





Preview text:
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ [NÂNG CAO]
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) ab(a – b)+ bc (b – c)+ ca (c – a) b) a ( 2 2 b c )+ b( 2 2 c a )+ c ( 2 2 – – a – b ) c) a ( 3 3 b c )+ b( 3 3 c a )+ c ( 3 3 – – a – b ) Bài 2: a) 2 x + 7x + 12 b) 2 3x – 8x + 5 c) 4 2 x + 5x – 6 d) 4 2 x – 34x + 225 e) 2 2
x – 5xy + 6y f) 2 2
4x – 17xy + 13y Bài 3: a) 4 4x + 81 b) 4 x + 1 c) 4 4 64x + y d) 2 x + x = 6 Bài 4: a) 5 4 3 2
x – x – x – x – x – 2 b) 9 7 6 5 4 3 2
x – x – x – x + x + x + x – 1 Bài 5: a) 5 x + x + 1 b) 8 4 x + x + 1 Bài 6: a) 2 2
x – 4xy + 4y – 2x + 4y – 35 b) ( 2 x + x + )( 2 1 x + x + ) 2 – 12
c) (x + 2)(x + 4)(x + 6)(x + 8)+ 16 d) (x + )
2 (x + 3)(x + 4)(x + 5)– 24
e) x (x + 4)(x + 6)(x + 10)+ 128
KẾT QUẢ - ĐÁP SỐ
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) ab(a – b)+ bc (b – c)+ ca (c – a)
= ab(a – b)+ bc bé – a + a – cù+ ac êë ú (c – a) û Trang 1
= ab(a – b)– bc (a – b)+ bc (a – c)– ac (a – c)
= (a – b)(ab – bc)+ (a – c)(bc – ac)
= b(a – b)(a – c)- ( a – c)(a – b)
= (a – b)(a – c)(b – c) b) a ( 2 2 b c )+ b( 2 2 c a )+ c ( 2 2 – – a – b ) = a ( 2 2 b c ) 2 2 2 2 + b é c b + b a + ù c êë ú ( 2 2 – – – a – b ) û = a ( 2 2 b c ) b( 2 2 b c ) b( 2 2 a b )+ c ( 2 2 – – – – – a – b ) = ( 2 2 b c )(a b) ( 2 2 – –
– a – b )(b – c)
= (b – c)(b + c)(a – b)– (a – b)(a + b)(b – c)
= (a – b)(b – c)(b + c – a – b)
= (a – b)(b – c)(c – a) c) a ( 3 3 b c )+ b( 3 3 c a )+ c ( 3 3 – – a – b ) = a ( 3 3 b c ) 3 3 3 3 + b é c b + b a + ù c êë ú ( 3 3 – – – a – b ) û = a ( 3 3 b c ) b( 3 3 b c ) b( 3 3 a b )+ c ( 3 3 – – – – – a – b ) = ( 3 3 b c )(a b) ( 3 3 – –
– a – b )(b – c) = (b c)( 2 2
b + bc + c )(a b) (a b)( 2 2 – – – –
a + ab + b )(b – c) = (a b)(b c)( 2 2 2 2 – –
b + bc + c – a – ab – b ) = (a b)(b c)( 2 2 – –
bc + c – a – ab)
= (a b)(b c) (b é c ab)+ ( 2 2 – – – c – a )ù ê ú ë û
(a – b)(b – c)bé =
(c – a)+ (c – a)(c + a)ù êë úû
= (a – b)(b – c)(c – a)(b + c + a) Trang 2 Bài 2: a) 2 2
x + 7x + 12 = x + 4x + 3x + 12 = x (x + 4)+ 3(x + 4)= (x + 4)(x + 3) b) 2 2
3x – 8x + 5 = 3x – 3x – 5x + 5 = 3x (x – ) 1 – 5(x – ) 1 = (x – ) 1 (3x – ) 1 c) 4 2 4 2 2 2 x + x = x x + x = x ( 2 x
)+ ( 2x )= ( 2x )( 2 5 – 6 – 6 – 6 – 1 6 – 1 – 1 x + ) 6 = (x )(x + )( 2 – 1 1 x + ) 6 d) x x + = x x + = (x )2 4 2 4 2 2 – 34 225 – 2.17 289 – 64 – 17 – 64 = ( 2 x + )( 2 x )= ( 2x )( 2 – 17 8 – 17 – 8 – 9 x – 2 )
5 = (x – 3)(x + 3)(x – 5)(x + 5) e) 2 2 2 2
x – 5xy + 6y = x – 2xy – 3xy + 6y = x (x – 2y)– 3y (x – 2y )
= (x – 2y)(x – 3y) f) 2 2 2 2
4x – 17xy + 13y = 4x – 4xy – 13xy + 13y = 4x (x – y)– 13y (x – y)
= (x – y)(4x – 13y) Bài 3: a) 4 + = + ( 3 2 4x 81 ( 2x
3) 2 2x - 6x + 9 2x - 27) b) 4 + = + ( 3 2 x 1 (x 1) x - x + x - ) 1 c) 4 4 + = + ( 3 2 2 3 64x y (2 2x y) 16 2x - 8x y + 2 2xy - y ) d) 5 4 5 4 3 3 x + x + 1 = x + x + x - x + 1 3 =
( 2 + + )- - ( 2 + + )= ( 3 - + )( 2 x x x 1 (x 1) x x 1 x x 1 x + x + ) 1 Bài 4: a) 5 4 3 2 5 4 4 3 3 2 2
x – x – x – x – x – 2 = x – 2x + x – 2x + x – 2x + x – 2x + x – 2 4 = x (x ) 3 + x (x ) 2 – 2
– 2 + x (x – 2)+ x (x – 2)+ (x – 2) = (x )( 4 3 2
– 2 x + x + x + x + ) 1 b) 9 7 6 5 4 3 2
x – x – x – x + x + x + x – 1 Trang 3 = ( 9 7 x x ) ( 6 4 x x ) ( 5 3 x x )+ ( 2 – – – – – x – ) 1 7 = x ( 2 x ) 4 x ( 2 x ) 3 x ( 2 x )+ ( 2 – 1 – – 1 – – 1 x – ) 1 = ( 2 x )( 7 4 3
– 1 x – x – x + ) 1 é ù = ( 2 x ) ( 7 3 x x ê ) ( 4 – 1 – – x – ) 1 ú ë û = ( 2 x )( 4 x )( 3 – 1 – 1 x – ) 1 = (x )(x + )( 2 x + )( 2 x )(x )( 2 – 1 1 1 – 1 – 1 x + x + ) 1 = (x )(x + )( 2 x + )(x )(x + )(x )( 2 – 1 1 1 – 1 1 – 1 x + x + ) 1 = (x )3 (x + )2 ( 2 x + )( 2 – 1 1 1 x + x + ) 1 Bài 5: a) 5 5 4 4 3 3 2 2
x + x + 1 = x + x – x + x – x + x – x + x + 1 = ( 5 4 3
x + x + x ) ( 4 3 2
x + x + x )+ ( 2 – x + x + ) 1 3 = x ( 2 x + x + ) 2 x ( 2 x + x + )+ ( 2 1 – 1 x + x + ) 1 = ( 2 x + x + )( 3 2 1 x – x + ) 1 b) 8 4 8 4 2 2
x + x + 1 = x + x – x + x – x + x + 1 = ( 8 2 x x )+ ( 4 x x ) 2 – – + x + x + 1 2 = x ( 6 x )+ x ( 3 x )+ ( 2 – 1 – 1 x + x + ) 1 2 = x ( 3 x )( 3
x + )+ x (x )( 2 x + x + )+ ( 2 – 1 1 – 1 1 x + x + ) 1 2 = x (x )( 2 x + x + )( 3
x + )+ x (x )( 2 x + x + )+ ( 2 – 1 1 1 – 1 1 x + x + ) 1 = ( 2 x + x + )é 2 x (x )( 3 1 – 1 x + ) 1 + x (x – ) 1 + 1ù ê ú ë û = ( 2 x + x + ) (é 3 2 x x )( 3 x + ) 2 1 –
1 + x – x + 1ù ê ú ë û = ( 2 x + x + )( 6 3 5 2 2
1 x + x – x – x + x – x + ) 1 = ( 2 x + x + )( 6 5 3
1 x – x + x – x + ) 1 Trang 4 = ( 2 x + x + ) (é 6 5 4 x x + x ) ( 4 3 2 x x + x )+ ( 2 1 – – – x – x + ) 1 ù ê ú ë û = ( 2 x + x + )é 4 x ( 2 x x + ) 2 x ( 2 x x + )+ ( 2 1 – 1 – – 1 x – x + ) 1 ù ê ú ë û = ( 2 x + x + )( 2 x x + )( 4 2 1 – 1 x – x + ) 1
Nhận xét: Phương pháp trên có thể sử dụng đối với các đa thức có dạng: 5 4 x + x + 1 ; 8 4 x + x + 1 ; 10 8
x + x + 1 ; … là những đa thức có dạng m n x + x + 1
trong đó m = 3k + 1 ; n = 3h + 2 .
Khi tìm cách giảm dần số mũ của lũy thừa ta cần chú ý đến các biểu thức dạng 6 x – 1 ; 3
x – 1 là những biểu thức chia hết cho ( 2 x + x + ) 1
- Tuy nhiên, tùy theo đặc điểm của mỗi bài ta có thể có những cách giải khác gọn hơn,
chẳng hạn đối với bài 5b:
x + x + = (x + x + ) x = (x + )2 (x )2 8 4 8 4 4 4 2 1 2 1 – 1 – = ( 4 2 x + + x )( 4 2 1 x + 1 – x ) = (é 4 2 x + x ê + ) 2 x ( ù 4 2 2 1 – x – x ú + ) 1 ë û = (é ù êx + )2 2 2 x ( 4 2 1 – ú x – x + ) 1 êë úû = ( 2 x + x )( 2 x + x + )( 4 2 1 – 1 x – x + ) 1 Bài 6: a) 2 2 2
x - 4xy + 4y - 2x + 4y - 35 = (x - 2y) - 2(x - 2y) - 35 2
= (x - 2y) + 5(x - 2y) - 7(x - 2y) - 35 = (x - 2y)(x - 2y + 5) - 7(x - 2y + 5) = (x - 2y - 7)(x - 2y + 5)
b) (x + x + )(x + x + )- = (x + x + )2 2 2 2 + ( 2 1 2 12 1 x + x + ) 1 - 12 Trang 5 = ( 2 + + )+ ( 2 + + )- ( 2 x x 1 4 x x 1 3 x + x + ) 1 - 12
= ( 2 + + )( 2 + + )- ( 2 + + ) = ( 2 + + )( 2 x x 1 x x 5 3 x x 5 x x 5 x + x - ) 2 c) + + + + + = ( 2 + + )( 2 (x 2)(x 4)(x 6)(x 8) 16 x 10x 16 x + 10x + 24)+ 16 = ( + + )2 2 + ( 2 x 10x 16 8 x + 10x + 1 ) 6 + 16 = ( + + )2 2 + ( 2 + + )+ ( 2 x 10x 16 4 x 10x 16 4 x + 10x + 1 ) 6 + 16 = ( 2 + + )( 2 + + )+ ( 2 x 10x 16 x 10x 20 4 x + 10x + 2 ) 0 = ( + + )2 2 x 10x 20 d) + + + + - = ( 2 + + )( 2 (x 2)(x 3)(x 4)(x 5) 24 x 7x 10 x + 7x + 20)- 24 = ( + + )2 2 + ( 2 x 7x 10 10 x + 7x + 1 ) 0 - 24 = ( + + )2 2 - ( 2 + + )+ ( 2 x 7x 10 2 x 7x 10 12 x + 7x + 1 ) 0 - 24 = ( 2 + + )( 2 + + )+ ( 2 x 7x 10 x 7x 8 12 x + 7x + 8) = ( 2 + + )( 2 x 7x 8 x + 7x + 2 ) 2 e) x x + x + x + + = ( 2 x + x )( 2 ( 4)( 6)( 10) 128 10
x + 10x + 24)+ 128 = ( + )2 2 + ( 2 x 10x 24 x + 10x)+ 128 = ( + )2 2 + ( 2 + )+ ( 2 x 10x 8 x 10x 16 x + 10x)+ 128 = ( 2 + )( 2 + + )+ ( 2 x 10x x 10x 8 16 x + 10x + 8) = ( 2 + + )( 2 x 10x 8 x + 10x + 1 ) 6 = ( 2 + + )( 2 x 10x 8 x + 2x + 8x + 1 ) 6 = ( 2
x + 10x + 8)[x(x + 2) + 8(x + 2)] = ( 2 x + 10x + 8)(x + 2)(x + 8) Trang 6