-
Thông tin
-
Quiz
Chuyên đề phép trừ các phân thức đại số
Tài liệu gồm 21 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép trừ các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chương 6: Phân thức đại số (KNTT) 20 tài liệu
Toán 8 1.8 K tài liệu
Chuyên đề phép trừ các phân thức đại số
Tài liệu gồm 21 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép trừ các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.
Chủ đề: Chương 6: Phân thức đại số (KNTT) 20 tài liệu
Môn: Toán 8 1.8 K tài liệu
Thông tin:
Tác giả:





















Tài liệu khác của Toán 8
Preview text:
PHÉP TRỪ CÁC PHÂN THỨC ĐẠI SỐ I. TÓM TẮT LÝ THUYẾT 1. Phân thức đối
- Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng 0. A A
- Phân thức đối của của là . B B
2. Quy tắc trừ hai phân thức đại số A C A C Muốn trừ phân thức cho phân thức , ta cộng
với phân thúc đối của , cụ thể như sau: B D B D A C A C . B D B D
II. BÀI TẬP VÀ CÁC DẠNG TOÁN A.CÁC DẠNG BÀI MINH HỌA
Dạng 1. Thực hiện phép tính có sử dụng quy tắc trừ các phân thức đại số
Phương pháp giải: Thực hiện theo hai bước:
Bước 1. Áp dụng quy tắc trừ các phân thức đại số đã nêu trong phần Tóm tắt lý thuyết;
Bước 2. Thực hiện tương tự phép cộng các phân thức đại số đã học trong Bài 5.
Bài 1. Làm tính trừ các phân thức sau: 2x 1 4x 1 a) với x 0 và y 0 ; 2 2 5x y 5x y y 8 2 b) với y 0 và y 4 . 2 2 y 16 y 4 y
Bài 2. Thực hiện các phép tính sau: 2 ab a a) với a ; b 2 2 2 2 a b b a 1 36u 18 1 b)
với u 0 và u . 2 2 u 6u 36u 1 6
1. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
Bài 3. Trừ các phân thức sau: x 1 1 x 2x(1 x) a) với x 5 ; 2 x 5 x 5 25 x 4 2 m 4m 3 b) 2 m 1 với m 1 . 2 m 1
Bài 4. Thực hiện phép trừ các phân thức sau: 2 1 u 2 a) 1 với u 1 ; 2 3 u u 1 u 1 4x 2 x b) với x 3 . 2 2 2 (x 3)(x 9) x 6x 9 x 9
Dạng 2. Tìm phân thức thỏa mãn yêu cầu
Phương pháp giải: Thực hiện theo hai bước:
Bước 1. Đưa phân thức cần tìm về riêng một vế;
Bước 2. Sử dụng kết hợp quy tắc cộng, trừ các phân thức đại số, từ đó suy ra phân thức cần tìm.
Bài 5. Tìm phân thức P thỏa mãn đẳng thức sau: 2 4 2 2x 4x P , với x 0 và x 1. 2 3 x x 1 1 x x 1
Bài 6. Tìm phân thức Q thỏa mãn điều kiện: 2 2a 6 6 2a Q , với a 1 và a 3. 3 2 2 a 3a a 3 a 3 1 a 1 1 3 Bài 7. Chứng minh:
. Từ đó, tính nhanh biểu thức: x x 3 x(x 3) 1 1 1 M ... , x(x 3) (x 3)(x 6) (x 12)(x 15)
với các mẫu thỏa mãn 0 . 1 1 1 Bài 8. Chứng minh:
. Áp dụng để tính nhanh biểu thức sau: q q 1 q(q 1)
2. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 1 1 1 N ...
, với các mẫu thỏa mãn 0 . q(q 1) (q 1)(q 2) (q 5)(q 6)
Dạng 3. Giải toán đố có sử dụng phép trừ các phân thức đại số
Phương pháp giải: Thực hiện theo hai bước:
Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài;
Bước 2. Sử dụng kết hợp quy tắc cộng, trừ các phân thức đại số đã học.
Bài 9. Một công ty may mặc phải sản xuất 10.000 sản phẩm trong x ngày. Khi thực hiện không những
đã làm xong sớm một ngày mà còn làm thêm được 80 sản phẩm. a) Hãy biểu diễn qua x:
- Số sản phẩm phải sản xuất trong một ngày theo kế hoạch;
- Số sản phẩm thực tế đã làm được trong một ngày;
- Số sản phẩm làm thêm trong một ngày.
Tính số sản phẩm làm thêm trong một ngày với x = 25.
Bài 10. Nếu mua lẻ thì giá một chiếc bút bi là x đồng. Nhưng nếu mua từ 10 bút trả lên thì giá mỗi
chiếc rẻ hơn 100 đồng. Cô Dung dùng 180 000 đồng để mua bút cho văn phòng. Hãy biểu diễn qua x:
- Tổng số bút mua được khi mua lẻ;
- Số bút mua được nếu mua cùng một lúc, biết rằng giá tiền một bút không quá 1200 đồng;
- Số bút được lợi khi mua cùng một lúc so với khi mua lẻ. HƯỚNG DẪN
Bài 1. Làm tính trừ các phân thức
2x 1 4x 1 2x 1 4x 1 2 a) Ta có 2 2 2 5x y 5x y 5x y 5xy y 8 2 y 8 2 y 2 b) Ta có 2 2 y 16 y 4y ( y 4)(y 4) y( y 4) y( y 4) Bài 2. Tương tự 1. 2 ab a a a) 2 2 2 2 a b b a a b
3. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 1 36u 18 1 6u b) 2 2 u 6u 36u 1 u(1 6u)
Bài 3. Trừ các phân thức sau: x 1 1 x 2x(1 x) x 1 1 x 2x(1 x) a) Ta có 2 x 5 x 5 25 x
x 5 x 5 (x 5)(x 5)
(x 1)(x 5) (1 x)(x 5) 2x(1 x) 2 (x 5)(x 5) x 5 4 2 2 2 4 2 2
m 4m 3 (m 1)(m 1) m 4m 3 4(m 1) b) 2 m 1 4 2 m 1 (m 1)(m 1) (m 1)(m 1) (m 1)(m 1)
Bài 4. Tương tự 3. Tìm được u x 2 a) b) u 1 2 x 9 2 4 2 2x 4x 2x 2 2 Bài 5. Ta có P 2 3 2 2 x x 1 x 1 x 1 (x 1)(x x 1) x x 1 2a
Bài 6. Tương tự 5. Tìm được: Q a 3 1 1 x 3 x 3 Bài 7. Ta có ĐPCM. x x 3 x(x 3) x(x 3) x(x 3) Áp dụng, ta có: 3 3 3 3M ... x(x 3) (x 3)(x 6) (x 12)(x 15) 1 1 1 1 1 1 = ... x x 3 x 3 x 6 x 12 x 15 1 1 15 5 M x x 15 x(x 15) x(x 15) 1 1 6
Bài 8. Tương tự 7. Tìm được: N q q 6 q(q 6) Bài 9.
a) Số sản phẩm phải sản xuất trong một ngày theo kế hoạch là:
4. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 10000 (sản phẩm) x
Số sản phẩm thực tế đã làm được trong một ngày là: 10000 80 (sản phẩm) x 1
Số sản phẩm làm thêm trong một ngày là: 10080 10000 80x 10000 (sản phẩm) x 1 x x(x 1)
b) Số sản phẩm làm thêm trong một ngày là: 80x 10000 80.25 10000 20 (sản phẩm) x(x 1) 25(25 1) Bài 10. Tương tự 9. 180000
Tổng bốt bút mua được khi mua lẻ là: (bút) x 180000
Số bút mua được nếu mua cùng một lúc là: (bút) x 100 18000000
Số bút được lợi khi mua cùng một lúc so với khi mua lẻ là: (bút) x(x 100) B.PHIẾU BÀI TỰ LUYỆN PHIẾU SỐ 1
Dạng 1. Tìm phân thức đối của một phân thức
Câu 1: Tìm phân thức đối của các phân thức: 2 2
a) 2x 3 b) xy y . c) x 2x 2 . d) x 2 . e) 5 2 xy x 2 x 1 x 2 2 x x . x 2
Câu 2: Chứng minh các phân thức sau đối nhau:
a) x 2 và 2 x . b) 2x 1 và 2x 1 . c) x 2 và x 2 x 1 x 1 3 x 1 3 1 x x 32x 1 x 31 2x
5. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 2 3 2x x 2 d) x 2x 1 và . e) x x 1 và 2 x . 2 x x 2 2 x 5x 6 3 x 1 2 x 3x 2
Dạng 2. Trừ các phân thức cùng mẫu thức
Câu 3: Thực hiện các phép tính sau. 2 a) x 2 1 x . b) 3 1 . x 1 x 1 2 2 x 4 x 4 2 2 2 c) x 2 18 x x 2 x x x x x x . d) 5 4 2 3 8 . x 6 x 6 x 6 3 3 3 x 8 x 8 x 8
Câu 4: Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi thực hiện phép tính. 2 2 x x x x a) 2 1 2 y . b) 5 1 . x 1 1 x x 1 y 1 1 y y 1 2 2 c) 4 x 2x x 4x 5 x x . d) 2 9 2 1 . x 5 5 x x 5 x 6 x 6 6 x
Dạng 3. Trừ các phân thức không cùng mẫu thức
Câu 5: Thực hiện các phép tính sau. a) 2 a 1 x x . b) 3 7 . c) 7 7 31 . 2a 2 x 1 2x 2 5 5x 15 2 4 4 x y 2 2 d) x 3x 1 1 2x 9 1 y . e) . f) . 2 2 x y 2 x 1 x 1 2 9 4x 2x 3
Câu 6: Thực hiện các phép tính sau. a) 1 1 2 x . b) 2 2 x y x y x y x 1 x 1 4 . 2 x 1 x 1 1 x c) x 1 3 x . d) 4 x 1 . 2 2x 2 x 1 2x 2 2 x 7x 10 2 x
Câu 7: Thực hiện phép tính 2 2 2 a) x 2 xy y A . x y2 x y 4 2 2 4 x 2x y y 2 2 x y x y b) 1 1 2 4 8 16 B . 2 4 8 16
x 1 x 1 x 1 x 1 x 1 x 1
Câu 8: Với n * tính các tổng sau:
6. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com a) 1 1 1 1 ... . 1.3 3.5 5.7 2n 12n 1 b) 1 1 1 1 ... . 1.5 5.9 9.13 4n 34n 1
Dạng 4. Chứng minh đẳng thức
Câu 9: Chứng minh rằng nếu tổng hai trong ba số , a , b c khác 0 thì: a b c b c a 2 2 .
b ca c a ca b b ca b 0 a b a c Câu 10:
Cho các số x, y,z 0 thỏa mãn: 2 2 2 2
x y z x y z . Chứng minh rằng: 1 1 1 3 . 3 3 3 x y z xyz
Dạng 5. Biểu Thị Các Đại Lượng Thông Qua Biến Câu 11:
Một xe dự định đi từ A đến B dài 180 km trong x giờ (đi với vận tốc đều). Thực tế
xe đã đi nhanh hơn dự định nên đến B sớm hơn 1 giờ.
a) Hãy biểu diễn theo x :
- Vận tốc dự định đi từ A đến B.
- Vận tốc thực tế đã đi.
- Vận tốc tăng thêm so với dự định.
b) Tính vận tốc tăng thêm với x 4 . Câu 12:
Một người đi xe đạp từ A đến B cách nhau 50 km với vận tốc x (km/h). Sau đó 1
giờ 30 phút một người đi xe máy cũng đi từ A và đến B sớm hơn, biết rằng vận tốc của xe máy
gấp 2,5 lần vận tốc của xe đạp. a) Biểu diễn theo x :
- Thời gian của người đi xe đạp đi từ A đến B.
- Thời gian của người đi xe máy đi từ A đến B.
- Thời gian chênh lệch T của người đi xe đạp và người đi xe máy khi đi từ A đến B. b) Tính T nếu x 12. HƯỚNG DẪN
Câu 1: Tìm phân thức đối của các phân thức:
7. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 2 a) 2x 3 . b) xy y . c) x 2x 2 . 5 2 xy x 2 x 1 2 d) x 2 x x . e) . x 2 x 2 Hướng dẫn
a) Phân thức đối của 2x 3 là: 2x 3 3 2 x . 5 5 5 2 2 2
b) Phân thức đối của xy y là: xy y y xy . 2 xy x 2 2 xy x xy x 2 2 2
c) Phân thức đối của x 2x 2 là: x 2x 2 x 2x 2 . 2 x 1 2 2 x 1 1 x
d) Phân thức đối của x 2 x là: 2 . x 2 x 2 2 2
e) Phân thức đối của x x x là: x . x 2 x 2
Câu 2: Chứng minh các phân thức sau đối nhau: a) x 2 và 2 x . b) 2x 1 và 2x 1 . c) x 2 và x 1 x 1 3 x 1 3 1 x x 32x 1 x 2 . x 31 2x 2 2 3 2x x 2 d) x 2x 1 và . e) x x 1 và 2 x . 2 x x 2 2 x 5x 6 3 x 1 2 x 3x 2 Hướng dẫn
a) Do: x 2 2 x 2 x 2 x 0. x 1 x 1 x 1 b) Do: 2x 1 2x 1 0 . 3 3 x 1 1 x c) Do: x 2 x 2 x 2 x 2 .
x x x x x x 0 3 2 1 3 1 2 3 2 1 x 2x 1 3 2x x x 2 2 2 1 3 x1 x d) Do: x 1 1 x 0. 2 2 x x 2 x 5x 6 x
1 x 2 x 2 x 3 x 2 x 2
8. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 2 x x 1 2 x x x 1 2 x 1 1 e) Do: 0 . 3 2 x 1 x 3x 2 x 1 2 x x 1 x 1 x 2 x 1 x 1
Câu 3: Thực hiện các phép tính sau. 2 a) x 2 1 x . b) 3 1 . x 1 x 1 2 2 x 4 x 4 2 2 2 c) x 2 18 x x 2 x x x x x x . d) 5 4 2 3 8 . x 6 x 6 x 6 3 3 3 x 8 x 8 x 8 Hướng dẫn 2 2 a) Ta có: x 2 1 x 1 x 1. x 1 x 1 x 1 b) Ta có: x 3 1 x 2 1 . 2 2 x 4 x 4
x 2x 2 x 2 x 2 18 x x 2
x 2 18 x x 2 3 x 6 c) Ta có: 3. x 6 x 6 x 6 x 6 x 6 2 2 2 2 2 2
d) Ta có: 5x x 4 x 2x x 3x 8 5x x 4 x 2x x 3x 8 3 3 3 3 x 8 x 8 x 8 x 8 3 2 x 2x 4 3 . x 2 2 x 2x 4 x 2
Câu 4: Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi thực hiện phép tính. 2 2 x x x x a) 2 1 2 y . b) 5 1 . x 1 1 x x 1 y 1 1 y y 1 2 2 c) 4 x 2x x 4x 5 x x . d) 2 9 2 1 . x 5 5 x x 5 x 6 x 6 6 x Hướng dẫn a) Ta có: 2x x x 1 x 2 2x x x 1 x 2 2x x x 1 x 2 x 2 2 2 2 2 2 2 1 x 1 x 1 1 x x 1 x 1 x 1 x 1 x 1 x 1 b) Ta có: 5 1 y 5 1 y 6 y . y 1 1 y y 1 y 1 y 1 y 1 y 1 c) Ta có: 2 2 2 2 2 2 4 x 2x x 4x 5 4 x 2x x
4x 5 4 x 2x x 4x 5 9 6x . x 5 5 x x 5 x 5 x 5 x 5 x 5 x 5
9. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com d) Ta có: 2x 9 2 x 1 2x 9 2 x 1
2x 9 2 x 1 x 6 1. x 6 x 6 6 x x 6 x 6 x 6 x 6 x 6
Câu 5: Thực hiện các phép tính sau. a) 2 a 1 x x . b) 3 7 . c) 7 7 31 . 2a 2 x 1 2x 2 5 5x 15 2 4 4 x y 2 2 d) x 3x 1 1 2x 9 1 y . e) . f) . 2 2 x y 2 x 1 x 1 2 9 4x 2x 3 Hướng dẫn a a a) Ta có: 2 1 2 a 1 . 2a 2 2a a b) Ta có: 3 7 x 3 7 x 6 7 x x 1 1 . x 1 2x 2 x 1 2 x 1 2 x 1 2 x 1 2 7 7x 31 7 7x 31 7x 3 7x 31 c) Ta có: 10 2 . 5 5x 15 5 5x 3 5x 3 5x 3 x 3 2 x y x y 2 x y x y 2 2 2 2 4 4 2 2 4 4 2 2 d) Ta có: x y . 2 2 2 2 2 2 x y x y x y 3x 1 1 3x 1 1 3x 1 x 1 2x 1 e) Ta có: 2 . 2 x 1 x 1 x 1 x 1 x 1
x 1x 1 x 1x 1 x 1 f) Ta có: 2x 9 1 2x 9 1 2x 9 3 2x 23 2x 2 . 2 9 4x
2x 3 3 2x3 2x 2x 3 3 2x3 2x 3 2x3 2x 3 2x
Câu 6: Thực hiện các phép tính sau. a) 1 1 2 x . b) 2 2 x y x y x y x 1 x 1 4 . 2 x 1 x 1 1 x c) x 1 3 x . d) 4 x 1 . 2 2x 2 x 1 2x 2 2 x 7x 10 2 x Hướng dẫn a) Ta có: 1 1 2x 1 1 2 x 2 2 x y x y x y x y x y x yx y
10. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com x y x y 2x 2 x y 2 .
x y x y x y x y x y b) Ta có: x 1 x 1 4 x 1 x 1 4 x 2 1 x 2 1 4 4 x 1 4 . 2 x 1 x 1 1 x x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 c) Ta có: x 1 3 x 1 3 2 2x 2 x 1 2x 2 2 x 1
x 1x 1 2x 1
x x x x 2 1 2 3 1 1 x 1 . x 1 x 1 x 1 x 1 x 1 d) Ta có: x 4 x x 4 x 1 1 2 x 7x 10 2 x
x 5x 2 x 2
x x x 2 4 5 x 7x 10 3 x 2 3 . x 5 x 2
x 5x 2 x 5
Câu 7: Thực hiện phép tính 2 2 2 a) x 2 xy y A . x y2 x y 4 2 2 4 x 2x y y 2 2 x y x y b) 1 1 2 4 8 16 B . 2 4 8 16
x 1 x 1 x 1 x 1 x 1 x 1 Hướng dẫn 2 2 2 a) Ta có: x 2 xy y A
x y2 x y x y2 x y2 x yx y2
x x y 2xy y x y x yx y2 2 2 2 1 . x y2 x y2
x y2 x y2 x y b) Ta có: 2 2 4 8 16 4 4 8 16 B 2 2 4 8 16 4 4 8 16
x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 8 8 16 16 16 32 . 8 8 16 16 16 32 x 1 x 1 x 1 x 1 x 1 x 1
Câu 8: Với n * tính các tổng sau: a) 1 1 1 1 ... . 1.3 3.5 5.7 2n 12n 1
11. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com b) 1 1 1 1 ... . 1.5 5.9 9.13 4n 34n 1 Hướng dẫn a) Ta có: 1 1 1 1 1 1 1 1 1 1 1 1 ... n n
1 ... 1.3 3.5 5.7 2 1 2 1 2 3 3 5 5 7 2n 1 2n 1 1 1 n 1 . 2 2n 1 2n 1 b)Ta có: 1 1 1 1 1 1 1 1 1 1 1 1 ... n n 1 ... 1.5 5.9 9.13 4 3 4 1 4 5 5 9 9 13 4n 3 4n 1 1 1 n 1 . 4 4n 1 4n 1
Câu 9: Chứng minh rằng nếu tổng hai trong ba số , a , b c khác 0 thì: a b c b c a 2 2 .
b ca c a ca b b ca b 0 a b a c Hướng dẫn Ta có: a b c b c a 2 2
b ca c a ca b b ca b a b a c 2 2 2 2 2 2
a b c b c a b ca c a bb c 2 2 2 2 2 2 2c 2b 2c 2b
a bb cc a
a bb cc a 0 đpcm. Câu 10:
Cho các số x, y,z 0 thỏa mãn: 2 2 2 2
x y z x y z . Chứng minh rằng: 1 1 1 3 . 3 3 3 x y z xyz Hướng dẫn Do: x y z2 2 2 2 2 2 2 2 2 2
x y z x y z 2xy 2xz 2yz x y z yz xy xz . 1 1 1
yz3 xz3 xy3 3
xy xz xz3 xy3 Ta có: 3 3 3 x y z xyz3 xyz3
3xy.xzxy xz 3xy.x .zyz 3xyz2 3 đpcm. 3 3 3 xyz xyz xyz xyz
12. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com Câu 11:
Một xe dự định đi từ A đến B dài 180 km trong x giờ (đi với vận tốc đều). Thực tế
xe đã đi nhanh hơn dự định nên đến B sớm hơn 1 giờ.
a) Hãy biểu diễn theo x :
- Vận tốc dự định đi từ A đến B.
- Vận tốc thực tế đã đi.
- Vận tốc tăng thêm so với dự định.
b) Tính vận tốc tăng thêm với x 4 . Hướng dẫn
a) -Vận tốc dự định đi từ A đến B: 180 (km/ h). x
- Vận tốc thực tế đã đi: 180 (km/ h) . x 1
- Vận tốc tăng thêm so với dự định: 180 180 180 . x x x x (km/ h) 1 1 b) với x 180 180
4 thì vận tốc tăng thêm là: . 44 15 (km/ h) 1 12 Câu 12:
Một người đi xe đạp từ A đến B cách nhau 50 km với vận tốc x (km/h). Sau đó 1
giờ 30 phút một người đi xe máy cũng đi từ A và đến B sớm hơn, biết rằng vận tốc của xe máy
gấp 2,5 lần vận tốc của xe đạp. a) Biểu diễn theo x :
- Thời gian của người đi xe đạp đi từ A đến B.
- Thời gian của người đi xe máy đi từ A đến B.
- Thời gian chênh lệch T của người đi xe đạp và người đi xe máy khi đi từ A đến B. b) Tính T nếu x 12. Hướng dẫn
a) - Thời gian của người đi xe đạp đi từ A đến B: 50 (giờ) . x
- Thời gian của người đi xe máy đi từ A đến B: 50 . 2,5x
13. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
- Thời gian chênh lệch T của người đi xe đạp và người đi xe máy khi đi từ A đến B: 50 50 . x 2,5x
b) Người đi xe máy đến trước người đi xe đạp khoảng thời gian là: 50 50 30 3 T 1,5 1 x 2,5x x 2 với x 30 3 12 ta có T 1(giờ). 1 12 2 PHIẾU SỐ 2
Bài 1: Làm tính trừ các phân thức sau: 2x 1 6x 1 3x 2 2 5x a) b) 2 2 4x y 4x y 2x 3 2x 3 x 17 11x 1 10x 15 2x 7 c) d) 3 2x 2x 3 3x 2 2 3x
Bài 2: Làm các phép tính sau: 2xy 2 5 5xy 5 7x 5 4x 5 a) b) 2 2 8xy 8xy 3 ( x x 2 4) 3x 12x 4 2x 1 4 x 2 2 2x 2 c) d) x 2 3x 2 2 3x 2x 2 x 2
Bài 3: Rút gọn các biểu thức: x 1 1 y 2 x 4 a) b) x 1 x y x y y x x 1 1 2x 3x 1 3x 1 6x c) d) 3 2 x 1 x x x 1 2 6x 2 2 6x 9x 1 2 x x 4x 2 2 2x 1 x 1 1 e) f) 2 3 2 x 2x x 4x x 2x 3 2 x 1 x x 1 x 1
Bài 4: Thực hiện phép tính: 1 2x 1 a) 2 x 3x 3 2 x 2 4x 2 4x x 5x 6 1 1 x 2 b) 2x 3 2x 2 3 2x x 3
14. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 1 1 1 x c) 2 x x 2 2 x x 2 (x 2 1) (x 3)
Bài 5: Tính giá trị của biểu thức: a) 2x 1 1 2x 2 A với 1 x 2 4x 2 4x 2 1 4x 4 3x y 2x 3y b) B x 5 2y 5 với y 2x 5 c) 2a x 2a x 4a C a với a x 2 2 x 2 x x 4 a 1
Bài 6: Chứng minh đẳng thức: 2 2 2 2 2 4x (x 3) x 9 (2x 3) x a) 1 2 2 2 2 2 9(x 1) (2x 3) x 4x (x 3) y z z x x y 2 2 2 b)
(x y)(x z) (y z)(y x) (z x)(z y) x y y z z x 1 1 1
Bài 7: Chứng minh rằng: x x 1 (
x x 1). Vận dụng tính nhanh các phép tính sau: 1 1 1 1 a) (
x x 1) (x 1)(x 2) (x 2)(x3) (x 3)(x 4) 1 1 1 1 1 1 b) 2 2 2 2 2
x x x 3x 2 x 5x 6 x 7x 12 x 9x 20 x 5 Bài 8: x 6 a b
a) Tìm các hằng số a và b sao cho phân thức viết được thành . 2 x 2x x x 2 y 8 a b
b) Tìm các hằng số a và b sao cho phân thức viết được thành . 2 4y 8y 2y y 1 a b c 2 2 2 a b c Bài 9: Cho 1. Chứng minh rằng: 0 b c c a a b b c c a a b
15. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
Bài 10: Một công ty may phải sản xuất 1500 túi thời trang trong x ngày. Khi thực hiện không những
đã làm xong sớm một ngày mà còn làm thêm được 50 sản phẩm a) Hãy biểu diễn qua x.
- Số túi thời trang trong một ngày theo kế hoạch
- Số túi thời trang thực tế đã làm được trong một ngày
- Số túi thời trang làm thêm trong một ngày
b) Tính số túi thời trang làm thêm trong một ngày với x = 5 HƯỚNG DẪN
Bài 1. Làm tính trừ các phân thức sau: 2x 1 6x 1 8x 2 a) 2 2 2 4x y 4x y 4x y xy 3x 2 2 5x 8x b) 2x 3 2x 3 2x 3
x 17 11x 1 x 17 11x 1 12x 18 c) 6
3 2x 2x 3 3 2x 3 2x 2x 3
10x 15 2x 7 10x 15 2x 7 12x 8 d) 4 3x 2 2 3x 3x 2 3x 2 3x 2
Bài 2: Làm các phép tính sau: 2xy 2 5 5xy 5 2xy 2 5xy 2 5y a) 2 2 2 8xy 8xy 8xy 8y 7x 5 4x 5 7x 5 4x 5 3x 1 b) 3 ( x x 2 4) 3x 12x 3 ( x x 4) 3 ( x x 4) 3 ( x x 4) x 4 4 2x 1 4 2x 1 2x 1 c) 3x 2 2 3x 2x 3x 2 ( x 3x 2) ( x 3x 2) 4 x 2 2x 4 2 x 4 4 x 2 2x 2 2 2 2x 6 d) x 2 2 x 2 2 x 2 2 x 2
16. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com Bài 3: x 1 1 y x y a) 1 ; x y x y 2 x 2 1 x 4 3 b) . x 1 x 1 2 1 2x x 1 2x x 1 c) .
x 1 x 1 2x 1 x 1 2x 1 2 x 1 2 2 3x 1 3x 1 6x
3x 1 3x 1 2 12x 18x 12x 2 d) 23x 1 23x 2 1 9x 1 23x 13x 1 23x 1 3x 1 x 2 2 3 1 3x 1 .
23x 13x 1 3x 1 e) 0; x 1 1 f) . 3 x 2 1 x x 1 Bài 4: a)
(x 2)(x 3) 2(x 1)(x 3) (x 1)(x 2) 2 (x 1)(x 2) (x 3) 2 2 2
x 5x 6 2x 8x 6 x 3x 2 2 (x 1)(x 2) (x 3) 2 2 (x 1)(x 2) (x 3) b) 2 2x 7x 12 (x 1)(2 x 3)(2 x 3) c)
17. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 2 2 3
x x 2 x x 2 x 3x 2
(x 2)(x 1)(x 1)(x 2) 3 2 x 2x 3x 6
(x 2)(x 1)(x 1)(x 2) 2 x 3 (x 2)(x 1)(x 1)
Bài 5: Tính giá trị của biểu thức: 2x 1 12x 2 2x 1 1 2x 2 a) = 2 4x 2 4x 2 1 4x
22x 1 22x 1 2x 12x 1
2x 12x 12x 12x 1 4 8x 4 22x 1 2 22x 12x 1
22x 12x 1 22x 12x 1 2x 1 Với 1 x tính được A 4 4
b) y 2x 5 y 2x 5 3x y 2x 3y 3x y 3y 2x
x y 2x 2y y 2x x 5 2y 5 x 5 2y 5 x 5 2y 5 x 5 2y 5 1 1 2 x 5 2y 5 e) Với a x a x.a 1 a 1 2a x 2a x 4a
2a x2 x2a x2x4a a a 2 2 x 2 x x 4 2x2 x 4x 4ax 4a 4x 1a 4a
4x 1a 4x 1 a a a a a 2 x2 x 2x2 x 2x2 x Bài 6: 2 2 2 2 2 4x (x 3) x 9 (2x 3) x a) 2 2 2 2 2 9(x 1) (2x 3) x 4x (x 3)
18. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com
(2x x 3)(2x x 3) (x 3)(x 3)
(2x 3 x)(2x 3 x) 9(x 1)(x 1)
(2x 3 x)(2x 3 x) (2x x 3)(2x x 3)
3(x 3)(x 1) (x 3)(x 3) 3(x 3)(x 1)
9(x 1)(x 1) 3(x 3)(x 1) 3(x 3)(x 1) x 3 x 3
3(x 1) x 3 x 3 3x 3 3x 3 1 3(x 1) 3(x 1) 3(x 1) 3(x 1) 3x 3 y z z x x y b)
(x y)(x z) (y z)(y x) (z x)(z y)
(x z)(x y) (y x)(y z) (z y)(z x) (x y)(x z) (y z)(y x) (z x)(z y) 1 1 1 1 1 1
x y x z y z y x z x z y 1 1 1 1 1 1
x y z x y z x y z x y z 2 2 2 x y y z z x Bài 7. a) 1 1 1 1
x(x 1) (x 1)(x 2) (x 2)(x 3) (x 3)(x 4) 1 1 1 1 1 1 1 1
x x 1 x 1 x 2 x 2 x 3 x 3 x 4 1 1 x x 4 x 3 x(x 4) b) 1 1 1 1 1 1
x(x 1) (x 1)(x 2) (x 2)(x 3) (x 3)(x 4) (x 4)(x 5) x 5 1 1 1 1 x x 5 x 5 x
19. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com Bài 8. a) a b abx 2a x 6 Ta có
. Để phân thức này là phân thức
ta phải có a b 1 và x x 2 xx 2 xx 2 2a 6 . Do đó a 3 và b 2 . b) a b a2by a y 8 Ta có
. Để phân thức này là phân thức
ta phải có a 2b 1 và 2y y 1 2y y 1 2 4y 8y a 8 . 7 Do đó a 8 và b . 2 a b c Bài 9. Nhân hai vế của
1 với a +b + c ta được: b c c a a b 2 a ( a b 2 c) b ( b c 2 a) c ( c c ) b abc b c c a a b 2 2 2 a b c a b c a b c b c c a a b 2 2 2 a b c 0 b c a c a b Bài 10:
Một công ty may phải sản xuất 1500 túi thời trang trong x ngày. Khi thực hiện không những đã làm
xong sớm một ngày mà còn làm thêm được 50 sản phẩm a) Hãy biểu diễn qua x. 1500
Số túi thời trang làm trong một ngày theo kế hoạch là: túi x 1550
Số túi thời trang thực tế đã làm được trong một ngày là: túi x 1
20. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com 1550 1500
Số túi làm thêm trong một ngày là: - túi x 1 x
1550 1500 1550x 1500x 1500 50x 1500 b) x 1 x x x
Thay x = 5 số túi thời trang làm thêm trong một ngày là: 350 chiếc.
========== TOÁN HỌC SƠ ĐỒ ==========
21. TOÁN HỌC SƠ ĐỒ - THCS.TOANMATH.com