Trang 1
PHÂN TÍCH ĐA THỨC THÀNH NHÂN T [NÂNG CAO]
Bài 1: Phân tích các đa thức sau thành nhân t:
a)
( ) ( ) ( )
ab a b bc b c ca c a++
b)
( ) ( ) ( )
2 2 2 2 2 2
a b c b c a c a b++
c)
( ) ( ) ( )
3 3 3 3 3 3
a b c b c a c a b++
Bài 2:
a)
2
7 12xx++
b)
2
3 8 5xx+
c)
42
5 6xx+
d)
42
34 225xx+
e)
f)
22
4 17 13x x y y+
Bài 3:
a)
4
4 81x +
b)
4
1x +
c)
44
64xy+
d)
2
6xx+=
Bài 4:
a)
5 4 3 2
2x x x x x
b)
9 7 6 5 4 3 2
1x x x x x x x+ + +
Bài 5:
a)
5
1xx++
b)
84
1xx++
Bài 6:
a)
22
4 4 2 4 35x xy y x y++
b)
( )( )
22
1 2 12x x x x+ + + +
c)
( )( )( )( )
2 4 6 8 16x x x x+ + + + +
d)
( )( )( )( )
2 3 4 5 24x x x x+ + + +
e)
( )( )( )
4 6 10 128x x x x+ + + +
KT QU - ĐÁP SỐ
Bài 1: Phân tích các đa thức sau thành nhân t:
a)
( ) ( ) ( )
ab a b bc b c ca c a++
( ) ( )
ab a b bc b a a c a c c a
éù
êú
=+
ëû
++
Trang 2
( ) ( ) ( ) ( )
ab a b bc a b bc a c ac a c=+
( )( ) ( )( )
a b ab bc a c bc ac=+
( )( ) ( )( )
b a b a c a c a b=-
( )( )( )
a b a c b c=
b)
( ) ( ) ( )
2 2 2 2 2 2
a b c b c a c a b++
( ) ( )
2 2 2 2 2 2 2 2
a b c b c b b a c a b= + + +
éù
êú
ëû
( ) ( ) ( ) ( )
2 2 2 2 2 2 2 2
a b c b b c b a b c a b=+
( )
( )
( )
( )
2 2 2 2
b c a b a b b c=
( )( )( ) ( )( )( )
b c b c a b a b a b b c= + +
( )( )( )
a b b c b c a b=+
( )( )( )
a b b c c a=
c)
( ) ( ) ( )
3 3 3 3 3 3
a b c b c a c a b++
( ) ( )
3 3 3 3 3 3 3 3
a b c b c b b a c a b= + + +
éù
êú
ëû
( ) ( ) ( ) ( )
3 3 3 3 3 3 3 3
a b c b b c b a b c a b=+
( )
( )
( )
( )
3 3 3 3
b c a b a b b c=
( )
( )
( ) ( )
( )
( )
2 2 2 2
b c b bc c a b a b a ab b b c= + + + +
( )( )
( )
2 2 2 2
a b b c b bc c a ab b= + +
( )( )
( )
22
a b b c bc c a ab=+
( )( ) ( )
( )
22
a b b c bc ab c a=+
éù
êú
ëû
( )( ) ( ) ( )( )
a b b c b c a c a c a
é
= + +
ù
êú
ëû
( )( )( )( )
a b b c c a b c a= + +
Trang 3
Bài 2:
a)
( ) ( ) ( )( )
22
7 12 4 3 12 4 3 4 4 3x x x x x x x x x x+ + = + + + = + + + = + +
b)
( ) ( ) ( )( )
22
3 8 5 3 3 5 5 3 1 5 1 1 3 1x x x x x x x x x x+ = + = =
c)
( ) ( ) ( )( )
4 2 4 2 2 2 2 2 2 2
5 6 6 6 1 6 1 1 6x x x x x x x x x x+ = + = + = +
( )( )
( )
2
1 1 6x x x= + +
d)
( )
2
4 2 4 2 2
34 225 2.17 289 64 17 64x x x x x+ = + =
( )( ) ( )( )
( )( )( )( )
2 2 2 2
17 8 17 8 9 25 3 3 5 5x x x x x x x x= + = = + +
e)
( ) ( )
2 2 2 2
5 6 2 3 6 2 3 2x xy y x xy xy y x x y y x y+ = + =
( )( )
2 3x y x y=
f)
( ) ( )
2 2 2 2
4 17 13 4 4 13 13 4 13 x xy y x xy xy y x x y y x y+ = + =
( )( )
4 13x y x y=
Bài 3: a)
( )
4 3 2
4x 81 ( 2x 3) 2 2x 6x 9 2x 27+ = + - + -
b)
( )
4 3 2
x 1 (x 1) x x x 1+ = + - + -
c)
( )
4 4 3 2 2 3
64x y (2 2x y) 16 2x 8x y 2 2xy y+ = + - + -
d)
5 4 5 4 3 3
x x 1 x x x x 1+ + = + + - +
( ) ( ) ( )( )
3 2 2 3 2
x x x 1 (x 1) x x 1 x x 1 x x 1= + + - - + + = - + + +
Bài 4:
a)
5 4 3 2 5 4 4 3 3 2 2
2 2 2 2 2 2x x x x x x x x x x x x x x= + + + +
( ) ( ) ( ) ( ) ( )
4 3 2
2 2 2 2 2x x x x x x x x x= + + + +
( )
( )
4 3 2
2 1x x x x x= + + + +
b)
9 7 6 5 4 3 2
1x x x x x x x+ + +
Trang 4
( ) ( ) ( ) ( )
9 7 6 4 5 3 2
1x x x x x x x=+
( ) ( ) ( ) ( )
7 2 4 2 3 2 2
1 1 1 1x x x x x x x=+
( )( )
2 7 4 3
1 1x x x x=+
( ) ( ) ( )
2 7 3 4
1 1x x x x
é
=
ù
êú
ëû
( )( )( )
2 4 3
1 1 1x x x=
( )( )
( )( )
( )
( )
2 2 2
1 1 1 1 1 1x x x x x x x= + + + +
( )( )
( )
( )( )( )
( )
22
1 1 1 1 1 1 1x x x x x x x x= + + + + +
( ) ( )
( )( )
32
22
1 1 1 1x x x x x= + + + +
Bài 5:
a)
5 5 4 4 3 3 2 2
1 1x x x x x x x x x x+ + = + + + + +
( ) ( ) ( )
5 4 3 4 3 2 2
–1x x x x x x x x= + + + + + + +
( ) ( ) ( )
3 2 2 2 2
1 1 1x x x x x x x x= + + + + + + +
( )( )
2 3 2
1 1x x x x= + + +
b)
8 4 8 4 2 2
1 1x x x x x x x x+ + = + + + +
( ) ( )
8 2 4 2
1x x x x x x= + + + +
( ) ( ) ( )
2 6 3 2
1 1 1x x x x x x= + + + +
( )( )
( )
( ) ( )
2 3 3 2 2
1 1 1 1 1x x x x x x x x x= + + + + + + +
( )
( )( )
( )
( ) ( )
2 2 3 2 2
1 1 1 1 1 1x x x x x x x x x x x= + + + + + + + + +
( )
( )
( )
( )
2 2 3
1 1 1 1 1x x x x x x x= + + + + +
éù
êú
ëû
( ) ( )( )
2 3 2 3 2
1 1 1x x x x x x x= + + + + +
éù
êú
ëû
( )( )
2 6 3 5 2 2
1 1x x x x x x x x= + + + + +
( )( )
2 6 5 3
1 1x x x x x x= + + + +
Trang 5
( ) ( ) ( ) ( )
2 6 5 4 4 3 2 2
1 1x x x x x x x x x x= + + + + + +
éù
êú
ëû
( ) ( ) ( ) ( )
2 4 2 2 2 2
1 1 1 1x x x x x x x x x x= + + + + + +
éù
êú
ëû
( )( )( )
2 2 4 2
1 1 1x x x x x x= + + + +
Nhn xét: Phương pháp trên có thể s dụng đối vi các đa thức có dng:
54
1xx++
;
84
1xx++
;
10 8
1xx++
; … là những đa thức có dng
1
mn
xx++
trong đó
31mk=+
;
32nh=+
.
Khi tìm cách gim dn s mũ của lũy thừa ta cần chú ý đến các biu thc dng
6
–1x
;
3
1x
là nhng biu thc chia hết cho
( )
2
1xx++
- Tuy nhiên, tùy theo đặc điểm ca mi bài ta có th có nhng cách gii khác gọn hơn,
chng hạn đối vi bài 5b:
( ) ( ) ( )
22
8 4 8 4 4 4 2
1 2 1 1 x x x x x x x+ + = + + = +
( )( )
4 2 4 2
1 1 x x x x= + + +
( ) ( )
4 2 2 4 2
2 1 1x x x x x
éù
êú
ëû
= + + +
( ) ( )
2
2 2 4 2
1 1x x x x
éù
êú
êú
û
=
ë
++
( )( )( )
2 2 4 2
1 1 1x x x x x x= + + + +
Bài 6:
a)
2 2 2
4 4 2 4 35 ( 2 ) 2( 2 ) 35x xy y x y x y x y- + - + - = - - - -
2
( 2 ) 5( 2 ) 7( 2 ) 35 ( 2 )( 2 5) 7( 2 5)x y x y x y x y x y x y= - + - - - - = - - + - - +
(x 2y 7)(x 2y 5)= - - - +
b)
( )( ) ( ) ( )
2
2 2 2 2
1 2 12 1 1 12x x x x x x x x+ + + + - = + + + + + -
Trang 6
( ) ( ) ( )
2 2 2
x x 1 4 x x 1 3 x x 1 12= + + + + + - + + -
( )( ) ( ) ( )( )
2 2 2 2 2
x x 1 x x 5 3 x x 5 x x 5 x x 2= + + + + - + + = + + + -
c)
( )( )
22
(x 2)(x 4)(x 6)(x 8) 16 x 10x 16 x 10x 24 16+ + + + + = + + + + +
( ) ( )
2
22
x 10x 16 8 x 10x 16 16= + + + + + +
( ) ( ) ( )
2
2 2 2
x 10x 16 4 x 10x 16 4 x 10x 16 16= + + + + + + + + +
( )( ) ( )
2 2 2
x 10x 16 x 10x 20 4 x 10x 20= + + + + + + +
( )
2
2
x 10x 20= + +
d)
( )( )
22
(x 2)(x 3)(x 4)(x 5) 24 x 7x 10 x 7x 20 24+ + + + - = + + + + -
( ) ( )
2
22
x 7x 10 10 x 7x 10 24= + + + + + -
( ) ( ) ( )
2
2 2 2
x 7x 10 2 x 7x 10 12 x 7x 10 24= + + - + + + + + -
( )( ) ( )
2 2 2
x 7x 10 x 7x 8 12 x 7x 8= + + + + + + +
( )( )
22
x 7x 8 x 7x 22= + + + +
e)
( )( )
22
( 4)( 6)( 10) 128 10 10 24 128x x x x x x x x+ + + + = + + + +
( ) ( )
2
22
x 10x 24 x 10x 128= + + + +
( ) ( ) ( )
2
2 2 2
x 10x 8 x 10x 16 x 10x 128= + + + + + +
( )( ) ( )
2 2 2
x 10x x 10x 8 16 x 10x 8= + + + + + +
( )( )
22
x 10x 8 x 10x 16= + + + +
( )( )
22
x 10x 8 x 2x 8x 16= + + + + +
( )
2
x 10x 8 [x(x 2) 8(x 2)]= + + + + +
( )
2
x 10x 8 (x 2)(x 8)= + + + +

Preview text:

PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ [NÂNG CAO]
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) ab(a b)+ bc (b c)+ ca (c a) b) a ( 2 2 b c )+ b( 2 2 c a )+ c ( 2 2 – – a b ) c) a ( 3 3 b c )+ b( 3 3 c a )+ c ( 3 3 – – a b ) Bài 2: a) 2 x + 7x + 12 b) 2 3x – 8x + 5 c) 4 2 x + 5x – 6 d) 4 2 x – 34x + 225 e) 2 2
x – 5xy + 6y f) 2 2
4x – 17xy + 13y Bài 3: a) 4 4x + 81 b) 4 x + 1 c) 4 4 64x + y d) 2 x + x = 6 Bài 4: a) 5 4 3 2
x x x x x – 2 b) 9 7 6 5 4 3 2
x x x x + x + x + x – 1 Bài 5: a) 5 x + x + 1 b) 8 4 x + x + 1 Bài 6: a) 2 2
x – 4xy + 4y – 2x + 4y – 35 b) ( 2 x + x + )( 2 1 x + x + ) 2 – 12
c) (x + 2)(x + 4)(x + 6)(x + 8)+ 16 d) (x + )
2 (x + 3)(x + 4)(x + 5)– 24
e) x (x + 4)(x + 6)(x + 10)+ 128
KẾT QUẢ - ĐÁP SỐ
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) ab(a b)+ bc (b c)+ ca (c a)
= ab(a b)+ bc bé – a + a cù+ ac êë ú (c a) û Trang 1
= ab(a b)– bc (a b)+ bc (a c)– ac (a c)
= (a b)(ab bc)+ (a c)(bc ac)
= b(a b)(a c)- ( a c)(a b)
= (a b)(a c)(b c) b) a ( 2 2 b c )+ b( 2 2 c a )+ c ( 2 2 – – a b ) = a ( 2 2 b c ) 2 2 2 2 + b é c b + b a + ù c êë ú ( 2 2 – – – a b ) û = a ( 2 2 b c ) b( 2 2 b c ) b( 2 2 a b )+ c ( 2 2 – – – – – a b ) = ( 2 2 b c )(a b) ( 2 2 – –
a b )(b c)
= (b c)(b + c)(a b)– (a b)(a + b)(b c)
= (a b)(b c)(b + c a b)
= (a b)(b c)(c a) c) a ( 3 3 b c )+ b( 3 3 c a )+ c ( 3 3 – – a b ) = a ( 3 3 b c ) 3 3 3 3 + b é c b + b a + ù c êë ú ( 3 3 – – – a b ) û = a ( 3 3 b c ) b( 3 3 b c ) b( 3 3 a b )+ c ( 3 3 – – – – – a b ) = ( 3 3 b c )(a b) ( 3 3 – –
a b )(bc) = (b c)( 2 2
b + bc + c )(a b) (a b)( 2 2 – – – –
a + ab + b )(b c) = (a b)(b c)( 2 2 2 2 – –
b + bc + c a ab b ) = (a b)(b c)( 2 2 – –
bc + c a ab)
= (a b)(b c) (b é c ab)+ ( 2 2 – – – c a )ù ê ú ë û
(a b)(b c)bé =
(c a)+ (c a)(c + a)ù êë úû
= (a b)(b c)(c a)(b + c + a) Trang 2 Bài 2: a) 2 2
x + 7x + 12 = x + 4x + 3x + 12 = x (x + 4)+ 3(x + 4)= (x + 4)(x + 3) b) 2 2
3x – 8x + 5 = 3x – 3x – 5x + 5 = 3x (x – ) 1 – 5(x – ) 1 = (x – ) 1 (3x – ) 1 c) 4 2 4 2 2 2 x + x = x x + x = x ( 2 x
)+ ( 2x )= ( 2x )( 2 5 – 6 – 6 – 6 – 1 6 – 1 – 1 x + ) 6 = (x )(x + )( 2 – 1 1 x + ) 6 d) x x + = x x + = (x )2 4 2 4 2 2 – 34 225 – 2.17 289 – 64 – 17 – 64 = ( 2 x + )( 2 x )= ( 2x )( 2 – 17 8 – 17 – 8 – 9 x – 2 )
5 = (x – 3)(x + 3)(x – 5)(x + 5) e) 2 2 2 2
x – 5xy + 6y = x – 2xy – 3xy + 6y = x (x – 2y)– 3y (x – 2y )
= (x – 2y)(x – 3y) f) 2 2 2 2
4x – 17xy + 13y = 4x – 4xy – 13xy + 13y = 4x (x y)– 13y (x y)
= (x y)(4x – 13y) Bài 3: a) 4 + = + ( 3 2 4x 81 ( 2x
3) 2 2x - 6x + 9 2x - 27) b) 4 + = + ( 3 2 x 1 (x 1) x - x + x - ) 1 c) 4 4 + = + ( 3 2 2 3 64x y (2 2x y) 16 2x - 8x y + 2 2xy - y ) d) 5 4 5 4 3 3 x + x + 1 = x + x + x - x + 1 3 =
( 2 + + )- - ( 2 + + )= ( 3 - + )( 2 x x x 1 (x 1) x x 1 x x 1 x + x + ) 1 Bài 4: a) 5 4 3 2 5 4 4 3 3 2 2
x x x x x – 2 = x – 2x + x – 2x + x – 2x + x – 2x + x – 2 4 = x (x ) 3 + x (x ) 2 – 2
– 2 + x (x – 2)+ x (x – 2)+ (x – 2) = (x )( 4 3 2
– 2 x + x + x + x + ) 1 b) 9 7 6 5 4 3 2
x x x x + x + x + x – 1 Trang 3 = ( 9 7 x x ) ( 6 4 x x ) ( 5 3 x x )+ ( 2 – – – – – x – ) 1 7 = x ( 2 x ) 4 x ( 2 x ) 3 x ( 2 x )+ ( 2 – 1 – – 1 – – 1 x – ) 1 = ( 2 x )( 7 4 3
– 1 x x x + ) 1 é ù = ( 2 x ) ( 7 3 x x ê ) ( 4 – 1 – – x – ) 1 ú ë û = ( 2 x )( 4 x )( 3 – 1 – 1 x – ) 1 = (x )(x + )( 2 x + )( 2 x )(x )( 2 – 1 1 1 – 1 – 1 x + x + ) 1 = (x )(x + )( 2 x + )(x )(x + )(x )( 2 – 1 1 1 – 1 1 – 1 x + x + ) 1 = (x )3 (x + )2 ( 2 x + )( 2 – 1 1 1 x + x + ) 1 Bài 5: a) 5 5 4 4 3 3 2 2
x + x + 1 = x + x x + x x + x x + x + 1 = ( 5 4 3
x + x + x ) ( 4 3 2
x + x + x )+ ( 2 – x + x + ) 1 3 = x ( 2 x + x + ) 2 x ( 2 x + x + )+ ( 2 1 – 1 x + x + ) 1 = ( 2 x + x + )( 3 2 1 x x + ) 1 b) 8 4 8 4 2 2
x + x + 1 = x + x x + x x + x + 1 = ( 8 2 x x )+ ( 4 x x ) 2 – – + x + x + 1 2 = x ( 6 x )+ x ( 3 x )+ ( 2 – 1 – 1 x + x + ) 1 2 = x ( 3 x )( 3
x + )+ x (x )( 2 x + x + )+ ( 2 – 1 1 – 1 1 x + x + ) 1 2 = x (x )( 2 x + x + )( 3
x + )+ x (x )( 2 x + x + )+ ( 2 – 1 1 1 – 1 1 x + x + ) 1 = ( 2 x + x + )é 2 x (x )( 3 1 – 1 x + ) 1 + x (x – ) 1 + 1ù ê ú ë û = ( 2 x + x + ) (é 3 2 x x )( 3 x + ) 2 1 –
1 + x x + 1ù ê ú ë û = ( 2 x + x + )( 6 3 5 2 2
1 x + x x x + x x + ) 1 = ( 2 x + x + )( 6 5 3
1 x x + x x + ) 1 Trang 4 = ( 2 x + x + ) (é 6 5 4 x x + x ) ( 4 3 2 x x + x )+ ( 2 1 – – – x x + ) 1 ù ê ú ë û = ( 2 x + x + )é 4 x ( 2 x x + ) 2 x ( 2 x x + )+ ( 2 1 – 1 – – 1 x x + ) 1 ù ê ú ë û = ( 2 x + x + )( 2 x x + )( 4 2 1 – 1 x x + ) 1
Nhận xét: Phương pháp trên có thể sử dụng đối với các đa thức có dạng: 5 4 x + x + 1 ; 8 4 x + x + 1 ; 10 8
x + x + 1 ; … là những đa thức có dạng m n x + x + 1
trong đó m = 3k + 1 ; n = 3h + 2 .
Khi tìm cách giảm dần số mũ của lũy thừa ta cần chú ý đến các biểu thức dạng 6 x – 1 ; 3
x – 1 là những biểu thức chia hết cho ( 2 x + x + ) 1
- Tuy nhiên, tùy theo đặc điểm của mỗi bài ta có thể có những cách giải khác gọn hơn,
chẳng hạn đối với bài 5b:
x + x + = (x + x + ) x = (x + )2 (x )2 8 4 8 4 4 4 2 1 2 1 – 1 – = ( 4 2 x + + x )( 4 2 1 x + 1 – x ) = (é 4 2 x + x ê + ) 2 x ( ù 4 2 2 1 – x x ú + ) 1 ë û = (é ù êx + )2 2 2 x ( 4 2 1 – ú x x + ) 1 êë úû = ( 2 x + x )( 2 x + x + )( 4 2 1 – 1 x x + ) 1 Bài 6: a) 2 2 2
x - 4xy + 4y - 2x + 4y - 35 = (x - 2y) - 2(x - 2y) - 35 2
= (x - 2y) + 5(x - 2y) - 7(x - 2y) - 35 = (x - 2y)(x - 2y + 5) - 7(x - 2y + 5) = (x - 2y - 7)(x - 2y + 5)
b) (x + x + )(x + x + )- = (x + x + )2 2 2 2 + ( 2 1 2 12 1 x + x + ) 1 - 12 Trang 5 = ( 2 + + )+ ( 2 + + )- ( 2 x x 1 4 x x 1 3 x + x + ) 1 - 12
= ( 2 + + )( 2 + + )- ( 2 + + ) = ( 2 + + )( 2 x x 1 x x 5 3 x x 5 x x 5 x + x - ) 2 c) + + + + + = ( 2 + + )( 2 (x 2)(x 4)(x 6)(x 8) 16 x 10x 16 x + 10x + 24)+ 16 = ( + + )2 2 + ( 2 x 10x 16 8 x + 10x + 1 ) 6 + 16 = ( + + )2 2 + ( 2 + + )+ ( 2 x 10x 16 4 x 10x 16 4 x + 10x + 1 ) 6 + 16 = ( 2 + + )( 2 + + )+ ( 2 x 10x 16 x 10x 20 4 x + 10x + 2 ) 0 = ( + + )2 2 x 10x 20 d) + + + + - = ( 2 + + )( 2 (x 2)(x 3)(x 4)(x 5) 24 x 7x 10 x + 7x + 20)- 24 = ( + + )2 2 + ( 2 x 7x 10 10 x + 7x + 1 ) 0 - 24 = ( + + )2 2 - ( 2 + + )+ ( 2 x 7x 10 2 x 7x 10 12 x + 7x + 1 ) 0 - 24 = ( 2 + + )( 2 + + )+ ( 2 x 7x 10 x 7x 8 12 x + 7x + 8) = ( 2 + + )( 2 x 7x 8 x + 7x + 2 ) 2 e) x x + x + x + + = ( 2 x + x )( 2 ( 4)( 6)( 10) 128 10
x + 10x + 24)+ 128 = ( + )2 2 + ( 2 x 10x 24 x + 10x)+ 128 = ( + )2 2 + ( 2 + )+ ( 2 x 10x 8 x 10x 16 x + 10x)+ 128 = ( 2 + )( 2 + + )+ ( 2 x 10x x 10x 8 16 x + 10x + 8) = ( 2 + + )( 2 x 10x 8 x + 10x + 1 ) 6 = ( 2 + + )( 2 x 10x 8 x + 2x + 8x + 1 ) 6 = ( 2
x + 10x + 8)[x(x + 2) + 8(x + 2)] = ( 2 x + 10x + 8)(x + 2)(x + 8) Trang 6