Đề giữa kỳ 1 Toán 12 năm 2023 – 2024 trường THPT Võ Văn Kiệt – Gia Lai

Giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra giữa học kỳ 1 môn Toán 12 năm học 2023 – 2024 trường THPT Võ Văn Kiệt, tỉnh Gia Lai; đề thi hình thức trắc nghiệm, gồm 08 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết.Mời bạn đọc đón xem.

Chủ đề:

Đề thi Toán 12 1.2 K tài liệu

Môn:

Toán 12 3.9 K tài liệu

Thông tin:
18 trang 1 năm trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Đề giữa kỳ 1 Toán 12 năm 2023 – 2024 trường THPT Võ Văn Kiệt – Gia Lai

Giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra giữa học kỳ 1 môn Toán 12 năm học 2023 – 2024 trường THPT Võ Văn Kiệt, tỉnh Gia Lai; đề thi hình thức trắc nghiệm, gồm 08 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết.Mời bạn đọc đón xem.

68 34 lượt tải Tải xuống
1
42
y x x=−
3
y x x=−
1
2
x
y
x
=
+
3
y x x=+
32
3 1 0y x x y x x
= + = +
( )
yx=
( )
2;+
( )
;0−
( )
1;2
( )
0fx
( )
2;x +
( )
2;+
()=y f x
( )
0;+
( )
1; +
( )
1;0
( )
0;1
( )
y f x=
2
( )
1;3
( )
3;1
( )
1; 1−−
( )
1; 1
( )
y f x=
( )
1; 1−−
()y f x=
()fx
()fx
()y f x=
3
0
2
1
0x =
0y =
( )
42
, ,y ax bx c a b c= + +
0
1
3
2
3
0x =
( )
01f =−
( )
3
3f x x x=−
3;3
18
18
2
2
( )
2
33f x x
=−
( )
1 3;3
0
1 3;3
x
fx
x
=
=
=
( ) ( ) ( ) ( )
3 18; 3 18; 1 2; 1 2f f f f = = = =
( ) ( )
3;3
min 3 18f x f
= =
( )
y f x=
M
m
1;3
Mm
[ 1;3]
3M max y
==
[ 1;3]
min 2my
= =
5Mm−=
31
2
x
y
x
=
1
2
x =
2x =−
3x =
2x =
2
31
lim
2
x
x
x
= 
2x =
( )
y f x=
4
1x =−
3x =−
1x =
3x =
1
lim
x
y
+
= −
1
lim
x
y
= +
1x =
41
1
x
y
x
=
+
4y =−
1y =
4y =
1y =−
41
lim lim 4
1
xx
x
y
x
→ →
==
+
4y =
42
2y x x= +
32
3y x x=−
32
31y x x= + +
42
21y x x= +
42
y ax bx c= + +
0, 0, 0abc =
( )
y f x=
( )
2fx=
1
0
2
3
5
( )
y f x=
2y =
( )
2fx=
6
10
12
11
4;3
4;3
4
3
3;3
4
6
4
4;3
8
12
6
3;4
6
12
8
5;3
20
30
12
3;5
12
30
20
h
B
V Bh=
1
3
V Bh=
1
6
V Bh=
V Bh=
1
2
h
B
V Bh=
1
3
.S ABCD
4
ABCD
3
7
5
4
12
6
.
11
. . .4.3 4
33
S ABCD ABCD
V h S= = =
3a
3
27a
3
3a
3
9a
3
a
33
(3 ) 27V a a==
42
2y x x=−
( )
;1−
( )
1;0
( )
;1−
( )
1; +
3
44y x x
=−
3
0
0 4 4 0 1
1
x
y x x x
x
=
= = =
=−
42
2y x x=−
( )
;1−
( )
0;1
( )
y f x=
( )
y f x=
( )
2;0
( )
;2−
( )
0;2
( )
0;+
( )
2;0
( )
2;+
( )
42
,,y ax bx c a b c= + +
2; 4; 6
16
12
48
8
2.4.6 48.=
7
1x =
1x =−
2x =−
0x =
( )
fx
( )
fx
4
1
2
3
( )
fx
1x =−
1x =
( )
fx
1x =−
1x =
M
42
23y x x= +
0; 3


9M =
83M =
1M =
6M =
( )
32
4 4 4 1y x x x x
= =
0y
=
( )
2
4 1 0xx−=
0
1
1( )
x
x
xl
=
=
=−
( )
03y =
( )
12y =
( )
36y =
42
23y x x= +
0; 3


( )
36My==
,Mm
( )
42
23f x x x= +
0;2
Mm+
11
14
5
13
D =
( )
3
44f x x x
=−
8
( )
3
0 0;2
0 4 4 0 1 0;2
1 0;2
x
f x x x x
x
=
= = =
=
( ) ( ) ( )
0 3; 1 2; 2 11f f f= = =
11
13
2
M
Mm
m
=
+ =
=
( )
y f x=
4
1
3
2
lim 2
x
y
→−
=
2y=
lim 5
x
y
→+
=
5y=
1
lim
x
y
= +
1x=
3
2
93x
y
xx
+−
=
+
3
2
0
1
)
9; \ 0; 1D = +
( )
1
lim
x
y
+
→−
=
( )
2
1
93
lim
x
x
xx
+
→−
+−
+
= +
( )
1
lim
x
y
→−
( )
2
1
93
lim
x
x
xx
→−
+−
=
+
= −
1x =−
0
lim
x
y
+
=
2
0
93
lim
x
x
xx
+
+−
+
( )
( )
2
0
lim
93
x
x
x x x
+
=
+ + +
( )
( )
0
1
lim
1 9 3
x
xx
+
=
+ + +
1
6
=
0
lim
x
y
=
2
0
93
lim
x
x
xx
+−
+
( )
( )
2
0
lim
93
x
x
x x x
=
+ + +
( )
( )
0
1
lim
1 9 3
x
xx
=
+ + +
1
6
=
0=x
1
9
42
32y x x= +
3
1
x
y
x
=
2
41y x x= +
3
35y x x=−−
1=−yx
5
2
−+
=
x
y
x
12
,xx
12
+xx
2
3
1
1
2
1
5
1 2 3 0
3
2
=−
−+
= =
=
x
x
x x x
x
x
12
2+=xx
3
3= + +y ax x d
( )
,ad
0, 0ad
0, 0ad
0; 0ad
0; 0ad
+
0a
0d
3;5
35
30
15
20
10
3;5
20
20.3
30
2
=
3
9
4
6
6
V
.ABCD A B C D
3AC a
=
3
Va=
3
36
4
a
V =
3
33Va=
3
1
3
Va=
( )
;0xx
' ' 'A B C
'B
2 2 2
' ' ' ' ' 'A C A B B C=+
2 2 2
2x x x= + =
' ' 2A C x=
''A AC
'A
A
B
H
D
C
A
B
H
D
C
C
D
H
B
A
D
A
B
C
D
A
B
C
C
B
A
D
11
2 2 2
' ' ' 'AC A A A C=+
2 2 2
32a x x = +
xa=
.ABCD A B C D
3
Va=
.S ABC
A
2AB =
SA
3SA =
12
2
6.
4.
1 1 1 1 1 1
. . . . . . .2.2.3 2
3 3 3 2 3 2
ABC
V B h S SA AB AC SA
= = = = =
( )
fx
( )
fx
( )
52y f x=−
( )
2;3
( )
0;2
( )
3;5
( )
5;+
( )
52y f x=−
( ) ( )
5 2 2 5 2y f x f x

= =


( )
3 5 2 1 3 4
0 5 2 0
5 2 1 2
xx
y f x
xx




( )
52y f x=−
( )
;2−
( )
3;4
( ) ( )
0;2 ;2
m
( )
32
1
43
3
f x x mx x= + + +
5
4
3
2
D =
( )
2
24f x x mx
= + +
12
( )
2
0; 4 0 2 2f x x m m
=
m
2; 1;0;1;2m
32
35y x x= + +
A
B
S
OAB
O
9S =
10
3
S =
5S =
10S =
m
3 2 2
1
( 4) 3
3
y x mx m x= + +
3x =
1m =
1m =−
5m =
7m =−
22
2 ( 4)y x mx m
= +
22y x m

=−
3 2 2
1
( 4) 3
3
y x mx m x= + +
3x =
(3) 0
(3) 0
y
y
=

22
1( )
9 6 4 0 6 5 0
5( )
6 2 0) 3
3
mL
m m m m
m TM
mm
m
=
+ = + =
=




3 2 2
1
2 2 9,
3
y x m x m m m= + +
S
m
0;3
3
m
(
)
; 3 1;S = − +
( )
3;1S =−
( ) ( )
; 3 1;S = − +
3;1S =−
22
',
' 0,
y x m x
yx
= +
2
0;3
max (3) 2y y m m = = +
2
2 3 3;1m m m+
m
2021;2021
2
1
4
x
y
x mx
+
=
−+
4033
4034
2017
2016
2
' 3 6= +y x x
2
0
' 0 3 6 0
2
=
= + =
=
x
y x x
x
(0;5), (2;9)AB
22
(2;4) 2 4 20 = = + =AB AB
AB
25=+yx
OAB
5=S
13
lim 0
x
y
→
=
0y =
2
40x mx + =
1
2
4
16 0
4
1 4 0
5
m
m
m
m
m
−


+ +
−
2021;2021m−
m
4033
( ) ( )
32
, , , f x ax bx cx d a b c d= + + +
, , , a b c d
( )
lim
x
fx
→+
= +
0a
0x =
10yd= =
( )
2
32f x ax bx c
= + +
( )
2
0
0
x
fx
x
=−
=
=
( )
0 0 0fc
= =
2
2 3 0
3
b
ba
a
= =
,, a b d
( )
y f x=
( )
( )
0f f x =
12
10
8
4
14
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
11
1 0 2
0
0 1 3
14
f x a a
f x b b
f f x
f x c c
f x d d
=
=
=
=
=
( )
1
( )
2
4
( )
3
4
( )
4
( )
( )
0f f x =
.S ABCD
ABCD
AB a=
3AD a=
SA
( )
SBC
60
V
.S ABCD
3
3
a
V =
3
3
3
a
V =
3
Va=
3
3Va=
2
3
ABC
Sa=
󰇱
󰇛

󰇜
󰇛

󰇜


󰇛

󰇜

󰇛

󰇜
󰇛

󰇜
󰇛

󰇜
󰇛

󰇜


 







. ' ' ' 'ABCD A B C D
4BD a=
( )
'A BD
( )
ABCD
30
o
60
a
a
3
D
A
B
C
S
15
3
16 3
9
a
3
48 3a
3
16 3
3
a
3
16 3a
O
BD
''A AB A AD =
''A B A D=
'A BD
( ) ( )
'
'
A BD ABCD BD
A O BD
AO BD
=
⊥
( ) ( )
(
)
, 30 .A BD ABCD A OA

= =
30
o
A OA
A
tan30
2
22
o
A A A A A A A A
AC BD
AO a
= = = =
23
' 2 tan30
3
a
A A a= =
ABCD
2 2 2.BD AB AB a= =
2
'.V A A AB=
( )
2
23
. 2 2
3
a
a
3
16 3
3
a
m
( )
4
23
xm
fx
xm
+
=
++
( )
0;1
1
5
4
3
3
\
2
m
D
+

=

( )
( )
2
2 12
23
m
fx
xm
+
=
++
( )
0;1
( )
(
)
' 0, 0;1
2 12 0 6
3
1
6; 5 3;
55
2
33
3
0
2
yx
mm
m
m
mm
mm
m
+

+
−
+


+


−
m
5; 3; 2; 1
( )
y f x=
( )
y f x
=
( )
( )
4
2 3 2
2 2 2 2022
2
x
g x f x x x x= + + +
16
3
4
5
6
( ) ( )
( )
2 3 2
2 2 2 2 6 4g x x f x x x x x

= + +
( )
( )
( )
( )
22
2 1 2 2 1 2x f x x x x x
= +
( )
( ) ( )
22
2 1 2 2x f x x x x

= +

2
2t x x=−
( )
ft
yt=−
1t =−
0t =
1t =
2t =
( )
2
2
2
2
1
1
21
1
0 2 0 0 2
21
12
22
13
x
x
xx
x
g x x x x x
xx
x
xx
x
=
=
=
=
= = = =
−=
=
−=
=
( ) ( )
2
2 2 2
2
1 3 1 3
22
2 2 0 2 1 1 2 0 2 1 2
21
xx
xx
f x x x x x x x x
VN
xx
+
−
+
17
( )
gx
( )
y f x=
( )
( )
2 3 2
11
4 3 8
33
g x f x x x x x= + + +
1;3
25
3
19
3
( ) ( )
( )
22
4 2 4 6 8g x x f x x x x

= + +
( )
( )
2
2 2 4 4x f x x x

= +

1;3x
40x−
2
3 4 4xx
( )
2
40f x x
−
( )
2
2 4 4 0f x x x
+
1;3x
( ) ( ) ( )
1;3
max 2 4 7 12g x g f= = + =
4
( ) ( , , )
ax
f x a b c
bx c
+
=
+
,ab
c
2
3
1
0
18
1x =−
3y =
0 (1)
0 (2)
4 0 (3)
c
b
a
b
ac b
−
−
. 0 0a c ac
(3) 4 0 0.bb
0, 0, 0.c a b
1
A
( )
SBC
6
4
B
( )
SCA
15
10
C
( )
SAB
30
20
S
ABC
.
.
S ABC
V
.S ABC
ABC
1
36
1
48
1
12
1
24
,,M N P
H
,,AC BC AB
.
1 3 3
..
3 4 12
S ABC
h
SH h V h= = =
( )
( )
.
26
3 30
2 : 10
2 20
;
SAB S ABC
SAB
SV
h
AP S h
AB
d C SAB
= = = = =
2,HM h HN h==
22
3PH SP SH h = =
( )
1
2
ABC HAB HAC HBC
S S S S HP HM HN= + + = + +
33
3
4 12
hh = =
.
3 3 1
.
12 12 48
S ABC
V ==
| 1/18

Preview text:

x − 4 2
y = x x 3 y = x − 1 x y = 3 y = x + x x + 2 3 2
y = x + x y = 3x +1  0 x   y = ( x) (2;+) (0;+) ( ;0 − ) ( 1 − ;2) f ( x)  0 x  (2;+) (2;+) y = f (x) (0;+) (1;+) ( 1 − ;0) (0 ) ;1
y = f ( x) 1 (1;3) (3 ) ;1 ( 1 − ;− ) 1 (1;− )1
y = f ( x) ( 1 − ;− ) 1 y = f (x) f (  x) f (x) y = f (x) 3 0 2 1 x = 0 y = 0 4 2
y = ax + bx + c (a, , b c  ) 0 1 − 3 − 2 2 x = 0 f (0) = 1 − f ( x) 3 = x −3x  3 − ;  3 18 18 − 2 − 2 f ( x) 2 = 3x −3  = −  − f ( x) x 1  3;  3 = 0   x =1   3 − ;  3 f ( 3 − ) = 1
− 8; f (3) =18; f (− ) 1 = 2; f ( ) 1 = 2 −
min f ( x) = f ( 3 − ) = 1 − 8  3 − ;  3
y = f ( x) M m  1 − ;  3 M m
M = max y = 3 m = min y = 2 − [ 1 − ;3] [ 1 − ;3] M m = 5 3x −1 y = x−2 1 x = x = 2 − x = 3 x = 2 2 3x −1 lim =  x =  x→2 x − 2 2
y = f ( x) 3 x = 1 − x = 3 − x = 1 x = 3 lim y = − lim y = + + − x 1 → x 1 → x = 1 4x −1 y = x+1 y = 4 − y = 1 y = 4 y = 1 − 4x −1 lim y = lim = 4 y = x→ x→ x + 4 1 4 2
y = −x + 2x 3 2
y = x − 3x 3 2
y = −x + 3x +1 4 2
y = x − 2x +1 4 2
y = ax + bx + c
a  0, b  0, c = 0
y = f ( x) f ( x) = 2 1 0 2 3 4
y = f ( x) y = 2 f ( x) = 2 6 10 12 11 4;  3 4;  3 4 3 3;  3 4 6 4 4;  3 8 12 6 3;  4 6 12 8 5;  3 20 30 12 3;  5 12 30 20 h B V = 1 Bh V = 1 Bh V = Bh V = 1 Bh 3 6 2 h B V = 1 Bh 3 S.ABCD 4 ABCD 3 7 5 4 12 5 1 1 V = . . h S = .4.3 = 4 S .ABCD 3 ABCD 3 3a 3 27a 3 3a 3 9a 3 a 3 3
V = (3a) = 27a 2; 4; 6 16 12 48 8 2.4.6 = 48. 4 2
y = x − 2x ( ) ;1 − ( 1 − ;0) (− ;  − ) 1 (1;+) 3
y = 4x − 4xx = 0  3
y = 0  4x − 4x = 0  x = 1  x = 1 −  4 2
y = x − 2x (− ;  − ) 1 (0 ) ;1
y = f ( x)
y = f ( x) ( 2 − ;0) (− ;  2 − ) (0;2) (0;+) ( 2 − ;0) (2;+) 4 2
y = ax + bx + c (a, , b c  ) 6 x = 1 x = 1 − x = 2 − x = 0 f ( x) f ( x) 4 1 2 3 f ( x) x = 1 − x = 1 f ( x) x = 1 − x = 1 M 4 2
y = x − 2x + 3 0; 3   M = 9 M = 8 3 M = 1 M = 6 3
y = x x = x ( 2 4 4 4 x − ) 1  x = 0  y = 0  x ( 2 4 x − ) 1 = 0  x = 1  x = 1 − (l)  y (0) = 3 y ( ) 1 = 2 y ( 3) = 6 4 2
y = x − 2x + 3 0; 3 M = y ( 3)   = 6 M , m f ( x) 4 2 = x − 2x + 3 0;2 M + m 11 14 5 13 D = f ( x) 3 = 4x − 4x 7 x = 0 0;2  f ( x) 3
= 0  4x − 4x = 0  x = 1 − 0;2 x =1   0;2 f (0) = 3; f ( ) 1 = 2; f (2) =11 M =11    M + m = 13 m = 2
y = f ( x) 4 1 3 2
lim y = 2  y = 2 x→−
lim y = 5  y = 5 x→+
lim y = +  x = 1 − x 1 → 3 x + 9 − 3 y = 2 x + x 3 2 0 1 D =  9 − ;+) \0;−  1 x + 9 − 3 x + 9 − 3 lim y = lim = + lim y = lim = − + + − − x ( → − ) 1 x→(− ) 2 1 x + x x ( → − ) 1 x ( → − ) 2 1 x + xx = 1 − x + 9 − 3 x 1 1 lim y = lim = lim = lim = + + 2 + + x→0 x→0 x + x x→ ( 2 0
x + x)( x + 9 + 3) x→0 ( x + ) 1 ( x + 9 + 3) 6 x + 9 − 3 x 1 1 lim y = lim = lim = lim = − − 2 − − x→0 x→0 x + x x→ ( 2 0
x + x)( x + 9 + 3) x→0 ( x + ) 1 ( x + 9 + 3) 6  x = 0 1 8 x − 4 2
y = x − 3x + 3 2 y = 2
y = x − 4x +1 3
y = x − 3x − 5 x −1 −x + 5 y = x −1 y = x −2 x , x x + x 1 2 1 2 2 3 1 − 1 −x + 5 x = 1 − 2
= x −1  x − 2x − 3 = 0   x − 2 x = 3 x + x = 2 1 2 3
y = ax + 3x + d (a,d  ) a  0, d  0 a  0, d  0 a  0; d  0 a  0; d  0 +  a  0  d  0 3;  5 35 30 15 20 9 3;  5 20 20.3 = 30 2 3 9 4 6 6 A A A D C D D C C H H H B B B A A A D D D C C C B B B V ABC . D A BCD   AC = a 3 3 3 6a 1 3 V = a V = 3 V = 3 3a 3 V = a 4 3 ; x ( x  0) A' B 'C ' B ' 2 2 2
A'C ' = A' B ' + B 'C ' 2 2 2
= x + x = 2x A'C ' = x 2 A' AC ' A' 10 2 2 2
AC ' = A' A + A'C ' 2 2 2
 3a = x + 2x x = a ABC . D A BCD   3 V = a S.ABC A AB = 2 SA SA = 3 12 2 6. 4. 1 1 1 1 1 1 V = . B h = S .SA = . A .
B AC.SA = . .2.2.3 = 2  3 3 ABC 3 2 3 2 f ( x) f ( x)
y = f (5 − 2x) (2;3) (0;2) (3;5) (5;+)
y = f (5 − 2x)  y =  f  (5 − 2x) = 2 − f   (5−2x) −  −  −    y 
f ( − x) 3 5 2x 1 3 x 4 0 5 2  0     5 − 2x 1 x  2
y = f (5 − 2x) ( ;2 − ) (3;4) (0;2)  (− ;  2) 1 m f ( x) 3 2
= x + mx + 4x + 3 3 5 4 3 2 D = f ( x) 2 = x + 2mx + 4 11 f ( x) 2  0; x
    = m − 4  0  2 −  m  2 m   m 2 − ; 1 − ;0;1;  2 3 2
y = −x + 3x + 5 A B S OAB O S = 10 9 S = S = 5 S = 10 3 x = 0 2 y ' = 3 − x + 6x 2 y ' = 0  3
x + 6x = 0  x = 2 ( A 0;5), B(2;9) 2 2
AB = (2;4)  AB = 2 + 4 = 20 AB y = 2x + 5 OAB S = 5 1 m 3 2 2 y =
x mx + (m − 4)x + 3 x = 3 3 m = 1 m = 1 − m = 5 m = 7 − 2 2
y = x − 2mx + (m − 4) y = 2x − 2m 1 y = 3 2 2 y =
x mx + (m − 4)x + 3 x = (3) 0 3  3 y (  3)  0 m =1(L) 2 2 9
 − 6m + m − 4 = 0
m − 6m + 5 = 0    
 m = 5(TM ) 6 − 2m  0) m  3  m  3 1 3 2 2 y =
x + m x − 2m + 2m − 9, m S 3 m 0; 3 3 m S = (− ;  −  3 1;+) S = ( 3 − ; ) 1 S = (− ;  3 − )(1;+) S =  3 − ;  1 2 2
y ' = x + m , x y '  0, x   2
 max y = y(3) = m + 2m 0; 3 2
m + 2m  3  m  3 − ;  1 m  2 − 021;202  1 x +1 y = 2 x mx + 4 4033 4034 2017 2016 12 lim y = 0 y = 0 x→  2
x mx + 4 = 0 1 − m  4 − 2 m −16  0     m  4 1  + m + 4  0  m  5 − m  2 − 021;202  1 m 4033 f ( x) 3 2
= ax + bx + cx + d (a, , b c, d  ) a, , b c, d
lim f ( x) = +  a  0 x→+ x = 0 y = d = 1  0 x = − f ( x) 2
= 3ax + 2bx + c f ( x) 2 = 0  x =0 − b
f (0) = 0  c = 2 0 = 2
−  b = 3a  0 3a a, , b d
y = f ( x)
f ( f ( x)) = 0 12 10 8 4 13
f (x) = a(a  − ) 1 ( ) 1   = −   f (
f ( x) b ( 1 b 0) (2)
f ( x)) = 0   f (x) = c(0  c  )1 (3) 
f (x) = d (d   )1 (4) ( )1 (2) 4 (3) 4 (4)
f ( f ( x)) = 0 S.ABCD ABCD AB = a AD = a 3 SA (SBC) 60 V S.ABCD 3 a 3 a 3 V = V = 3 V = a 3 V = 3a 3 3 S a 60 B A a 3 D C 2 S = 3a ABC
(𝑆𝐵𝐶) ∩ (𝐴𝐵𝐶𝐷) = 𝐵𝐶
{𝐵𝐶 ⊥ 𝑆𝐵 ⊂ (𝑆𝐵𝐶) ⇒ ((𝑆𝐵𝐶), (𝐴𝐵
̂ 𝐶𝐷)) = (𝑆𝐵; 𝐴𝐵 ̂ ) = 𝑆𝐵𝐴 ̂
𝐵𝐶 ⊥ 𝐴𝐵 ⊂ (𝐴𝐵𝐶𝐷) 𝑆𝐵𝐴 ̂ = 60𝑜 𝑆𝐴 𝑆𝐴𝐵 tan60𝑜 =
⇒ 𝑆𝐴 = 𝐴𝐵. tan60𝑜 = 𝑎√3 𝐴𝐵 1 1
𝑉𝑆.𝐴𝐵𝐶𝐷 = 𝑆 𝑎2√3. 𝑎√3 = 𝑎3
3 𝐴𝐵𝐶𝐷. 𝑆𝐴 = 3 ABC .
D A' B 'C ' D ' BD = 4a (A'BD) (ABCD) 30o 14 16 3 16 3 3 a 3 48 3a 3 a 3 16 3a 9 3 O BD A  ' AB = A  ' AD
A' B = A' D A  ' BD (
A' BD) ( ABCD) = BD
A'O BD  ((A B
D),( ABCD)) = A OA = 30 .  30oAO BDA AA AA AA Aa AOA A tan 30o = = = =  2 3
A' A = 2a tan 30 = AO AC BD 2a 3 2 2 ABCD
BD = AB 2  AB = 2a 2. 16 3 2 a V = A' . A AB ( a )2 2 3 . 2 2 3 a 3 3 x + m m f ( x) 4 = 2x+m+3 (0 ) ;1 1 5 4 3  m + 3 2m +12 D = \ −  f ( x) =  2  (2x + m + 3)2 (0 ) ;1 y '  0, x   (0 ) ;1  2m +12  0 m  6 −  m + 3  −  1     m  5 −  m  5 −  m  ( 6 − ;−  5  −3; +) 2    m + 3  m  3 − m  3 − −  0   2 m  5 − ; 3 − ; 2 − ;−  1
y = f ( x)
y = f ( x)
g ( x) = f ( x x) 4 x 2 3 2 2 +
− 2x + 2x + 2022 2 15 3 4 5 6
g( x) = ( x − ) f ( 2 x x) 3 2 2 2 2
+ 2x − 6x + 4x
= (x − ) f ( 2
x x) + ( x − )( 2 2 1 2 2 1 x − 2x)
= (x − )  f   ( 2 x x) + ( 2 2 1 2 x − 2x) 2
t = x − 2x f (t ) y = tt = 1
t = 0 t =1 t = 2 x =1 x =1   2 x − 2x = 1 −  x =1    g ( x) 2
= 0  x − 2x = 0  x = 0  x = 2   2 x − 2x =1 x =1 2   2 x − 2x = 2  x =1 3 2
x − 2x  2
x 1− 3  x 1+ 3   f ( 2
x − 2x)  −( 2 x − 2x) 2
 0  x − 2x  1  1 
 − 2  x  0  2  x  1+ 2   2 x − 2x  1 − VN   16 g ( x)
y = f ( x)
g ( x) = f ( 1 1 2 4x x ) 3 2
+ x − 3x + 8x + 1;  3 3 3 25 19 3 3
g( x) = ( − x) f ( 2 x x ) 2 4 2 4
+ x − 6x + 8 = ( − x) f   ( 2 2 2
4x x ) + 4 − x x 1;  3 f ( 2 4x x ) 4 − x  0 2
3  4x x  4  0 f ( 2 2
4x x ) + 4 − x  0 x  1;  3
max g ( x) = g (2) = f (4) + 7 = 12 1;  3 ax + 4 f (x) = (a, , b c  ) bx + c a, b c 2 3 1 0 17 x = 1 − y = 3  c −  0 (1)  b  a   0 (2) b
ac − 4b  0 (3)  − .
a c  0  ac  0 (3)  4
b  0  b  0.
c  0, a  0, b  0. S.ABC ABC 1 A ( 6 15 SBC ) B (SCA) C 4 10 ( 30 SAB) S ABC 20 V . S.ABC 1 1 1 1 36 48 12 24 M , N , P H
AC, BC, AB 1 3 h 3
SH = h V = . . h = S . ABC 3 4 12 2S 6V h 3 30 SAB AP = = 2S = = = AB d ( S.ABC h SAB C;(SAB)) : 10 2 20 HM = 2 , h HN = h 2 2
PH = SP SH = 3h 1 S = S + S + S = HP + HM + 3 3 HN  3h =  h = ABC HAB HAC HBC ( ) 2 4 12 3 3 1 V = . = S .ABC 12 12 48 18