Đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa

Xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm.

Chủ đề:

Đề thi Toán 8 455 tài liệu

Môn:

Toán 8 1.7 K tài liệu

Thông tin:
6 trang 9 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa

Xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm.

67 34 lượt tải Tải xuống
UBND HUYỆN VĨNH LỘC
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
KỲ GIAO LƯU HỌC SINH GIỎI LỚP 6,7,8 CỤM THCS
Năm học 2016 -2017
ĐỀ CHÍNH THỨC
ĐỀ GIAO LƯU MÔN: TOÁN LỚP 8
Thời gian làm bài: 150 phút (Không kể thời gian giao đề)
( Đề gồm có 01 trang)
Bài 1: (4.0 điểm) Cho biểu thức
2 2
2 2
1 1 2
:
2 1 1
x x x x
P
x x x x x x
a) Tìm điều kiện xác định và rút gọn P
b) Tìm x để
1
2
P
c) Tìm giá trị nhỏ nhất của P khi x > 1
Bài 2: (4.0 điểm)
a) Giải phương trình:
2 2
2
2
6
x 2 x 2 x 4
b) Phân tích đa thức sau thành nhân tử :
3 3 3
3
A x y z xyz
Bài 3: (4.0 điểm)
a) Cho a, b, c là các số nguyên. Chứng minh rằng :
5 5 5
a b c a b c
chia hết
cho 30.
b) Giải phương trình nghiệm nguyên :
2 2
2 3 3 5 15
x y xy x y
Bài 4: (6.0 điểm)
Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vtia Cx
sao cho
BCX
=
1
2
BAC
. Cx cắt AD tại E ; I là trung điểm DE. Chứng minh rằng :
a)
ΔABD
đồng dạng với
ΔCED
b) AE
2
> AB.AC
c) 4AB.AC = 4AI
2
– DE
2
d) Trung trực của BC đi qua E
Bài 5: (2.0 điểm) Cho a, b, c là 3 số dương thỏa mãn :
1 1 1
2
1 1 1
a b c
. Tìm giá trị
lớn nhất của biểu thức Q = abc
- Họ và tên thí sinh: …………………………………..; Số báo danh ……………
Chú ý: Cán bộ coi giao lưu không được giải thích gì thêm.
UBND HUYỆN VĨNH LỘC
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
ĐÁP ÁN VÀ NG DN CHẤM GIAO U LP 6,7,8 NĂM HC 2016-2017
MÔN: TOÁN LỚP 8
( Đáp án này gồm có 04 trang
u
Nội dung Điể
m
Bài
1
(4đ
)
Câu a) ĐKXĐ x
0; x
1
2
2
2
1
1
:
( 1)
1
1
( 1)
1
1
1
x x
x
P
x x
x
x x
x x
x
x
x
x
Câu b)
1
2
P
2
1
1 2
x
P
x
với
x
ĐKXĐ
- HS tìm được x = 1/2
Vậy
1
2
P
1
2
x
(TMĐK)
Câu c)
2 2
1 1 1
1 1 1
1
1 1 1 1
x x
x x
P x
x x x x
1 1
1 1 2
1 1
P x x
x x
Vì x > 1 nên
1 0
x
1
1
x
> 0. Áp dụng bất đẳng thức Cosi cho 2 số dương x – 1
1
1
x
ta có:
1 1
1 2 1 2
1 1
x x
x x
Dấu “ = “ xẩy ra khi x – 1 =
1
1
x
( x – 1)
2
= 1
x – 1 = 1 ( vì x – 1 > 0 )
x = 2 ( TM )
Vậy giá trị nhỏ nhất của P là 4 khi x = 2
0,25
0,5
0,75
0,25
0,5
0,25
0,5
0,25
0,25
Bài
2
(4đ
)
Câu a)
2 2
2
2
x 3 x 3 7(x 9)
6
x 2 x 2 x 4
.
Điều kiện:
x 2
.
Đặt
x 3 x 3
u, v
x 2 x 2
, phương trình đã cho trở thành
2 2
u 6v 7uv
2 2
u uv 6v 6uv 0
u(u v) 6v(u v) 0
(u v)(u 6v) 0
u = v hoặc u = 6v.
- Xét u = v ta có:
x 3 x 3
x 2 x 2
2 2
x 3x 2x 6 x 3x 2x 6
10x = 0
x 0
(TMĐK).
- Xét u = 6v ta có:
x 3 x 3
6.
x 2 x 2
2 2
x 3x 2x 6 6x 18x 12x 36
2
2
5x 35x 3
x 7x
0
6
0
0
2
x x 6x 6 0
x(x 1) 6(x 1) 0
(x 1)(x 6) 0
x = 1 (TMĐK)
hoặc x = 6 (TMĐK)
Vậy phương trình đã cho có tập nghiệm là
S 0;1;6
Câu b)
Phân tích đa thức sau thành nhân tử :
Học sinh phân tích được
3 3 3
3
A x y z xyz
= (x+y)
3
- 3xy(x+y) +z
3
-3xyz
= (x+y+z)
3
- 3(x+y)z(x+y+z)-3xy(x+y+z)
= (x+y+z)[(x+y+z)
2
-3(x+y)z-3xy]
= (x+y+z)(x
2
+y
2
+z
2
-xy -yz -zx)
0,25
0,75
0,5
0,5
0,5
0,5
0,5
0,5
Bài
3
(4đ
)
Câu a) Cho a, b, c các số nguyên. Chứng minh rằng :
5 5 5
a b c a b c
chia hết cho 30.
- Học sinh biến đổi được
a
5
- a = (a -2)(a-1)a(a+1)(a+2) + 5a(a-1)(a+1)
- Học sinh lập luận được a
5
- a chia hết cho 30
-
Tương t
ự: b
5
-
b và c
5
-
c chia h
ết cho 30. Kết luận.
0,75
0,75
0,5
Câu b) Giải phương trình nghiệm nguyên :
2 2
2 3 3 5 15
x y xy x y
- Học sinh biến được về dạng
(x +y +2)(x+2y+1) = 17
- HS lập luận được (x +y +2) và (x+2y+1) là các biểu thức nguyên và xét
được bốn trường hợp
HS tìm được bốn nghiệm
(x;y) = (30;-15); (-18;17); (12;-15); (-36;17)
0,75
0,25
1,0
Bài
4
(6đ
)
a) Xét
ABD và
CED có:
1
( )
2
BAD BCE BAC
ADB CDE
(đối đỉnh)=>
ABD
CED (g -g)
b) Xét
ABD và
AEC có:
1
( )
2
BAD EAC BAC
ABD AEC
(
ABD =
CED)
1,5
1,0
0,5
D
A
B
C
E
I
=>
ABD
AEC (g-g)
=>
AB AE
AD AC
=> AB.AC = AD.AE < AE
2
(AD < AE)
Vậy AE
2
> AB.AC
c) Ta có: 4AI
2
- DE
2
= 4AI
2
- 4DI
2
= 4(AI - DI)(AI +DI)
= 4AD(AI + IE) = 4AD.AE
Mà AD.AE = AB.AC (câu b)
=> 4AB.AC = 4AI
2
- DE
2
d) Chứng minh trung trực của BC qua E.
+)
ABE
ADC
BAD DAC
;
AB AD
AE AC
( AD.AE = AB.AC)
=>
ABE
ADC (c.g.c)
=>
AEB ACB
+ )
BDE;
ADC
BDE ADC
(đối đỉnh)
BED ACD
=>
BDE
ADC (g-g)
=>
DBE DAC BCE
=>
BEC cân tại E
=> Trung trực BC qua E
0,5
0,5
0,5
0,5
0,5
0,5
Bài
5
(2đ
)
Ta có:
1 1 1
1 1
1 1 1
a b c
=
1 1
b c
b c
2
(1 )(1 )
bc
b c
Tương tự:
1
2
1 (1 )(1 )
ac
b a c
;
1
2
1 (1 )(1 )
ab
c a b
2 2 2
1
8
(1 )(1 )(1 ) (1 )(1 )(1 )
a b c
a b c a b c
1
8
(1 )(1 )(1 ) (1 )(1 b)(1 )
abc
a b c a c
=> abc
1
8
Dấu "=" xảy ra <=>
1 1 1
2
1 1 1
a b c
a b c
<=> a = b = c =
1
2
0,5
0,75
0,5
Vậy giá trị lớn nhất của Q là
1
8
khi a = b = c =
1
2
0,25
| 1/6

Preview text:

UBND HUYỆN VĨNH LỘC
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
KỲ GIAO LƯU HỌC SINH GIỎI LỚP 6,7,8 CỤM THCS Năm học 2016 -2017 ĐỀ CHÍNH THỨC
ĐỀ GIAO LƯU MÔN: TOÁN LỚP 8
Thời gian làm bài: 150 phút (Không kể thời gian giao đề) ( Đề gồm có 01 trang) 2 2     
Bài 1: (4.0 điểm) Cho biểu thức x x x 1 1 2 x P  :    2 2  x  2x 1  x x 1 x  x 
a) Tìm điều kiện xác định và rút gọn P b) Tìm x để 1  P  2
c) Tìm giá trị nhỏ nhất của P khi x > 1 Bài 2: (4.0 điểm) 2 2 2  x  3   x  3  7(x  9) a) Giải phương trình:  6      2  x  2   x  2  x  4
b) Phân tích đa thức sau thành nhân tử : 3 3 3 A  x  y  z  3xyz Bài 3: (4.0 điểm)
a) Cho a, b, c là các số nguyên. Chứng minh rằng : 5 5 5
a  b  c  a  b  c chia hết cho 30.
b) Giải phương trình nghiệm nguyên : 2 2
x  2y  3xy  3x  5y  15 Bài 4: (6.0 điểm)
Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vẽ tia Cx sao cho  BCX = 1 
BAC . Cx cắt AD tại E ; I là trung điểm DE. Chứng minh rằng : 2
a) ΔABD đồng dạng với ΔCED b) AE2 > AB.AC c) 4AB.AC = 4AI2 – DE2
d) Trung trực của BC đi qua E
Bài 5: (2.0 điểm) Cho a, b, c là 3 số dương thỏa mãn : 1 1 1    2 . Tìm giá trị 1 a 1 b 1 c
lớn nhất của biểu thức Q = abc
- Họ và tên thí sinh: …………………………………..; Số báo danh ……………
Chú ý: Cán bộ coi giao lưu không được giải thích gì thêm. UBND HUYỆN VĨNH LỘC
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM GIAO LƯU LỚP 6,7,8 NĂM HỌC 2016-2017 MÔN: TOÁN LỚP 8
( Đáp án này gồm có 04 trang Câ Nội dung Điể u m
Bài Câu a) ĐKXĐ x  0; x  1 0,25 1 x  x   1 x 1 P  : (4đ x  2 1 x(x 1) 0,5 ) x  x   1 x(x 1)    x  2 1 x 1 2 x  0,75 x 1 1  2 x 1 Câu b) P   P   với x ĐKXĐ 0,25 2 x 1 2 - HS tìm được x = 1/2 0,5 1  1 Vậy P   x  (TMĐK) 0,25 2 2 Câu c) 2 2 x x 11  x   1  x   1 1 1 P     x 1 x 1 x 1 x 1 x 1 1 1 P  x 1  x 1  2 x 1 x 1 0,5 1
Vì x > 1 nên x 1  0 và
> 0. Áp dụng bất đẳng thức Cosi cho 2 số dương x – 1 x 1 1 1 1 và ta có: x 1  2 x   1   2 x 1 x 1 x 1 0,25 1
Dấu “ = “ xẩy ra khi x – 1 = x 1  ( x – 1)2 = 1
 x – 1 = 1 ( vì x – 1 > 0 )  x = 2 ( TM )
Vậy giá trị nhỏ nhất của P là 4 khi x = 2 0,25 Bài 2 2 2  x  3   x  3  7(x  9) 2 Câu a)  6      2 .        (4đ x 2 x 2 x 4 ) Điều kiện: x  2 . 0,25 x  3 x  3 Đặt  u,  v x  2 x 
, phương trình đã cho trở thành 2 2 2 u  6v  7uv 2 2
 u  uv  6v  6uv  0
 u(u  v)  6v(u v)  0  (u  v)(u  6v)  0  u = v hoặc u = 6v. 0,75 x  3 x  3 - Xét u = v ta có:  x  2 x  2 2 2
 x  3x  2x  6  x  3x  2x  6
 10x = 0  x  0 (TMĐK). 0,5 x  3 x  3 - Xét u = 6v ta có:  6. x  2 x  2 2 2
 x  3x  2x  6  6x 18x 12x  36  2 5x  35x  30  0  2 x  7x  6  0  2 x  x  6x  6  0
 x(x 1)  6(x 1)  0  (x 1)(x  6)  0  x = 1 (TMĐK) hoặc x = 6 (TMĐK)
Vậy phương trình đã cho có tập nghiệm là S  0;1;  6 0,5 Câu b)
Phân tích đa thức sau thành nhân tử :
Học sinh phân tích được 3 3 3 A  x  y  z  3xyz = (x+y)3- 3xy(x+y) +z3-3xyz 0,5
= (x+y+z)3 - 3(x+y)z(x+y+z)-3xy(x+y+z) 0,5
= (x+y+z)[(x+y+z)2-3(x+y)z-3xy] 0,5
= (x+y+z)(x2+y2+z2 -xy -yz -zx) 0,5 Bài
Câu a) Cho a, b, c là các số nguyên. Chứng minh rằng : 3 5 5 5
a  b  c  a  b  c chia hết cho 30.
(4đ - Học sinh biến đổi được )
a5 - a = (a -2)(a-1)a(a+1)(a+2) + 5a(a-1)(a+1) 0,75
- Học sinh lập luận được a5 - a chia hết cho 30 0,75
- Tương tự: b5 - b và c5 -c chia hết cho 30. Kết luận. 0,5
Câu b) Giải phương trình nghiệm nguyên : 2 2
x  2y  3xy  3x  5y  15
- Học sinh biến được về dạng (x +y +2)(x+2y+1) = 17 0,75
- HS lập luận được (x +y +2) và (x+2y+1) là các biểu thức nguyên và xét
được bốn trường hợp 0,25
HS tìm được bốn nghiệm
(x;y) = (30;-15); (-18;17); (12;-15); (-36;17) 1,0 Bài 4 (6đ ) A B D C I E 1,5
a) Xét  ABD và  CED có:  BAD   1 BCE(  BAC) 2  ADB  
CDE (đối đỉnh)=>  ABD   CED (g -g)
b) Xét  ABD và  AEC có: 1,0  BAD   1 EAC(  BAC) 2  0,5 ABD   AEC (  ABD =  CED)
=>  ABD   AEC (g-g) 0,5 => AB AE 
=> AB.AC = AD.AE < AE2 (AD < AE) 0,5 AD AC Vậy AE2 > AB.AC 0,5
c) Ta có: 4AI2 - DE2 = 4AI2 - 4DI2 = 4(AI - DI)(AI +DI) = 4AD(AI + IE) = 4AD.AE Mà AD.AE = AB.AC (câu b) => 4AB.AC = 4AI2 - DE2
d) Chứng minh trung trực của BC qua E. +)  ABE   ADC 0,5  BAD   DAC ; AB AD  ( AD.AE = AB.AC) AE AC
=>  ABE   ADC (c.g.c) =>  AEB   ACB 0,5 + )  BDE;  ADC  BDE   ADC (đối đỉnh)  BED   ACD 0,5
=>  BDE   ADC (g-g) =>  DBE   DAC   BCE =>  BEC cân tại E => Trung trực BC qua E Bài Ta có: 1 1 1  1 1 5 1 a 1 b 1 c (2đ = b c   2 bc ) 1 b 1 c (1 b)(1 c) 0,5 Tương tự: 1 ac  ab 2 ; 1  2 1 b (1 a)(1 c) 1 c (1 a)(1 b) 2 2 2 1 a b c  8 (1 a)(1 b)(1 c) (1 a)(1 b)(1 c) 1 abc  8 (1 a)(1 b)(1 c) (1 a)(1 b)(1 c) => abc  1 0,75 8 a  b  c
Dấu "=" xảy ra <=>  1 1 1    2 1   a 1b 1 c <=> a = b = c = 1 2 0,5
Vậy giá trị lớn nhất của Q là 1 khi a = b = c = 1 8 2 0,25