD(P>OAB37 2π ω =
A21:/•-=tN3 T
AL12V"!$!b, π
$HB37M)) 2. ω = = 7 2
, 6.10−5(rad / s) 24 3 . 600
6$o/•)/-N12 8n+)<Ad12 %<4AB
37/+A2/-N12 T0X8 ^.X(_!5 0[T8 ^.S(_!
 $ol-(P>4AL/•/7AB37
a~)12%0[8 ^.Y(_!5
 ($oA7/)12gg-N12 0 u8 ^.S(_!
AB3(2)4af2U8
Z<;Axf2U12α% ^8  
Fc62 . gAB37M)712
ω[0%Y8 ^.X(_!8Z/O)*f2U"c$12 ω  w  z α
f62 . u  r = Rcosα 8
FG77AB3(2f2U12
Aω8ω8w8! α
F!3A2,ATS^_!8
Y 0<%0+ + 8 "B a 7 -  ! ' A !' !
b<H"Gc+L/9+7- !'AO%+6+G/9+
DM-!'ϕ!'.5D$/Lω!'/LH0+/$
+!Lβ !'+!L5!Bde!Kf3 
  
 R AP 1~ ! / 6e I ) ,  -N   , AB 3 [^^
Ad_-N8FO37AP1~A2!3Ad2AP1~C),-N
<AP1~12(I8 
HB37AP1~ω[^^Ad_-N[^^8%π_Y^"(_!$!+τ -NY^!8 R2 ω 1400π / 60 1400π
ωβ 8τ β = = = = 1 2 , 2( 2 rad / s ) 8 τ 60 3600
s7),!+τ -N12 1 2 1 ϕ = β τ . = 1 . 2 , 2 6 . 02 = 700π (rad)  2 2
EAB0!3Ad), -N12 ϕ 70 π    0 = = = ]R  Z /f 8 *π π 2 
 R 6 c ) B (I0 !  -N AB 3  7 = GS^^
Ad_-N3 g^Ad_-N8F36cA2!3Ad26cC)
,-N8  
Fc'xA3771P372 ω − ω 180 2
. π / 60 − 300 2 . π / 60 0 β = = = 0 − 2 , 1 ( 2 rad / s )8 τ 60
s7),(MA23)MAL)A..!
J6<tN 2 2 ω − ω . π /. π / 0 ( 2 2 180 2 60 ) (300 2 60) ϕ = = = 24  0  1/  f# 8 2β − 2.0 2 , 1
fa(MA2P>AB376 ω + ω 180 + 300 0 ϕ = .τ = .1 = 240 1/  f#  2 2 
R6c76/Ow ^1NI>40!7))
7AL376;S0 T(_!%8fQ0!V>
$HB37A2AB3(24A26`
6$ s 3-- <03 <- < A2  3 2-I  4 A26`
$s7@32-IA26/O6c">ALq4 A26`  
$hV>0AB37A2AB3(24A2612 ω = β t. = 31 , 4.1 = 31 , 4 (rad / s )   v = ω.R = 31 , 4.0 1 , = 0 3 , 14 (m / ) s
s3<-<7'/PtA23--< α 1N2  
  f 
a = β. R = 3,14. 01 , = 0,314 ( 2 m/ s t )  2 2 a = ω R . = 3 1 , 4 .01 , = 0 9 , 86 m / s n ( 2 )
od32-I6; 2 2 a = a + a = 1 0
, 3 m / s 8 t n ( 2 )
$s7@32-IA26/O12 α=C a , t 0 314 sin α = =   α [^TYj8 a 1 0 , 3 
o/)6c6/OX^12^0 V8F
$HB3(2A2AB37A265
6$s3--<@6/O8  
HB3(2A2AB374A26 +G H  0+   ! 4  5 f 2 R π 2π 0 . 5 , v = = = = 31 4 , (m / s) 5 ++!   ' 4  A    <  A /  f f T 0 1 ,  v 31 4 , ω = = = 62 8 , (rad / s) R 0 5 ,
6$s3--<{3LV@6/O 2 2 2 a = ω r = ω R . / 2 = 62 8 , 0 . 5
, / 2 = 986 m / s 8 n ( 2 ) 
R226eIA2+d06/O /0(2Y^^0
ALAB3XT/_+822<)C+7S^V8FAB3(20
3--<03<-<032-IA23722K3
)C+78o2212(I8  
ow / ^^^0A XT/_ X_!0!Y^^0S^!8 ^
hD(P>AJA2d6<t!b
O,1,I<8 1 − − . 2 ( 2 s v t) 2(600 15 3 ) 0 1 0 s = v t + a t  a = = = ( 2 m / s )8 0 t t 2 2 2 t 30 3
HB3I3+Ad 1
v = v + a t = 15+ .30 = 25 (m / s) = 90 (km / h )8 0 t 3
s3--<{3LVI 2 2 2 v 25 a = ω R = = = 0 6 , 25 m / s  n ( 2 ) R 1000
od32-I12 2 2 2 2  1 5  a = a + a =   +   = 0 7 , 08 m / s  t n ( 2 )  3 8 
s372I
   a 1/ 3 t −4 β = = ≈ 3,3. 10 ( 2 rad/ s ) R 1000 
 HB 3  41c4 D P 6; A  %0%8 ^g_!8 FO AB
37A23--<41c<c)*712Add6 /O^0X8 ^.g8  
€1cA%0%8 ^g_!%0%8 ^Y_!5w^0X8 ^.g^0X8 ^. ^8
HB37A23LV{3--<1I1,
ωA_wT0T8 ^ Y(_!5   
ω% wu0Yg8 ^%%_!% 
R+3•)!P7(dL=8U<+•
cLGA'O]!A'OZ"]Z⊥AL(d!P0 .T$!+
  ^-N!bLA'OoZ/=! %^8U<+•
A-O,(d!+  %0X-N!bLNA'OZ8 %
oAB33AL(dL12/Pt8FO
$Z1!P5
6$HB3A3AL(dL5 Z o
$HB3(dL3AL6+!P5 !  ($s7γ8 R A  H  γ  
FG]<o<+  ^-N0]<Z<+ ]
  %0X-N0Zo7(2!Zo %^8 f .T %
V 12 62 t ,- AB 38 F  W Z o →
+    q AL (d L AL AB 3 u A2 1 → 
!AL(dL"( +•$ALAB 3 v 8 H A γ 
ot,-O123AL → → →
6+!PALAB3 ] V = v+ u 8
F+,->62>AL .T0+ f .T6
,->>AL .T68
FcAb07-!
!8 51A8 51"A8! 5A8! γ$8 % γ5  s 120 u = = = 0 2 , (m / s)8 t 600 1 t 10 4
l = v.t = v.cosγ .t → cos 1 γ = = = → γ = 360 5 ' 3  1 2 t2 12 ,5 5  3 u u 0 2 , 1 sinγ = = → v = = = = 0 3 , 3 (m / s)8 5 v sinγ 3 / 5 3
o(d!P l= v.t = 0 3
, 3.( 10. 60) = 200 m8 1 
  
U+•)!PcLAP7AL6+!PAL
AB3[0%/_8UL=CA-OP(d/= X^8
F$HB3(dL3AL6+!P5
6$ F+  I   ) , !P8 o 6<    !P 6; ^0X/8  
Z(d!P1^0X/X^^8! X^0H[0%/_%_!8
FGAb Z o u s s 150 ! = → u = v . = 2 . = 0 6 , 0 (m / s)8  v l l 500 A  1
F+<!!P H AC AB l 500 t = = = = = 250 (s )8 ]  V v v 2
-!3$^0Y^_!56$%X^!8
f62 .%[ 
R66GA'O]LA'OZ8]Z;cLFVPA2
/=S^^/8&'+6<
$nP775
6$o77tcLUZe5
$o77tcLFVP8
o6<AB376;A %^_!0AB363AL/P/OA  % Y^^/_8  
]ZS^^/07A %^_![%/_0A Y^^/_8 %
$F+66M<-G]<Z l 300 t = = = 0 5 , (h )= 3  0 1  B# 8 v 600 2
6$FM62 .%Y063LA'OZ07-=6<A-O
7α!AL-]Z8F7
V = v 2 − v 2 = 6002 − 722 = 596 / 8 2 1 (km h) ] Z
F+66G]<Z12 α A  s 300 t = = = 0 5
, 03 (h) = 30,  2 B 8 A% V 596
$s7PGFV!P8F+6
f62 .%g I(q12 s 300 t = = = 0 4
, 46 (h ) = 26 ,  8 B 8 v + v 600+ 72 2 1
f .XP=68
$o6<O78
6$x@W'A28
$h!AB368
   A %   S z  f .X   A  % S  z f .Xj 
$UA2W'=6212(I 8
6$sW'AL+6<+-
8
$Z012AqL8HB3yABG1N
B/8W'AB32(33AB21L"3
6<!37+J$8FGW'07!!3AB ‚ S  ‚ 8  % 
f .YW'AB38fC6<
4yz]0]Z0Zo0oE8   A ] Z o E z  f .Y 
z]AB-+^W(IAL 3/1L8
W']Z6<AB!8
W'Zo6ABB(I8
W'oEAB<-B(IAL31L
/Zo8HB(G1328
   

%. 8Rc7/31,%^^^^/0B(I(L(
1M6;Y^^^U0AB36Ic6; X_!8fQ
$s3c5
6$h61Vc(G15
$+cC,/G1NC</c(GJ8 
$s3c,Oc'1BiiUcƒ
„_.Y^^^_%^^^^.^0S_!%8
6$F+/G1NC</(G1 ∆ / Z ) (R = ∆t =   = =RZ ( ) D 3 ! ) Z$]
$vC+/G1NC</(G1
!A 8#8%_%888S[X8 ^
%.%8 R  y a TuU 6' /…- @  a -J J f%.T
> " %.T$8 9M r-J7 4 ya   12 T[U8
fQ 1MQ  I Va  y` f !3 ! @
yA2ar-/^0%8 
9MV ^[0gU51Mu0gU „U „f „ „ !  !%
 f%.T f%.T6 
n3y3I1M„ L3(L01M! f
4ayL144"f%.T$0d/3Vy14
41M!1L3(L"f%.T6$8
FGAb201M(q"„ $A2V„ y-=7 f U
'Q „   f F + F
− P = 2× k.N − P = 2. 0,2.147 − 49 = 9, m 1 s ms2 ( 8 ) N „UF + F + P = 2 ×k N . + P = 2 0 . 2 , 1 . 47 + 49 =107 8 ,  m 1 s ms 2 (N) 
%.S8fQ-=(1M6;64142>47
(IA2!+S^V7, 8o6<1M!
26;X†m1,28  
sm„121M(1428&rc-01MV3
20c'1BU%06;
„.‡  !
F712/31,A2 s 2 a =
123I8 2 t
  
FG7! 2 s . m . F = f + ma = 5%mg + 8 ms 2 t
F!3! 0S^!0 X0Y XY^^/,„≈g%^^U8
1C"G%0++L+ !!"%&<=(R$J\#3 
%.T8R+(<cALAB3/Pt89NI+/r
cA-OL0!7+}cA-O!8F=+,-02c
,-ALa-J;7α8fQ+,-2+-=a14
c1M1L`Z<;m1,c120!3!@6cA2a +12/8  
H<-'1BiiUcƒ1M(A2c8F2-I1M
t ,-< c - J > A2 ;  6; ^. /P 7
c-J>0c-./P73
c-4
F+ ,- /r cA-O L"%. j$ 1M rAP 7 c 14a +12
N + F.sin  − P = 0  N = P - F. sin 
H2 F.cos α − F = 0  F.cosα = F  ms ms
R201M!(14c
„ /U/".„! ! α$  kP F co α s = k(P − F sinα)  F =  cosα + ksinα U Uj   „ α  „j „!  „j  !    f%. j f%. j6   
F+,-}cA-O!"%. j6$
Z;-VOM0O,1M!a14c+,- 212
„ /Uj/"#„! ! α$
H21M„jIa142c kP ' F = 
cosα − k si α n
wk2„j ‚„8UAB+,-}cA-O!+-=(q  1M1L8 
%.X8RAB7/31,X/,a4a-J4,-AL
a-J;7αS^^8f!3!@ABA2a-J46;
/^0%8F3AB4a-J48  
  
F-VO1M(A2ABW S1MJ U
>0 U AP 7 AL a 4 A2 „  ; 4 a  !  „ 48 ! z
'1BiiUcƒAB   P + N + F α ms = m a .  
o< -  2 c - AP 7 AL a
-J4"-z$A2-!!ALa-J
f62%.X
4"-z$, N = Pcos α − Pco α s + N = 0       P si α n − F  Psinα − F = ma a = ms ms  m
R2„ /8U4 !
P sinα − kP cosα
mg sinα − kmg cosα a = =
= g(sinα − k cosα )8 m m
FαS^^0/^0%0u0gO,S0%T_!%8
 [ 7-e!\'$+!L  ! /e7UA/0L+ !/3 
%.Y8RAB,34a-J4,-ALa-J;
7αTX^8n,,)C+!SY0T0AB,AB3A%_!8&
'!3!@ABA2a-J48  
-(P>3AB62%.X7 g si α n − a a
a = g(sinα − k cosα )   k = = t α g − 8 g cosα g cosα
hD(/<>iA3)A..!73AB,2 2 2 2 2 2 12 v − v − 0 v 0 v a = = = 8 2 S . 2S . 2S . 2  v k = tgα −  2.gSc α os
FP!3CαTX^0A%_!0!SY0T^0SYT,/≈^0%8 
%.[8R!,(VG,a4a62!-I76Pk
38h,(V6eI,4a62/(2-I6Pk6;
%X†(2(V8&'!3!/@!,(VA2a628   ‡!  
f62%.[ 
  
sm12m1,=(V0 12m1,-I6Pk8FcI
620(2-I6Pk6;%X†(2(V %X†8
&rc-!,(V0(V'(1M A2‡ 8 !
R3(V6eI,-=7 ‡  ‡ %X†8 ! !
R20‡ /8U/8"[X†$8 !
FG7%X†/8"[X†$ 25 1 k = = ≈ 0 33 , 8 75 3 
%.g8 $RPP/31,4+6;0!3!
@6PPA2a+12^0 8FO1M/rPP+,-
$ˆP5
6$ˆP(IAL36;%_!%5
%$olVQ4+,-PPA2
$94(37(3T†56$&3(378
f!3!6;^0 !3+8    →
Ft,-1M(14PPW1M/r F PP0m1M P 0-=  
1M--< N a+A21M!a+ f 8 ms U Uj   „j „ ‡p! ‡ α !  
f62%.g   → → → → →
'1BiiUcƒPP12 F + P + N + f = m a  ms
om(12c8o<-214-
,
$ nc4+; F − f = ma  F = ma + f = ma + kmg  ms ms
F!3  ^^^/5/^0 5u0g_!%5A2
$n0^ „ug^U8
6$n(IAL3%_!%„%ug^U8
%$ nc4+(3
$ˆP14(3 F− f − P si α n = ma
 F = ma + f + Psin α = ma + kmgcosα +mgsinα  ms ms
F70!α^0^T12(3(3!α 1 − 0 042 , ≈ 1 0 ,   F = 1000× 0 + 0 1 , .1000 9 . 8 , .1+ 1000.9 8 , .0 04 , = ( 1372 N )
6$ˆP3(3„"/!α.! α$8 F− f + P si α n = ma
 F = ma + f − P sin α = ma + kmgcosα − mg sinα  ms ms F!3 F = 1000 ×0 + 0,1.1000. , 9 8.1 −1000.9,8. , 0 04 = 58 ( 8 N)  
 