-
Thông tin
-
Quiz
Bất đẳng thức Bunhiacopxki và ứng dụng - Toán 8
Bất đẳng thức Bunhiacopxki và ứng dụng - Toán 8. Tài liệu được sưu tầm giúp bạn tham khảo, ôn tập và đạt kết quả cao trong kì thi sắp tới. Mời bạn đọc đón xem !
Tài liệu chung Toán 8 211 tài liệu
Toán 8 1.9 K tài liệu
Bất đẳng thức Bunhiacopxki và ứng dụng - Toán 8
Bất đẳng thức Bunhiacopxki và ứng dụng - Toán 8. Tài liệu được sưu tầm giúp bạn tham khảo, ôn tập và đạt kết quả cao trong kì thi sắp tới. Mời bạn đọc đón xem !
Chủ đề: Tài liệu chung Toán 8 211 tài liệu
Môn: Toán 8 1.9 K tài liệu
Thông tin:
Tác giả:




















Tài liệu khác của Toán 8
Preview text:
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
I.Bất đẳng thức Bunhiacôpxki ( BCS ) :
Cho 2 bộ số thực (a ;a ;...;a và (b ;b ;...;b , mỗi bộ gồm n số. Khi đó ta có: 1 2 n ) 1 2 n )
(a b + a b +...+ a b ≤ a + a + + a b +b + +b n n )2 ( 2 2 2 ... n ) ( 2 2 2 ... 1 1 2 2 1 2 1 2 n )
Dấu đẳng thức xảy ra khi và chỉ khi: a a a 1 2 = = ... n =
với quy ước nếu mẫu bằng 0 thì tử phải bằng 0. b b b 1 2 n II. Các hệ quả : Hệ quả 1: C
Nếu a x + ... + a x = C (không đổi) thì min ( 2 2 x + ... + x = 1 n ) 1 1 n n 2 2 a + ... + a 1 n x x đạt được khi 1 = ... n = a a 1 n Hệ quả 2: Nếu 2 2 2
x + ... + x = C (không đổi) thì max (a x + ... + a x = C a + ... + a 1 1 n n ) 2 2 1 n 1 n x x đạt được khi 1 = ... n = ≥ 0 a a 1 n
min (a x + ... + a x = − C a + + a n n ) 2 2 ... 1 1 1 n x x Dấu “=” xảy ra 1 ⇔ = ... n = ≤ 0 a a 1 n
III.Bất đẳng thức Bunhiacôpxki mở rộng:
• Mở rộng bất đẳng thức Bunhiacôpxki cho 3 dãy số thực không âm
(a ;a ;...;a ;(b ;b ;...;b ;(c ;c ;...;c ta luôn có : 1 2 n ) 1 2 n ) 1 2 n )
(a b c + a b c +...+ a b c ≤ a + a + + a b + b + + b c + c + + c n n n )2 ( 3 3 3 ... n ) ( 3 3 3 ... n ) ( 3 3 3 ... 1 1 1 2 2 2 1 2 1 2 1 2 n ) Chứng minh: Đặt 3 3 3 3 3 3 3 3 3 3 3 3
A = a + a + ... + a , B = b + b + ... + b
, C = c + c + ... + c 1 2 n 1 2 n 1 2 n
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 1
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
Nếu A = 0 hoặc B = 0 hoặc C = 0 thì bất đẳng thức hiển nhiên đúng vì khi đó cả hai vế của bất đẳng thức đều bằng 0.
Vậy ta chỉ xét trường hợp A > 0; B > 0;C > 0 a b c Đặt i x = ; i y = ; i z = với 1 i = ; 2;3 i i i A B C 3 3 3
⎧x + x + x = 1 1 2 3 ⎪ Khi đó ta có: 3 3 3
⎨y + y + y = 1 và bất đẳng thức cần chứng minh trở thành: x y z + x y z + x y z ≤ 1 1 2 3 1 1 1 2 2 2 3 3 3 ⎪ 3 3 3
z + z + z = 1 ⎩ 1 2 3 3 3 3 ⎧ x + x + x 1 1 1 x y z ≤ ⎪ 1 1 1 3 ⎪ 3 3 3 ⎪ x + x + x Áp
dụng bất đẳng thức Cauchy cho 3 số không âm: 3 3 3
x ; y ; z (i = 1;2;3 ta có: 2 2 2 ⎨x y z ≤ i i i ) 2 2 2 3 ⎪ 3 3 3 ⎪ x + x + x 3 3 3 ⎪x y z ≤ 3 3 3 3 ⎩
Cộng các bất đẳng thức trên lại ta được: x y z + x y z + x y z ≤ 1(đpcm) 1 1 1 2 2 2 3 3 3 ⎧a b c 1 1 1 = = ⎪ A B C
⎧x = y = z ⎪ 1 1 1 ⎪ ⎪a b c Đẳng thức xảy ra 2 2 2
⇔ ⎨x = y = z ⇔ ⎨ = = 2 2 2 A B C ⎪x y z ⎪ = = ⎩ 3 3 3 ⎪a b c 3 3 3 = = ⎪⎩ A B C
Hay a : b : c = A : B : C (i = 1;2;3 tức là: a : b : c = a : b : c = a : b : c i i i ) 1 1 1 2 2 2 3 3 3
• Tổng quát : bất đẳng thức Bunhiacôpxki mở rộng cho rộng cho m dãy số thực không âm:
Cho m dãy số thực không âm:
(a ;a ;...;a ,(b ;b ;...;b , … , (K ;K ;...;K 1 2 n ) 1 2 n ) 1 2 n ) Ta có:
(a b ...K + a b ...K +...+ a b ... m m m K ≤ a + a + ... m m m + a b + b + ... m + b ... m m K + K + ... m + K 1 1 1 2 2 2 n n n ) ( 1 2 n ) ( 1 2 n ) ( 1 2 n )
Dấu “=” xảy ra khi và chỉ khi:
a : b : ... : K = a : b : ... : K = a : b : ... : K ( chứng minh tương tự như trên) 1 1 1 2 2 2 n n n
I- MỘT SỐ VÍ DỤ :
Bài 1: Cho x, y, z là ba số dương thỏa 4x + 9y +16z = 49 . Chứng minh rằng: 1 25 64 T = + + ≥ 49 x y z
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 2
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
Đẳng thức xảy ra khi nào?
Hướng dẫn giải 1 5 8
Áp dụng BĐT Bunhiacôpxki cho sáu số 2 x;3 y; 4 z và ; ; ta được: x y z 2 2 2 ⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
T = ( x + y + z) + + = ⎜
⎟ ⎢( x )2 + ( y )2 + ( z )2 1 25 84 1 5 8 49. 4 9 16 2 3 4 ⎢ + ⎜ ⎟ ⎜ ⎟ + ⎥ ⎝ x y z ⎠ ⎣ ⎥ ⎜ ⎟ ⎦ ⎢⎝ x ⎜ ⎠ y ⎟ ⎝ ⎠ ⎝ z ⎠ ⎥ ⎣ ⎦ 2 ⎛ 1 5 8 ⎞ 2 ≥ ⎜ 2 x. + 3 y. + 4 z. ⎟ = 49 ⎜ x y z ⎟ ⎝ ⎠ 1 25 64 ⇒ T = + + ≥ 49 x y z ⎧ 1 x = ⎪ 2 ⎧ 1 5 8 ⎪ ⎪ = = ⎪ 5
Đẳng thức xảy ra khi ⎨2x 3y 4z ⇔ ⎨y = 3
⎪⎩4x 9y 16z 49 ⎪ + + = ⎪z = 2 ⎪⎩
Bài 2 : Cho x > 0; y > 0 và 2 2
x + y ≤ x + y .Chứng minh:
x + 3y ≤ 2 + 5
Hướng dẫn giải 2 2 ⎛ 1 ⎞ ⎛ 1 ⎞ 1 Giả thiết: 2 2
x + y ≤ x + y ⇔ x − + y − ≤ ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 2 ⎛ ⎞
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số: ( ) 1 1
1;3 ; x − ; y − ⎜ ⎟ ta có: ⎝ 2 2 ⎠ 2 2 2 ⎡ ⎛ 1 ⎞ ⎛ 1 ⎞⎤ ⎡⎛ 1 ⎞ ⎛ 1 ⎤ ⎞ 1. 1− + 3. y − ≤ 10 ⎢ ⎜ ⎟ ⎜ ⎟⎥ ⎢ x − + y − ⎜ ⎟ ⎜ ⎟ ⎥ ≤ 5 ⎣ ⎝ 2 ⎠ ⎝ 2 ⎠⎦ ⎢⎝ 2 ⎠ ⎝ 2 ⎠ ⎣ ⎥⎦
⇒ (x + y − )2 3 2 ≤ 5
⇒ x + 3y − 2 ≤ 5
⇒ x + 3y ≤ 2 + 5 ⎧ 1 5 ⎪x = + ⎪ Đẳng thức xảy ra khi 2 10 ⎨ ⎪ 1 3 5 y = + ⎪⎩ 2 10
Bài 3 : Cho a,b,c ≥ 0 ; a + b + c = 1.Chứng minh:
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 3
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn 1 1 1 1 + + + ≥ 30 2 2 2 a + b + c ab bc ac
Hướng dẫn giải 1 1 1 1 Gọi A = + + + 2 2 2 a + b + c ab bc ac
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số: ⎛ 1 1 1 1 ⎞ ⎜ ; ; ; ⎟ 2 2 2
⎝ a + b + c ab bc ca ⎠ ( 2 2 2
a + b + c ;3 ab;3 bc;3 ca ) Ta có: ( + + + )2 ≤ ( 2 2 2 1 3 3 3
a + b + c + 9ab + 9bc + 9ca) A ⇒
≤ ⎡(a + b + c)2 100
+ 7(ab + bc + ca)⎤ A ⎣ ⎦ (*) 1 1
Mà ab + bc + ca ≤ (a + b + c)2 = (do 1
a + b + c = ) 3 3
Do đó: (*) ⇒ A ≥ 30. 1
Đẳng thức xảy ra khi a = b = c = 3 1 1 1 Bài 4 : Cho ;
x y; z > 0 và thoả x + y + z ≤ 1.Chứng minh : 2 2 2 x + + y + + z + ≥ 82 2 2 2 x y z
Hướng dẫn giải 1 1 1 Gọi 2 2 2 S = x + + y + + z + 2 2 2 x y z ⎛ ⎞
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số: ( ) 1 1;9 ; ; x ⎜ ⎟ ⎝ x ⎠ 9 1 1 Ta có: 2 2 x + ≤ 1+ 81. x + = 82. x + (1) 2 2 x x x 9 1 2 y + ≤ 82. y + Tương tự: 2 y y ` (2) 9 1 2 z + ≤ 82. z + (3) 2 z z ⎛ 1 1 1 ⎞
Cộng (1),(2) và (3) theo vế ta được: S. 82 ≥ x + y + z + 9 + + ⎜ ⎟ ⎝ x y z ⎠ ⎛ ⎞ S ≥
(x + y + z) 1 1 1 . 82 81 + 9 + + − 80 ⎜ ⎟
(x + y + z) Hay ⎝ x y z ⎠
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 4
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn ⎛ ⎞ ≥
(x + y + z) 1 1 1 2.9.3. + + − 80 ≥ 162 − 80 = 82 ⎜ ⎟ ⎝ x y z ⎠ 1 1 1 Vậy 2 2 2 x + + y + + z + ≥ 82 2 2 2 x y z
Bài 5 : Cho ba số thực dương a, ,
b c thoả ab + bc + ca = abc .Chứng minh rằng: 2 2 2 2 2 2 b + 2a c + 2b a + 2c + + ≥ 3 ab bc ca
Hướng dẫn giải 2 2 2 2 b + 2a b + 2a 1 1 Ta có: = = + 2
(do a,b dương) 2 2 2 2 ab a b a b 1 1 1
Đặt x = ; y = ; z = thì a b c ⎧a, , b c > 0 ⎧ ; x y; z > 0 giả thiết ⎨ ⇔ ⎨
⎩ab + bc + ca = abc
⎩x + y + z = 1 và (đpcm) 2 2 2 2 2 2
⇔ x + 2y + y + 2z + z + 2x ≥ 3
Áp dụng BĐT Bunhiacôpxki ta có: (x + y )= (x +y +y )≥(x+y+y)2 2 2 2 2 2 3 2 3 1 2 2 ⇒ x + 2y ≥ (x + 2y) 3 1 Tương tự 2 2 y + 2z ≥ ( y + 2z) 3 1 2 2 z + 2x ≥ (z + 2x) 3 1 Vậy 2 2 2 2 2 2
x + 2y + y + 2z + z + 2x ≥
(3x + 3y + 3z) = 3 3 1
Đẳng thức xảy ra khi x = y = z = 3 1
Với x = y = z = thì a = b = c = 3 3
Bài 6 : Chứng minh: a −1 + b −1 + c −1 ≤ c (ab + )
1 với mọi số thực dương ; a ; b c ≥ 1
Hướng dẫn giải Đặt 2 2 2
a −1 = x ;b −1 = y ;c −1 = z Với ;
x y; z > 0.Bất đẳng thức cần chứng minh trở thành:
x + y + z ≤ ( 2
z + ) ⎡⎣( 2x + )( 2 1 1 y + ) 1 +1⎤⎦
Áp dụng BĐT Bunhiacôpxki ta có:
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 5
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn x + y ≤ ( 2 x + )( 2
y + ) ⇒ x + y + z ≤ ( 2 x + )( 2 1 1 1 y + ) 1 + z (1)
( 2x + )( 2y + ) + z ≤ ( 2x + )( 2y + ) 2 1 1 1 1 + 1. z +1 (2)
Kết hợp (1) và (2) ta có x + y + z ≤ ( 2
z + ) ⎡⎣( 2x + )( 2 1 1 y + ) 1 +1⎤⎦
Vậy a −1 + b −1 + c −1 ≤ c (ab + ) 1 (đpcm) Bài 7 : Cho ; a ;
b c > 0 và thoả abc = 1.Chứng minh: 1 1 1 3 + + ≥ 3 a (b + c) 3 b (c + a) 3
c (a + b) 2
Hướng dẫn giải 1 1 1
Đặt x = ; y = ; z = ⇒ xyz = 1; x > 0; y > 0; z > 0 a b c 2 2 2 x y z 3
Ta cần chứng minh bất đẳng thức sau : A= + + ≥ y + z z + x x + y 2 ⎛ x y z ⎞
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số : ( y + z; z + x; x + y );⎜ ; ; ⎟ ⎜ y z z x x y ⎟ + + + ⎝ ⎠ Ta có: ( + + )2 x y z
≤ ( y + z + z + x + x + y) A x + y + z 3 3 3 3 ⇒ A ≥
≥ . xyz = (do xyz = 1) ⇒ A ≥ 2 2 2 2
Đẳng thức xảy ra khi x = y = z = 1 Với 1
x = y = z = thì a = b = c = 1. Bài 8 : Cho ; a ;
b c > 0 .Chứng minh: a b c + + ≤ 1
a + (a + b)(a + c) b + (b + c)(b + a) c + (c + a)(c + b)
Hướng dẫn giải
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số:
( a; b);( c; a) Ta có: ( + )2 ac ab
≤ (a + b)(c + a) ⇒ ac + ab ≤ (a + b)(c + a)
⇒ a + ac + ab ≤ a + (a + b)(c + a) a a a ⇒ ≤ = (1)
a + (a + b)(a + c)
a + ac + ab a + b + c
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 6
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn b b Tương tự: ≤ (2)
b + (b + c)(b + a) a + b + c c c ≤ (3)
c + (c + a)(c + b) a + b + c
Cộng (1),(2) và (3) theo vế ta được: a b c + + ≤ 1
a + (a + b)(a + c) b + (b + c)(b + a) c + (c + a)(c + b)
Đẳng thức xảy ra khi a = b = c . ab 3 2 − 3 Bài 9 : Cho ; a b > 0 và thoả 2 2
a + b = 9 .Chứng minh : ≤ a + b + 3 2
Hướng dẫn giải Ta có: 2 2 a + b = 9
⇔ ab = (a + b)2 2 − 9
⇔ 2ab = (a + b + 3)(a + b − 3) 2ab ⇔ = a + b − 3 a + b + 3 ab a + b 3 ⇔ = − a + b + 3 2 2
Mà theo BĐT Bunhiacôpxki thì 2 2
a + b ≤ 2. a + b = 3 2 ab 3 2 − 3 Nên ≤ a + b + 3 2 ⎧ ; a b > 0 ⎪⎪ 3 Đẳng thức xảy ra khi 2 2
⎨a + b = 9 ⇔ a = b = 2 ⎪ ⎪⎩a = b 1 1 1 p + q p + q p + q Bài 10: Cho ; a ; b ;
c d dương tuỳ ý.Chứng minh : + + ≥ + + a b c pa + qb pb + qc pc + qa
Hướng dẫn giải
Áp dụng BĐT Bunhiacôpxki ta có 2 ( + ) ⎛ ⎞ 2 p q ⎛ p q ⎞ p q = ⎜ . pa + . qb ⎟ ≤ + ⎜ ⎟ ⎜ ⎟( pa + qb) a b ⎝ ⎠ ⎝ a b ⎠
Tương tự ta chứng minh được ( )2 ⎛ p q ⎞ ⎜ ⎟( ) ( ⎛ ⎞ + ≤ + + p + q)2 p q p q pb qc ; ≤ + ⎜ ⎟( pc + qa) ⎝ b c ⎠ ⎝ c a ⎠
Cộng các vế tương ứng của ba bất đẳng thức ta có :
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 7
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn ( + )2 ⎡ 1 1 1 ⎤ + + ≤ ⎢ ⎥ ( + )⎛ 1 1 1 ⎞ p q p q + + ⎜ ⎟ ⎣ pa + qb pb + qc pc + qa ⎦ ⎝ a b c ⎠ ⎡ ⎤ Hay ( + ) 1 1 1 1 1 1 p q + + ≤ + + ⎢ ⎣ pa qb pb qc pc qa ⎥ + + + ⎦ a b c 1 1 1 p + q p + q p + q Vậy + + ≥ + + a b c pa + qb pb + qc pc + qa
Bài 11 : Cho 4 số dương ; a ; b ; c d .Chứng minh: 3 3 3 3 2 2 2 2 a b c d
a + b + c + d + + + ≥ b + c + d
c + d + a b + d + a a + b + c 3
Hướng dẫn giải 3 3 3 3 a b c d Đặt P = + + + b + c + d
c + d + a b + d + a a + b + c
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số: 3 3 3 3 ⎛ a b c d ⎞ ⎜ ; ; ; ⎟; ⎜ + + + + + +
+ + ⎟ ( a (b + c + d ); b(c + d + a); c(d + b + a); d (a + b + c) ) b c d c d a b d a a b c ⎝ ⎠ Ta có: ( + + + )2 2 2 2 2 a b c d
≤ P ⎡a (b + c + d ) + b(c + d + a) + c(d + a + b) + d (a + b + c)⎤ ⎣ ⎦ 2
⇔ ( + + + ) ≤ ⎡( + + + )2 2 2 2 2 − ( 2 2 2 2 a b c d P a b c d
a + b + c + d )⎤ ⎣ ⎦ (1)
Áp dụng BĐT Bunhiacôpxki cho 2 bộ số: (a; ; b ; c d );(1;1;1; ) 1 ta được:
(a + b + c + d )2 ≤ ( 2 2 2 2
4 a + b + c + d ) (2)
(a +b + c + d )2 2 2 2 2 ≤ 3P ( 2 2 2 2
a + b + c + d ) Từ (1) và (2) ta được 2 2 2 2
⇔ a + b + c + d ≤ 3P 3 3 3 3 2 2 2 2 a b c d
a + b + c + d Vậy + + + ≥ b + c + d
c + d + a b + d + a a + b + c 3 a b c
Bài 12 : Cho các số dương ; a ;
b c thỏa a + b + c = 1 . Chứng minh : + + ≥ 1
1+ b − a 1+ c − b 1 + a − c
Hướng dẫn giải a b c a b c Đặt A = + + = + +
1+ b − a 1+ c − b 1+ a − c
2b + c 2c + a 2a + b
Áp dụng BĐT Bunhiacôpxki ta có: 2 ( + + ) ⎡ ⎤ 2 a = ⎢ ( b c a b c
a 2b + c) +
b(2c + a) +
c (2a + b)⎥ 2b + c 2c + a 2a + b ⎣ ⎦ ⎡ a b c ⎤ ≤ + + ⎡a ⎢
⎥ ⎣ (2b + c) + b(2c + a) + c (2a + b)⎤
⎣ 2b + c 2c + a 2a + b ⎦ ⎦
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 8
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
(a +b + c)2 ⇔ A ≥
3(ab + bc + ca) Ta lại có: (
3(ab + bc + ca)
a + b + c)2 ≥ 3(ab + bc + ca) . Suy ra A ≥ ( =
ab + bc + ca) 1 3 a b c Vậy + + ≥ 1
1+ b − a 1+ c − b 1+ a − c
⎧2b + c = 2c + a = 2a + b ⎪ 1
Dấu đẳng thức xảy ra khi ⎨a = b = c
⇔ a = b = c = 3
⎪a +b + c =1 ⎩
Bài 13 : Giả sử các số thực ;
x y; z;t thoả mãn điều kiện: a ( 2 2
x + y ) + b( 2 2
z + t ) = 1 với ;
a b là hai số dương cho +
trước. Chứng minh: ( + )( + ) a b x z y t ≤ ab
Hướng dẫn giải Do ;
a b > 0 nên từ giả thiết ta có: + +
a (x + y ) + b(z + t ) 2 2 2 2 x y z t 1 2 2 2 2 = 1 ⇔ + = b a ab 2 2 2 2 x z y t 1 ⇔ + + + = b a b a ab
Áp dụng BĐT Bunhiacôpxki ta có: 2 2 2 ( + )2 ⎛ x z ⎞ ⎛ x z ⎞ x z = . b + . a ≤ ⎜ ⎟
(b + a)⎜ + ⎟ (1) ⎝ b a ⎠ ⎝ b a ⎠ 2 2 ⎛ y t ⎞ Tương tự :
( y + t)2 ≤ (b + a)⎜ + ⎟ (2) ⎝ b a ⎠
Cộng từng vế (1) và (2) ta được: 2 2 2 2 ⎛ x z y t ⎞ a + b
(x + z)2 + ( y + t)2 ≤ (b + a)⎜ + + + ⎟ = (3) ⎝ b a b a ⎠ ab
Mặt khác ( x + z)2 + ( y + t)2 ≥ 2( x + z)( y + t) (4) +
Do đó từ (3) và (4) suy ra: ( + )( + ) a b x z y t ≤ ab ⎧ x z = ⎪b a ⎪ ⎧x = y ⎪ y t ⎪
Dấu đẳng thức xảy ra ⇔ ⎨ = ⇔ ⎨ ax b a z = t = ⎪ ⎪⎩ b
⎪x + z = y + t ⎪⎩
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 9
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
Bài 14 : Cho các số thực dương ;
x y; z;t thoả mãn xyzt = 1.Chứng minh: 1 1 1 1 4 + + + ≥ 3
x ( yz + zt + ty) 3
y ( xz + zt + tx) 3
z ( xt + ty + yx) 3
t ( xy + yz + zx) 3
Hướng dẫn giải 1 1 1 1 Với ;
x y; z;t dặt a = ;b = ;c = ; d = ( ; a ; b ;
c d > 0) và abcd = 1 x y z t 1 1 1 1
⇒ x = ; y = ; z = ;t = a b c d
Bất đẳng thức cần chứng minh tương với: 1 1 1 1 4 + + + ≥ 1 ⎛ 1 1 1 ⎞ 1 ⎛ 1 1 1 ⎞ 1 ⎛ 1 1 1 ⎞ 1 ⎛ 1 1 1 ⎞ 3 + + + + + + + + 3 ⎜ ⎟ 3 ⎜ ⎟ 3 ⎜ ⎟ 3 ⎜ ⎟
a ⎝ bc cd bd ⎠ b ⎝ ac cd
ad ⎠ c ⎝ ad bd ab ⎠ d ⎝ ab bc ac ⎠ 3 3 3 3 a b c d 4 ⇔ + + + ≥ b + c + d c + d + a d + a + b a + b + c 3 bcd adc abd abc 3 3 3 3 a b c d 4 ⇔ + + + ≥ (vì abcd = 1)
a (b + c + d ) b(c + d + a) c(d + a + b) d (a + b + c) 3 2 2 2 2 a b c d 4 ⇔ + + + ≥ b + c + d c + d + a d + a + b a + b + c 3 2 2 2 2 a b c d Đặt S = + + + b + c + d c + d + a d + a + b a + b + c
Áp dụng BĐT Bunhiacôpxki ta có:
S ⎡⎣(b + c + d ) + (c + d + a) + (d + a + b) + (a + b + c)⎤ ≥
⎦ (a + b + c + d )2 .
(a + b + c + d)2 1 ⇒ S ≥ =
a + b + c + d (1)
3(a + b + c + d ) ( ) 3
Áp dụng BĐT Cauchy với 2 số dương:
a + b ≥ 2 ab; c + d ≥ 2 cd
Suy ra a + b + c + d ≥ 2( ab + cd )
Lại áp dụng BĐT Cauchy cho 2 số dương ab; cd ta có: 4 ab + cd ≥ 2
abcd = 2 abcd = 2 (vì abcd = 1) (2) 4
Từ (1) và (2) suy ra S ≥ 3 1 1 1 1 4 Vậy + + + ≥ 1 ⎛ 1 1 1 ⎞ 1 ⎛ 1 1 1 ⎞ 1 ⎛ 1 1 1 ⎞ 1 ⎛ 1 1 1 ⎞ 3 + + + + + + + + 3 ⎜ ⎟ 3 ⎜ ⎟ 3 ⎜ ⎟ 3 ⎜ ⎟
a ⎝ bc cd bd ⎠ b ⎝ ac cd
ad ⎠ c ⎝ ad bd ab ⎠ d ⎝ ab bc ac ⎠
Dấu đẳng thức xảy ra khi a = b = c = d = 1 ⇔ x = y = z = t = 1 .
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 10
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
Bài 15 : Cho x ; x ; x ; x dương thoả điều kiện x + x + x + x = 1.Chứng minh : 1 2 3 4 1 2 3 4 4 4 4 4 + + + x x x x 1 1 2 3 4 ≥ 3 3 3 3
x + x + x + x 4 1 2 3 4
Hướng dẫn giải
Áp dụng BĐT Bunhiacôpxki ta có:
1 = ( x + x + x + x )2 ≤ 4( 2 2 2 2
x + x + x + x 1 2 3 4 1 2 3 4 ) 1 2 2 2 2
⇒ x + x + x + x ≥ (1) 1 2 3 4 4 2 • ( 2 2 2 2
x + x + x + x ) = ( 3 3 3 3
x . x + x . x + x . x + x . x 1 2 3 4 1 1 2 2 3 3 4 4 )
≤ ( x + x + x + x )( 3 3 3 3
x + x + x + x 1 2 3 4 1 2 3 4 ) 3 3 3 3
= x + x + x + x (vì x + x + x + x = 1) 1 2 3 4 1 2 3 4 3 3 3 3
x + x + x + x 1 2 3 4 2 2 2 2 ⇔
≥ x + x + x + x (2) 2 2 2 2 1 2 3 4
x + x + x + x 1 2 3 4 •
(x + x + x + x )2 3 3 3 3 1 2 3 4 = ( 2 2 2 2
x .x + x .x + x .x + x .x 1 1 2 2 3 3 4 4 ) ≤ ( 2 2 2 2
x + x + x + x )( 4 4 4 4
x + x + x + x 1 2 3 4 1 2 3 4 ) 4 4 4 4 3 3 3 3
x + x + x + x
x + x + x + x 1 2 3 4 1 2 3 4 ⇒ ≥ (3) 3 3 3 3 2 2 2 2
x + x + x + x
x + x + x + x 1 2 3 4 1 2 3 4 Từ (1);(2) và (3) suy ra: 4 4 4 4
x + x + x + x 1 1 2 3 4 ≥ 3 3 3 3
x + x + x + x 4 1 2 3 4
Bài 16 : Cho bốn số dương ; a ; b ; c d .Chứng minh: 4 4 4 4 a b c d
a + b + c + d + + + ≥ ( a + b)( 2 2
a + b ) (b + c)( 2 2
b + c ) (c + d )( 2 2
c + d ) (d + a)( 2 2 d + a ) 4
Hướng dẫn giải
Áp dụng BĐT Bunhiacôpxki ta có:
(a + b)2 ≤ (a + b ) ⇔ (a + b )(a + b)2 2 2 2 2 ≤ ( 2 2 a + b ) ≤ ( 2 2 2 2 4 a + b ) (1) 4 4 a + b 1 ⇔ ≥ + ( a + b)( a b 2 2 a + b ) ( ) 4 4 4 a − b Mặt khác: = − ( a + b)( a b 2 2 a + b ) 4 4 4 4 a b c d Đặt N = + + + ( a + b)( 2 2
a + b ) (b + c)( 2 2
b + c ) (c + d )( 2 2
c + d ) (d + a)( 2 2 d + a )
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 11
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn Ta có: ( 4 4 a − b ) + ( 4 4 a + b ) ( 4 4 b − c ) + ( 4 4 b + c ) ( 4 4 c − d ) + ( 4 4 c + d ) ( 4 4 d − a ) + ( 4 4 d + a ) 2N = + + + ( (1) a + b)( 2 2 a + b ) (b + c)( 2 2 b + c ) (c + d)( 2 2 c + d ) (d + a)( 2 2 d + a ) 1
⇔ N ≥ (a + b) 1
+ a − b + (b + c) 1
+ b − c + (c + d ) 1 2
+ c − d + (d + a) + d − a 4 4 4 4 1
⇔ N ≥ (a + b + b + c + c + d + d + a) 1 2
⇔ N ≥ (a + b + c + d ) ( đpcm ) 4 4 a b c Bài 17 : Cho ; a ;
b c là các số thực dương.Chứng minh: + + ≥ 1 2 2 2 a + 8bc b + 8ac c + 8ab
(Trích đề thi Olympic Toán Quốc Tế lần thứ 42, năm 2001)
Hướng dẫn giải a b c Đặt A = + + 2 2 2 a + 8bc b + 8ac c + 8ab
Áp dụng BĐT Bunhiacôpxki hai lần ta được: 2 ( ⎡ ⎤
a + b + c)2 a b c 4 2 4 2 4 2 = ⎢
. a. a + 8bc +
. b. b + 8ac +
. c. c + 8ab ⎥ 4 2 4 2 4 2 ⎣ a + 8bc b + 8ac c + 8ab ⎦ ⎡ a b c ⎤ 2 2 2 ⎡ ⎢ ⎥ . a a 8bc b b 8ac c c 8ab ⎤ ≤ + + + + + + + 2 2 2 ⎣ a 8bc b 8ac c 8ab ⎣ ⎦ + + + ⎦ 3 3 3 .
A ⎡ a. a 8abc b. b 8abc c. c 8abc ⎤ = + + + + + ⎣ ⎦
≤ A (a + b + c)( 3 3 3 .
a + b + c + 24abc) (1) Mặt khác
(a + b + c)3 3 3 3
= a + b + c + 3(a + b)(b + c)(a + c)
Áp dụng BĐT Cauchy với hai số dương ta có:
a + b ≥ 2 ab; b + c ≥ 2 bc; a + c ≥ 2 ac
Suy ra: (a+b)(b+c)(a+c)≥8abc
⇒ (a + b + c)3 3 3 3
= a + b + c + (a + b)(b + c)(a + c) 3 3 3 3
≥ a + b + c + 24abc (2) Từ (1) và (2) suy ra:
(a + b + c)2 ≤ A (a + b + c)(a + b + c)3 = A (a + b + c)2 . . a b c
Do đó A ≥ 1, nghĩa là + + ≥ 1 2 2 2 a + 8bc b + 8ac c + 8ab
Dấu đẳng thức xảy ra khi a = b = c . Bài 18 : Cho ; x y; z + ∈
thoả xy + yz + zt + tx = 1.Chứng minh:
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 12
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn 3 3 3 3 x y z t 1 + + + ≥ y + z + t x + z + t x + y + t x + y + z 3
Hướng dẫn giải
Áp dụng BĐT Bunhiacôpxki ta có: ( + + + )2 ≤ ( 2 2 2 2 + + + )( 2 2 2 2 xy yz zt tx x y z t
y + z + t + x ) 2 2 2 2
⇔ 1 ≤ x + y + z + t (1)
Đặt: X = y + z + t;Y = x + z + t; Z = x + y + t;T = x + y + z
Không mất tính tổng quát giả sử: x ≥ y ≥ z ≥ t 2 2 2 2
⇒ x ≥ y ≥ z ≥ t và 3 3 3 3
x ≥ y ≥ z ≥ t
và y + z + t ≤ x + z + t ≤ x + y + t ≤ x + y + z ⇔ X ≤ Y ≤ Z ≤ 1 1 1 1 T ⇒ ≥ ≥ ≥ X Y Z T
Áp dụng BĐT Trê-bư-sếp cho hai dãy số sau: 3 3 3 3
⎧x ≥ y ≥ z ≥ t ⎪ ⎨ 1 1 1 1 ≥ ≥ ≥ ⎪⎩ X Y Z T 3 3 3 3 x y z t 1 ⎛ 1 1 1 1 ⎞ + + + ≥ + + + ⎜ ⎟( 3 3 3 3
x + y + z + t ) (2) X Y Z T 4 ⎝ X Y Z T ⎠
⎧x ≥ y ≥ z ≥ t
Áp dụng BĐT Trê-bư-sếp cho hai dãy ⎨ 2 2 2 2
⎩x ≥ y ≥ z ≥ t 1 ( 3 3 3 3
x + y + z + t ) ≥ (x + y + z + t)( 2 2 2 2
x + y + z + t ) 4 Mặt khác: 1
x + y + z + t = ( x + y + z + x + y + t + x + z + t + y + z + t) 1
= ( X + Y + Z + T ) 3 3 ⇒ ( 1 1 3 3 3 3
x + y + z + t ) ≥ ( 2 2 2 2
x + y + z + t ). ( X + Y + Z + T ) (3) 4 3 Từ (2) và (3) rút ra: 3 3 3 3 x y z t 1 ( ⎛ 1 1 1 1 2 2 2 2 ⎞ + + + ≥
x + y + z + t )( X + Y + Z + T ) + + + ⎜ ⎟ X Y Z T 48 ⎝ X Y Z T ⎠ Theo (1) ta lại có: 2 2 2 2
1 ≤ x + y + z + t
Áp dụng BĐT Cauchy cho X ;Y; Z;T > 0 ta có: 4
X + Y + Z + T ≥ 4 X .Y.Z.T 1 1 1 1 1 4 + + + ≥ 4 X Y Z T
X .Y.Z.T ( ⎛ ⎞
⇒ X + Y + Z + T ) 1 1 1 1 . + + + ≥ 16 ⎜ ⎟ ⎝ X Y Z T ⎠
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 13
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn 3 3 3 3 x y z t 1 1 Vậy + + + ≥ .1.16 = X Y Z T 48 3
Thay X ;Y; Z;T ta được kết quả: 3 3 3 3 x y z t 1 + + + ≥ y + z + t x + z + t x + y + t x + y + z 3 1
Dấu đẳng thức xảy ra khi x = y = z = t = 2
Bài 19 : Cho n là số tự nhiên.Chứng minh rằng: 1 2 C + C + ... n
+ C ≤ n(2n − n n n )1
Hướng dẫn giải Chọn hai dãy ( 1 2
a = C ; a = C ;...; n
a = C ; b = b = ... = b = 1 1 n 2 n n n ) ( 1 2 n ) 2
Áp dụng BĐT Bunhiacôpxki ta có: ( 1 2 n
C + C + + C ) ≤ ( 1 2 ... C + C + ... n + C + + + (1) n n n n n n ) (1 1 ... ) 1 n
Theo nhị thức Newton ta có: (a + b)n k k n k = ∑C a b − n k 1 =
Cho a = b = 1.Ta có: n 0 1 n n 1
2 = C + C + ... + C ⇒ 2 −1 = C + ... n + C n n n n n Vậy từ (1) ta có: 1 2 C + C + ... n
+ C ≤ n(2n − n n n )1
Dấu đẳng thức xảy ra khi 1 2 C = C = ... n = C ⇔ n = 1. n n n a b c d 2 Bài 20 : Cho ; a ; b ;
c d > 0 .Chứng minh : + + + ≥
b + 2c + 3d
c + 2d + 3a
d + 2a + 3b
a + 2b + 3c 3
(Trích đề dự bị Quốc Tế Toán Mỹ năm 1993)
Hướng dẫn giải 2 n n n ⎛ x ⎞⎛ ⎞ ⎛ ⎞
Áp dụng BĐT Bunhiacôpxki ta có: i
⎜ ∑ ⎟ ∑ x y ≥ ∑ x ⎜ i i ⎟ ⎜ i ⎟
⎝ i 1= yi ⎠⎝ i 1= ⎠ ⎝ i 1= ⎠
với n = 4;( x ; x ; x ; x = a; ; b ;
c d ; y ; y ; y ; y = b + 2c + 3d;c + 2d + 3a;d + 2a + 3 ;
b a + 2b + 3c 1 2 3 4 ) ( ) ( 1 2 3 4 ) ( )
(a + b + c + d )2 ⇒ VT ≥ (1)
4(ab + ac + ad + bc + bd + cd ) 3
Mặt khác (ab + ac + ad + bc + bd + cd ) ≤ (a + b + c + d )2 (2) 8 2
Từ (1) và (2) ⇒ VT ≥ ( đpcm ) 3 4 4 4 3 3 3 a b c a + b + c Bài 21 : Cho 0
a > ;b > 0;c > 0 .Chứng minh : + + ≥ b + c c + a a + b 2
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 14
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
Hướng dẫn giải 4 4 4 a b c Đặt 2 2 2 x = ; x = ; x = và 2 a (b + c) 2 2
= y ;b c + a = y ;c a + b = y 1 ( ) 2 2 2 ( ) 2 1 2 3 b + c c + a a + b 3
Áp dụng BĐT Bunhiacôpxki ta có cho các số x ; x ; x và y ; y ; y ta được: 1 2 3 1 2 3 4 4 4 ⎛ a b c ⎞ 2 ⎜ + + ⎡
⎟ a (b + c) 2
+ b (c + a) 2
+ c (a + b) 2 ⎤ ≥ ( 3 3 3
a + b + c )2
⎝ b + c c + a a + b ⎣ ⎦ ⎠ (a +b + c a b c )2 3 3 3 4 4 4 Nên + + ≥ 2 b + c c + a a + b a (b + c) 2
+ b (c + a) 2
+ c (a + b)
Để chứng minh được bài toán ta cần chứng minh: ( + + ) 2 3 3 3 ≥ ( + ) 2 + ( + ) 2 2 a b c a b c
b c a + c (a + b) (**) (**) 3 3 2 2 3 3 2 2 3 3 2 2
⇔ a + b − a b − b a + b + c − b c − bc + c + a − c a − ca ≥ 0
⇔ (a − b)2 (a + b) + (b − c)2 (b + c) + (c − a)2 (c + a) ≥ 0 (***)
Bất đẳng thức (***) là đúng ⇔ (**) là đúng – Bài toán đúng. 4 4 4 3 3 3 a b c a + b + c Vậy + + ≥ b + c c + a a + b 2
Bài 22 : Cho x > 0;i = 1; 2;...;n có x + x + ... + x = 1.Cho x ; x ;...; x là hoán vị của x ; x ;...; x .Chứng minh: i 1 2 n 1 i 2 i n i 1 2 n 2 n ⎛ 1 ⎞ ( 2n + )2 1 ∑⎜ x + ⎟ ≥ k ⎜ ⎟ k 1 = x n ⎝ ⎠ k i
Hướng dẫn giải 2 2 2 n ⎛ 1 ⎞ ⎡ n ⎛ 1 ⎞⎤ n n ⎛ 1 ⎞ Theo Bunhiacôpxki: . n ∑⎜ x + ⎟ ≥ ⎢∑⎜ x +
⎟⎥ = ⎜ ∑ x + ∑ ⎟ k k k ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ k 1 = x ⎝ ⎠ ⎢ = x ⎣ ⎝ ⎠⎥ = = x i k 1 i k 1 k 1 ⎦ ⎝ ⎠ k k k i n n n n 2 ⎛ ⎞⎛ 1 ⎞ 1 n Mà ∑ x = 1 2 2 ∑x ⎜ ⎟⎜ ∑ ⎟ ≥ n ⇒ ∑ ≥ = n k k i n ⎜ ⎟ k 1 = ⎝ k 1= ⎠ k 1= x = x i k 1 ⎝ ⎠ k k i ∑xki k 1 = 2 n ⎛ 1 ⎞ ( 2n + )2 1 Vậy ∑⎜ x + ⎟ ≥ k ⎜ ⎟ k 1 = x n ⎝ ⎠ k i BÀI TẬP : 3 3 a b Bài 1: Cho ; a ; b ; c d > 0 và thỏa + = ( + )3 2 2 2 2 c d a b .Chứng minh: + ≥ 1 c d
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 15
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn 1 1 4 16 64 Bài 2: Cho ; a ; b ;
c d > 0 .Chứng minh: + + + ≥ a b c d
a + b + c + d 3 3 3 a b c 1 Bài 3: Cho ; a ;
b c là 3 số dương và 2 2 2
a + b + c ≥ 1.Chứng minh: + + ≥ b + c c + a a + b 2 Bài 4: Cho 2 2 2
a + b + c = 1.Chứng minh: a + b + c + ab + ac + bc ≤ 1+ 3 4 4 4 2 2 2 a b c a + b + c Bài 5: Cho ; a ;
b c là các số dương.Chứng minh: + + ≥ 2 2 2 2 2 2
a + ba + b
b + bc + c
c + ac + a 3 Bài 6: Cho 3 số ;
x y; z thoả x ( x − ) + y ( y − ) + z ( z − ) 4 1 1
1 ≤ .Chứng minh: x + y + z ≤ 4 3 a + 2b b + 2c c + 2a Bài 6: Cho a; ;
b c là 3 số không âm.Chứng minh: + +
≥ a + b + c 3 3 3 bc ca ab 3
Bài 7: Cho 3 số dương ; a ;
b c có abc = 1.Chứng minh: + + ≥ 2 2 2 2 2 2
a b + a c b c + b a c a + c b 2 1+ x 1+ y 1+ z 9 + 3 3
Bài 8: Cho 3 số dương ;
x y; z có x + y + z = 1.Chứng minh: + + ≥ y + z z + x x + y 2 ( + + )2 a b c a b c Bài 9: Chứng minh: + + ≥ x y z x + y + z 2 2 2 x y y z z x 2
Bài 10: Cho x ≥ y ≥ z > 0 .Chứng minh: + + ≥ ( 2 2 2
x + y + z ) z x y ⎛ a + b ⎞
Bài 11: Cho a ≥ 1;b ≥ 1.Chứng minh: log a + log b ≤ 2 log 2 2 2 ⎜ ⎟ ⎝ 2 ⎠ ⎛ 1 1 1 ⎞
Bài 12: Cho a; ;
b c > 0 .Chứng minh: (a + b + c ) + + ≥ ⎜
⎟ (a + b + c)2 3 3 3 ⎝ a b c ⎠ 3 2
Bài 13: Cho a; ;
b c ∈ .Chứng minh: a + (1− b)2 + b + (1− c)2 + c + (1− a)2 2 2 2 ≥ 2 3 1 1 1 3 Bài 14: Cho ;
x y; z > 0 và x + y + z ≤ .Chứng minh: 2 2 2 x + + y + + z + ≥ 17 2 2 2 2 x y z 2
Bài 15: Cho trước 2 số dương ;
a b và 2 số dương ;
c d thay đổi sao cho a + b < c + d .Chứng minh: c ( − )2 2 2 a c a + ≥
. Dấu “=” xảy ra khi nào? c + d
a + b − c − d a + b a a a
Bài 16: Cho a ; a ;...; a là các số thực thoả mãn 2 2 2
a + a + ... + a = 3.Chứng minh: 1 2 + + ... n + < 2 1 2 n 1 2 n 2 3 n +1 a b c 3
Bài 17: Cho a; ; b ;
c p;q > 0 .Chứng minh: + + ≥ pb + qc pc + qa pa + qb p + q
Bài 18: Chứng minh rằng với mọi a ∈ (i = 1;2;...;n ta có: i ) + ( n a
1− a )2 + a + (1− a )2 + ... + a + − a ≥ n (1 )2 2 2 2 1 2 2 3 1 2
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 16
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn 3 3 3 2 a b c
2(a + b + c)
Bài 1: Cho ΔABC thoả mãn hệ thức: + + = (1).CM ΔABC đều
br + cR cr + aR ar + bR 9R
Hướng dẫn giải
x = br + cR > 0
Để đơn giản ta đặt: y = cr + aR > 0 (2)
z = ar + bR > 0 3 3 3 2 a b c
2(a + b + c) vậy (1) ⇔ + + = x y z 9R Từ (2) ta có:
ax + by + cz = (ab + bc + ca)(r + R) (3) 3 3 3 a b c y x z y x z 4 4 4 2 2 2 2 2 2
(ax + by + cz)( +
+ ) = a + b + c + ab(a + b ) + bc(b + c ) + ca(c + a ) x y z x y y z z x Theo BĐTCauchy,ta có: 3 3 3 a b c 4 4 4 2 2 2 2
(ax + by + cz)( +
+ ) ≥ a + b + c + 2 . ab ab + .2 bc bc + c .2
a ca ≥ (a + b + c ) x y z 3 3 3 2 2 2 a b c
(a + b + c ) Suy ra : ( + + ) ≥ (theo 3) (4) x y z
(ab +bc + ca)(r + R)
mặt khác ta luôn có (Cauchy): 2 2 2
a + b + c ≥ ab + bc + ca 3 3 3 2 2 2 2 2 2 2 a b c
(a + b + c ) a + b + c nên (4): + + ≥ = 2 2 2 x y z
(a + b + c )(r + R) r + R 2
(a + b + c) ≥ (theo BĐT BCS) 3(r + R) R 9R
Mà R ≥ 2r ⇒ 3(r + R) ≤ 3( + R) = 2 2 3 3 3 2 a b c
2(a + b + c) 3 3 3 2 a b c
2(a + b + c) từ đó: + + ≥ ⇒ + + ≥ x y z 9R
br + cR cr + aR ar + bR 9R
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 17
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn ⎧
⎪a = b = c ⎪⎪
dấu “=” xảy ra khi ⎨R = r ⇔ ΔABC đều ⎪ y y z y x z 2 2 2 2 2 2 ⎪a = b ,b = c ,c = a ⎪⎩ x z y z y x
Bài 2 : CM: 1+ cos Acos B cosC ≥ 3 sin Asin B sin C với A, B,C nhọn
Hướng dẫn giải A B B C C A
Do tgA>0,tagB>0,tgC>0 và tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 A B B C C A 1 Áp dụng BCS ta có: 2 2 2 2 2 2 tg tg + tg tg + tg tg ≥ (1) 2 2 2 2 2 2 3
Mặt khác theo BĐT Cauchy ta có: A B B C C A A B C 2 2 2 3 tg tg + tg tg + tg tg ≥ 3 tg tg tg (2) 2 2 2 2 2 2 2 2 2 A B C 1 ⇔ 3tg tg tg ≤ 2 2 2 3 từ (1)và(2): A B B C C A 4 A B C 2 2 2 2 2 2 1+ tg tg + tg tg + tg tg ≥ ≥ 4 3tg tg tg 2 2 2 2 2 2 3 2 2 2 ⎛ A ⎞⎛ B ⎞⎛ C ⎞ ⎛ A ⎞⎛ B ⎞⎛ C ⎞ A B C 2 2 2 2 2 2 ⇔ 1+ tg 1+ tg 1+ tg + 1− tg 1− tg 1− tg ≥ 8 3tg tg tg ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ 2 ⎠⎝ 2 ⎠⎝ 2 ⎠ ⎝ 2 ⎠⎝ 2 ⎠⎝ 2 ⎠ 2 2 2 2 A 2 B 2 C A B C 1− tg 1− tg 1− tg 2tg 2tg 2tg 2 2 2 2 2 2 ⇔ 1+ . . ≥ 3 . . 2 A 2 B 2 C 2 A 2 B 2 C 1+ tg 1+ tg 1+ tg 1+ tg 1+ tg 1+ tg 2 2 2 2 2 2
⇔ 1+ cos Acos B cosC ≥ 3 sin Asin Bsin C
Dấu “=” xảy ra khi ΔABC đều
Bài 3 : Cho a, b, c, là số đo 3 cạnh Δ .chứng minh rằng a b c T = + + ≥1 b 2 + 2c − a
2c + 2a − b 2a + 2b − c
Hướng dẫn giải
Áp dụng BĐT Bunhiacốpxki cho 6 số: a b c ; ; ; a( b
2 + 2c − a); b(2c + 2a − b); c(2a + b 2 − c) b 2 + 2c − a
2c + 2a − b 2a + b 2 − c
Ta có: T [.a(2b + 2c − a)+ b(2c + 2a − b)+ c(2a + b − c)]≥ (a + b + c)2 2
Sau đó dùng biến đổi tương đương chứng minh:
(a + b+ c)2 ≥ 4ab +4bc +4ca –a2 –b2 - c2 Từ đó suy ra đpcm.
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 18
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn Bài 4 : Cho ABC Δ
và đường tròn nội tiếp Δ , các tiếp tuyến của đường tròn song song với 3 cạnh của Δ nhỏ S
và có diện tích S1; S2; S3. Gọi S là diện tích ΔABC . Chứng minh: S + S + S ≥ 1 2 3 3
Hướng dẫn giải Giả sử S1= SAMN ha − 2r Ta có: AM Δ
N đồng dạng ABC Δ
với tỉ số đồng dạng là:
với r là bán kính đường tròn nội tiếp và h ha a là
đường cao kẻ từ đỉnh A. 2 2 S
⎛ ha − 2r ⎞ ⎛ a ⎞ Ta có: 1 = ⎜ ⎟ = 1 ⎜⎜ − ⎟⎟ S ⎝ ha ⎠ ⎝ p ⎠ 1 r a (Vì S = aha = 2 pr ⇒ = với p là nửa chu vi) 2 ha p S1 a Vậy: =1− S p S S 2 b 3 c Tương tự: =1− ; =1− S p S p S + S + S a + b + c Do đó: 1 2 3 = 3 − = 1 S p Áp dụng BĐT Bun ta có: 2 S = ( . 1 S + . 1 S + . 1 S
≤ 1 +1 +1 S + S + S 1 2 3 ) ( 2 2 2)( 1 2 3) ⇒ S
S + S + S ≥
(đpcm). Dấu “=” xảy ra khi ABC Δ đều 1 2 3 3
Bài 5 : Cho ΔABC và 1 điểm Q nào đó ở trong Δ . Qua Q kẻ đường thẳng song song với AB cắt AC ở M và cắt
BC ở N. Qua điểm Q kẻ đường thẳng song song với AC cắt AB ở F; cắt BC ở E. Qua E kẻ đường thẳng song
song với BC cắt AC ở P, cắt AB ở R. Kí hiệu S1= dt(QMP); S2 = dt(QEN); S3 = dt(QFR) và S = dt(ABC).Chứng minh: 1
a) S = ( S + S + S )2 b) S + S + S ≥ S 1 2 3 1 2 3 3
Hướng dẫn giải MP a) Ta có: QM Δ
P đồng dạng B Δ AC (tỉ số ). AC 2 S ⎛ MP ⎞ S MP Suy ra 1 1 = ⇒ = ⎜ ⎟ . S ⎝ AC ⎠ S AC S PC S AM Tương tự 2 3 = ; = S AC S AC S + S + S
MP + PC + AM AC Do đó: 1 2 3 = = = 1 S AC AC
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 19
Tröôøng THPT Chuyeân Tieàn Giang www.MATHVN.com GV Ñoã Kim Sôn
Suy ra: S = S + S + S ⇒ S = ( S + S + S )2 1 2 3 1 2 3
b) Áp dụng BĐT Bunhiacôpxki ta có:
S = (1. S +1. S +1. S )2 ≤ ( 2 2 2 1 +1 +1 S + S + S 1 2 3 )( 1 2 3) 1
Suy ra S + S + S ≥ S 1 2 3 3
Dấu “=” xảy ra khi S = S = S ⇔ Q là trọng tâm ABC Δ 1 2 3
Bài 6 : Cho a , b , c là 3 cạnh của tam giác.Chứng minh: a b c + +
≥ a + b + c
b + c − a
c + a − b
a + b − c
Hướng dẫn giải b
⎧ + c − a = x > 0 ⎪
Đặt ⎨c + a − b = y > 0
⎪a +b −c = z > 0 ⎩
Khi đó ta cần chứng minh: y + z z + x x + y y + z z + x x + y + + ≥ + + 2 x 2 y 2 z 2 2 2
⇔ yz ( y + z) + zx(z + x) + xy(x + y) ≥ 2 xyz ( x + y + y + z + x + z ) (1)
Dễ thấy VT (1) ≥ 2( xy + yz + zx) (2)
Theo BĐT Bunhiacôpxki ta có:
( x+ y + y + z + z + x)2 ≤ 6(x+ y + z)
⇒ x + y + y + z + z + x ≤ 6(x + y + z)
VT (2) ≤ 2 3xyz ( x + y + z) (3) Rõ ràng ta có 2 2 2 2 2 2
x y + x y + x y ≥ xyz ( x + y + z)
⇒ ( xy + yz + zx)2 ≥ 3xyz (x + y + z)
⇒ xy + yz + zx ≥ 3xyz (x + y + z) (4)
Từ (1) (2) (3) (4) ⇒ đpcm. Dấu “=” xảy ra khi a = b = c
Bài 7 : Cho ∆ABC. Chứng minh : a2b(a – b) +b2c(b – a) + c2a(c – a) ≥ 0
( Trích đề thi vô địch toán quốc tế 1983 )
Hướng dẫn giải
Gọi A’; B’; C’ là các tiếp điểm:
Chuyeân ñeå boài döôõng hoïc sinh gioûi K10 www.MATHVN.com Page 20