-
Thông tin
-
Quiz
Chuyên đề phép cộng các phân thức đại số
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép cộng các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chương 6: Phân thức đại số (KNTT) 20 tài liệu
Toán 8 1.8 K tài liệu
Chuyên đề phép cộng các phân thức đại số
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép cộng các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chủ đề: Chương 6: Phân thức đại số (KNTT) 20 tài liệu
Môn: Toán 8 1.8 K tài liệu
Thông tin:
Tác giả:














Tài liệu khác của Toán 8
Preview text:
PHÉP CỘNG CÁC PHÂN THỨC ĐẠI SỐ I. TÓM TẮT LÝ THUYẾT
1. Quy tắc cộng hai phân thức cùng mẫu thức
Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.
2. Quy tắc cộng hai phân thức có mẫu thức khác nhau
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân
thức có cùng mẫu thức vừa tìm được.
II. BÀI TẬP VÀ CÁC DẠNG TOÁN A.CÁC DẠNG BÀI MINH HỌA
Dạng 1. Cộng xác phân thức đại số thông thường
Phương pháp giải: Sử dụng kết hợp hai quy tắc cộng phân thức đại số nêu trong phần Tóm tắt lý thuyết.
Bài 1. Thực hiện các phép tính sau: 2 a) x 4x 4 với x 2 ; 6x 12 6x 12 b) 3a 7 2a 2 với a 0và b 0 . 2 2 5a b 5a b
Bài 2. Cộng các phân thức sau: a) 11y 6 3y 6 với 1 y ; 2 2 4 y 1 4 y 1 2 b) mn 3n 7mn 3n với m 0 và n 0 . 2 3 2 3 2m n 2m n
Bài 3. Thực hiện phép cộng các phân thức sau:
1. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com a) u 10 u 18 u 2 với 1 u ; 2 u 2 u 2 u 4 2 b) 2 x 5 2y x 7 với x 0 và y 0 . 2 2 3 2 3 2x y 8x y 4x y
Bài 4. Thực hiện các phép tính sau: a) 1 x 2 x 1 với x 1 ; 2 2 x 1 x 1 x 2x 1 b) 1 p q với q 2 . p 2 2 3 3 2 p q 4 p q 8 p q
Dạng 2. Cộng các phân thức đại số có sử dụng quy tắc đối dấu
Phương pháp giải: Thực hiện theo hai bước
Bước 1. Áp dụng Quy tắc đổi dấu phân thức: A A ; B B
Bước 2. Thưc hiện tương tự Dạng 1.
Bài 5. Sử dụng quy tắc đổi dấu để thực hiện các phép tính sau: 2 2 a) 3x x x 2 3 2x với x 1; x 1 1 x x 1 b) 2 4 5 y 2 với y 2 . 2 y 2 y 2 4 y
Bài 6. Thực hiện phép cộng các phân thức sau: 2 2 a) 2 a a 2a 7 5a với a 3; a 3 3 a a 3 b) 33b 3b 1 11b 5 với b 0 và 1 b . 2 2b 2b 1 2b 4b 2
Bài 7. Cộng các phân thức sau: a) 1 1 v và v 4 ; 2 2 2
v 8v 16 8v v 16 v 16
2. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com b) m m 4mn với m 2 ; n 2 2 m 2n m 2n 4n m
Bài 8. Thực hiện các phép tính sau. 2 a) x 2 3 1 với x 1; 3 2 x 1 x x 1 1 x 2 b) r 1 32r 1 r
với r 0 và r .s 2 2 2 2 r rs s r r rs
Dạng 3. Tính giá trị biểu thức tổng các phân thức đại số
Phương pháp giải: Thực hiện theo hai bước:
Bước 1. Thực hiện phép cộng các phân thức đại số tương tự Dạng 1 và Dạng 2
Bước 2.Thay giá trị của biến vào phân thức và tính
Bài 9. Rút gọn rồi tính giá trị của biểu thức 2 x 2x 5 50 5x tại x = -2 5x 25 x xx 5 Bài 10. Cho biểu thức 2 2 4x A với x 0 và x 1. 2 2 3 x x 1 x x 1 x a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức tại x = 2.
Dạng 4. Giải toán đố có sử dụng phép cộng các phân thức đại số
Phương pháp giải: Thực hiện theo hai bước:
Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài;
Bước 2. Sử dụng kết hợp hai quy tắc cộng phân thức đại số đã nêu trong phần Tóm tắt lý thuyết.
Bài 11. Một đội máy xúc trên công trường đường Hồ Chí Minh nhận nhiệm vụ xúc 11600 m3
đất. Giai đoạn đầu còn nhiều khó khăn nên máy làm việc với năng suất trung bình x m3/
3. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
ngày và đội đào được 5000m3. Sau đó công việc ổn định hơn, năng xuất của máy tăng 25 m3/ ngày. a) Hãy biểu diễn:
* Thời gian xúc 5000 m3 đầu tiên;
* Thời gian làm nốt phần việc còn lại;
* Thời gian làm việc để hoàn thành công việc.
b) Tính thời gian làm việc để hoàn thành công việc với x = 250 m3/ngày.
Bài 12. Con tàu du lịch “Sông Hồng” đưa khách từ Hà Nội đến Việt Trì. Sau đó, nó nghỉ lại
tại Việt Trì 2 giờ rồi quay về Hà Nội. Độ dài khúc sông từ Hà Nội đến Việt Trì là 70 km. Vận
tốc của dòng nước là 5 km/h. Vận tốc riêng của con tàu (tức là vận tốc trong nước yên lặng) là x km/h. a) Hãy biểu diễn qua x:
* Thời gian ngược từ Hà Nội đến Việt Trì;
* Thời gian xuôi từ Việt Trì về Hà Nội;
* Thời gian kể từ lúc xuất phát đến khi về tới Hà Nội.
b) Tính thời gian kể từ lúc xuất phát đến khi con tàu về tới Hà Nội, biết rằng vận tốc lúc
ngược dòng của con tàu là 20 km/h. HƯỚNG DẪN Bài 1. 2 a) Ta được: (x 2) x 2 5a 9 ; b) Ta được: . 6(x 2) 6 2 5a b Bài 2.
4. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com a) Ta được: 14y 8mn 4 ; b) Ta được: . 2 4 y 1 2 3 2 2m n mn Bài 3.
a) Gợi ý: u2 – 4 = (u – 2)(u + 2). b) Mẫu chung = 8x3y2. 2 Rút gọn thu được 4
x 8x 12y 2xy 5 . 3 2 8x y Bài 4.
a) Gợi ý: x2 – 1 = (x – 1)(x + 1); x2 – 2x + 1 = (x – 1)2;
Mẫu chung = (x + 1)(x – 1)2; 2
Rút gọn thu được 3x x 2 . 2 (x 1)(x 1)
b) Gợi ý: 4p2 – q = (2p – q)(2p + q);
8p3 + q3 = (2p + q)(4p2 – 2pq + q2);
Mẫu chung = (2p – q)(4p2 – 2pq + q2); 3 3 2 2 2 Rút gọn thu được 4
p q 6 p q 3pq 2 pq q . 2 2
(2 p q)(2 p q)(4 p 2 pq q ) Bài 5. 2
a) Gợi ý: x 2 x 2
Rút gọn thu được (x 1) x 1; 1 x x 1 x 1 b) Gợi ý: y 5y 2 5 y 2
2 – 4 = (y – 2)(y + 2) và ; 2 2 4 y y 4 Rút gọn được y 2 1 . ( y 2).( y 2) y 2 Bài 6.
5. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 2 a) Gợi ý: a 2a 2a a ; 3 a a 3 2
Rút gọn thu được (a 3) a 3. a 3 b) Gợi ý: 2b – 4b 11b 5 5 11b 2 = 2b(1 – 2b); ; 2 2b 4b 2b(2b 1)
Rút gọn được: 4b 2 1 . 2b(2b 1) b Bài 7.
a) Gợi ý: v2 + 8v + 16 = (v + 4)2;
8v – v2 – 16 = -(v – 4)2 v2 – 16 = (v – 4)(v + 4); 3
Rút gọn được v 32v . 2 2 (v 16)
b) Gợi ý 4n2 – m2 = (2n – m)(2n + m); Rút gọn được 2 m(m 2n) 2m . (2n m)(2n m) n 2n Bài 8.
a) Gợi ý: x3 – 1 = (x – 1)(x2 + x + 1); 1 1 ; 1 x x 1 Rút gọn được 2x 2 2 . 2 2 (x 1)(x x 1) x x 1 2 2 b) Gợi ý: 32r 32r ; MC r(r s)(r s); 2 2 2 2 s r r s 2 2 Rút gọn được r( 3 2r 2s 2) 3 2r 2s 2 . r(r s)(r s) (r s)(r s)
6. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 3 2 2
Bài 9. Rút gọn được x 10x 25x x(x 5) x 5 . 5x(x 5) 5x(x 5) 5
Thay x = -2 thu được giá trị biểu thức là 0,6. Bài 10. a) Rút gọn được 2 . 2 x(x 1)(x x 1)
b) Thay x = 2 vào biểu thức thu gọn được giá trị 1 . 7 Bài 11. a) Gợi ý công thức
Khối lượng công việc = thời gian làm việc x năng suất
Các biểu thức thu được là * 5000 (ngày); x
* Thời gian làm phần còn lại = (khối lượng công việc còn lại) / (năng suất mới), được biểu thức 6600 (ngày) x 25 * Tổng thời gian 5000 6600 (ngày); (3) x x 25
b) Thay x = 250 vào biểu thức (3) được 44 ngày. Bài 12.
a) Công thức chuyển động: s = v.t
(s: quãng đường; v: vận tốc; t: thời gian).
Vận tốc xuôi dòng = vận tốc riêng + vận tốc dòng;
Vận tốc ngược dòng = vận tốc riêng – vận tốc dòng;
7. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
Các biểu thức thu được lần lượt là: * 70 (giờ). x 5 * 70 (giờ). x 5 * 70 + 70 + 2 (giờ). (*) x 5 x 5
b) 47 giờ = 7 giờ 50 phút. 6 B.PHIẾU BÀI TỰ LUYỆN
Bài 1: Thực hiện phép tính: a) x 4 1 0 8x b) 7x 2 2 8xy c) 3x y 6x 4y d) 3xy 4 7 12x 4x 3 14 14 24xy 24xy 3x y 3x y 25xy 25xy 25xy
Bài 2: Thực hiện phép tính: 2 2 2 a) 3 2a 2 b) x 2xy 3y xy 2y 3xy 5 2a 2a 5 x y y x x y 2
c) 6b 3 2bx 2ax 6a 3 d) x 2 x 2 2 2 2 2 a b b a 3 2 2 3 x 2x x 2x x x
Bài 3: Thực hiện phép tính: 2 a) 2x 2ax 3x b) a 2b 2x 1 c) 3x 2y 2 2 d) 3 2 3x xy x 3 3a ab ax x b xy x y 2 y 1 x x y 1
Bài 4: Thực hiện phép tính: a) 5 7 2x b) 2x 9 2 c) x 4 y d) 1 2x 5 2 x 2 x 4 2 9 4x 2x 3 2 2 2 y xy x 2xy 2 2 x x 2x 2 Bài 5: Tìm x biết: a) 2 3 2 3x 2 0 (với x 3 ) b) (với 1 x ) 2 x 3 x 9 2 2 9x 6x 1 1 9x 13x3x 2 1 3
8. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
Bài 6: Thực hiện phép tính: 2 2 a) 2 x 1 3 b) a b 2a b a c) 1 22 7x 5 2 x 2 x 4 x 2 a 2 2b ab b 1 2 9x 18 72 18x 12x 24
Bài 7: Thực hiện phép tính: 2 2 a) 5b 3 a 1 4a 2 b) 5 2x 3 4x 3 c) x 2x 2x 1 2 3 3 9a b 5ab 15a b 2 2x 2x 1 8x 4x 3 2 x 1 x x 1 x 1
Bài 8: Thực hiện phép tính: 2 4 a) 1 1 x b) 2x 1 32x 1 2x c) x 3 2 x x x 1 2 2 2 x 6x 9 6x x 9 x 9 2 2 2 2x x 1 4x 2x x 1 x
Bài 9: Thực hiện phép tính: a) 4 3 3 1 2 3 b)
y xz x y x y z y zx z 2 2 2 x 3x 2 x 12x 35 x 7x 10
Bài 10: Cho ba số a;b;c đôi một khác nhau. Chứng minh rằng biểu thức sau không phụ thuộc vào a; ; b c : bc ac ab
a ba c b ab c c ac b 2 Bài 11: Tìm các số 2x 3x 12 A B C ; A B;C để: x 33
x 33 x 32 x 3 Lời giải
Bài 1: Thực hiện phép tính: x 4 1 0 8x x 4 10 8x 7 x 14 7x 2 a) x 2 14 14 14 14 14 2 7x 2 2 8xy 7x 2 2 8xy 7x 8xy x 7 8y b) 7 8y 24xy 24xy 24xy 24xy 24xy 24y 3x y 6x 4y 3x y 6x 4y 9x 3y 33x y c) 3 3x y 3x y 3x y 3x y 3x y
9. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 3xy 4 7 12x 4x 3
3xy 4 7 12x 4x 3 3xy 8x x 3y 8 d) 3y 8 8 3y 2 5xy 2 5xy 2 5xy 2 5xy 2 5xy 2 5xy 2 5y 25y
Bài 2: Thực hiện phép tính: a) 3 2a 2 3 2 2a 3 2 2a 1 5 2a 2a 5 5 2a 5 2a 5 2a b) 2 2 2 2 2 2 2 2 2 x 2xy 3y xy 2y 3xy x 2xy xy 3y 2y 3xy
x 2xy xy 3y 2y 3xy x y y x x y x y x y x y x y 2 2 x y x y x y
c) 6b 3 2bx 2ax 6a 3 3 6b 2bx 2ax 6a 3 3 6b 2bx 2ax 6a 3 2 2 2 2 2 2 2 2 2 2 a b b a b a b a b a
a b6 2x 2x 6 2 2 b a a b 2 2 x 2 x 2 x 2 2 x x x 1 d) 1 3 2 2 3 3 2 x 2x x 2x x x x 2x x x x 2 1 x 1
Bài 3: Thực hiện phép tính:
a) 2x 2ax 3x 2ax 2ax 3x x 3 3a 3a a b) a 2b 2x 1 a 2b 2x a 2 ab ax x b a b x a
c) 3x 2y 2 2 3x 2y 2y 2x 5 xy x y xy y 2 2 3 2 3
x xy x 3x 2x y 2 1 3x xy x d) 2 xy x 1 2y 2 y 1 x x y 2 1 x y 2 1 x y 1 x y 1
Bài 4: Thực hiện phép tính:
10. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 5 7 2x 5 x 2 7 2x a) 3x 3 2 2 2 x 2 x 4 x 4 x 4 2x 9 2
2x 9 22x 3 b) 2x 3 1 2 2 2 9 4x 2x 3 4x 9 4x 9 2x 3 2 2 c) x 4 y x 4 y x 4 y x 2y 2 2 2 y xy x 2xy
y 2y x x x 2y xy 2y x xy 1 2x 5 1 2x 5 2 x 1 x 2x 5 2 d) x 3x 2 2 2 x x 2x 2 x x 1 2 2 x 1 2x 2 x 1 2x 2 x 1 Bài 5: Tìm x biết: a) 2 3 0 (với x 3 ) 2 x 3 x 9 2 3 2 x 3 3 Ta có: 2x 3 2 2 2 x 3 x 9 x 9 x 9 Do đó 2 3 3
0 2x 3 0 x (thỏa mãn x 3 ). 2 x 3 x 9 2 Vậy 3 x . 2 b) 2 3x 2 (với 1 x ) 2 2 9x 6x 1 1 9x 13x3x 2 1 3 2 3x 2 3x
21 3x 3x1 3x 2 Ta có: 9x 3x 2 2 2 9x 6x 1 1 9x 3x 2 1 13x13x 13x13x2 13x1 3x2 Do đó: 2 3x 2 2 2
9x 3x 2 2 9x 3x 0 2 2 9x 6x 1 1 9x 13x3x 2 1 3x3x 1 0 x 0 hoặc 1 x 3 So sánh với điều kiện 1 x ta suy ra x 0 . 3
Bài 6: Thực hiện phép tính:
11. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 x 1 3
2 x 2 x 1 3 x 2 a) 6x 1 2 2 2 x 2 x 4 x 2 x 4 x 4 b) 2 2 2 2 2 2 a b 2a b a a b 2a b a
a b a b a a 2 2 2 b b b a 2 2b ab b 1 a 21b 1b a 21b
a 21b a 2 c) 1 22 7x 5 1 22 7x 5 2 9x 18 72 18x 12x 24 9 x 2 18 2 4 x 12x 2
4 x 2 27x 22 15 x 2 33x 66 11 36 2 x 4 36 2 x 4 12x 2
Bài 7: Thực hiện phép tính: 2 5b 3 a 1 4a 2 5ab 5b 3 2 9a a 2 1 3b 4a 2 3 3 2 2 2 a)
25ab 9a 3ab 9a 6b 2 3 3 3 3 3 3 9a b 5ab 15a b 45a b 45a b 2 5 2x 3 4x 3 102x 1 4x 2x 3 2 2 4x 3 b) 12x 8x 7 2 2x 2x 1 8x 4x 2x 2x 1 4x 2x 1 6x 72x 1 6x 7 4x 2x 1 4x c) 2 2 x 2x 2x 1 x 2x 2x x 2 2
1 x x 1 4x 5x 1 x 1 4x 1 4x 1 3 2 3 3 3 2 x 1 x x 1 x 1 x 1 x 1 x 1 x x 1
Bài 8: Thực hiện phép tính: a) 2 2 1 1 x 1 1 x
x 6x 9 x 6x 9 x 2 x 9 2 2 2
x 6x 9 6x x 9 x 9 x 32 x 32 2 x 9 x 32 x 32 3 x 21x x 32 x 32
12. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 2 b) 2x 1 32x 1 2x 2x 1 3 2x 1 2x 2 2 2 2x x 1 4x 2x x x 2x 1 2x 1 2x 1 x 2x 1 2x 2
1 32x .x 2x 2 1 8x 2 2 1 4x x 2x 1 2x 1 x 8 2 4x 1 4 x
x x 1 x 1 x 1 x 1 x x x 1 x 1 x 1 3 2 4 2 2 2 4 2 c) x x x 1 1 x 1 x 1 x 1 x
Bài 9: Thực hiện phép tính: 4 3 3
4 y z 3 z x 3 y x a)
y xz x y x y z y zx z
y xz x y z y z 1 .
y x z x y z y x z x b) 1 2 3 1 2 3 2 2 2 x 3x 2 x 12x 35 x 7x 10 x
1 x 2 x 5 x 7 x 2 x 5 1 1 1 1 1 1 1 1 6 .
x 1 x 2 x 5 x 7 x 2 x 5 x 1 x 7 x 1 x 7
Bài 10: Cho ba số a;b;c đôi một khác nhau. Chứng minh rằng biểu thức sau không phụ thuộc vào a; ; b c : bc ac ab bc ac ab
a ba c b ab c c ac b a ba c a bb c a cb c
bc b c aca c aba b bcb c ac a b b c aba b
a ba cb c
a ba cb c
b cbc ac a bab ac a bb ca c
a ba cb c
a ba cb c 1 2 Bài 11: Tìm các số 2x 3x 12 A B C ; A B;C để: x 33
x 33 x 32 x 3 A B C
A B x 3 C x 32 2
Cx B 6C x A 3B 9C Xét vế phải:
x 33 x 32 x 3 x 32 x 32
13. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 Do đó: 2x 3x 12 A B C x 33
x 33 x 32 x 3 C 2 A 39 Khi B 6C 3 B 1 5 . A3B 9C 12 C 2
========== TOÁN HỌC SƠ ĐỒ ==========
14. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com