PHÒNG GD&ĐT YÊN LẠC
TRƯỜNG THCS TRUNG NGUYÊN
ĐỀ KSCL ĐT HSG CẤP HUYỆN
MÔN: TOÁN 7
NĂM HỌC 2020-2021
(Thời gian làm bài: 120 phút không kể thời gian giao đề)
Ngày kh
ảo sát 30/3/2021
Thí sinh không được sử dụng máy tính cầm tay!
Câu 1. (2,0 điểm) Rút gọn biểu thức sau:
4 2
4
10 .81 16.15
4 .675
A
Câu 2. (2,0 điểm) Tìm ba số x, y, z thỏa mãn:
5
4
3
zyx
100322
222
zyx
.
Câu 3. (2,0 điểm) Cho các số x, y thỏa mãn (x - 2)
4
+ (2y - 1)
2018
.
Tính giá trị của biểu thức M = 11x
2
y + 4xy
2
.
Câu 4. (2,0 điểm) Cho các số thực a, b, c, d thỏa mãn dãy tỉ số bằng nhau:
d
dcba
c
dcba
b
dcba
a
dcba 2222
Tính giá trị của biểu thức:
c
b
ad
b
a
dc
a
d
cb
d
c
ba
M
Câu 5. (2,0 điểm) Cho đa thức bậc hai:
2
f x ax bx c
(x là ẩn; a, b, c là hệ số).
Biết rằng:
0 2018
f
,
1 2019
f
,
1 2017
f
. Tính
2019
f
.
Câu 6. (2,0 điểm) Tìm giá trị lớn nhất của biểu thức Q =
x
x
12
227
(với x là số nguyên).
Câu 7. (2,0 điểm) Tìm các số nguyên dương a, b, c thoả mãn a
3
+ 3a
2
+5 = 5
b
a + 3 = 5
c
Câu 8. (2,0 điểm) Cho góc xOy bằng 60
0
. Tia Oz phân giác của góc xOy. Từ điểm B bất trên
tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H K. Qua B kẻ đường song song với Oy cắt
Oz tại M. Chứng minh rằng BH=MK.
Câu 9. (2,0 điểm) Cho tam giác ABC vuông cân tại A. Điểm M nằm n trong tam giác sao cho
MA=2cm, MB=3cm
0
135
AMC . Tính MC.
Câu 10. (2,0 điểm) Từ 200 số tự nhiên 1; 2; 3;...; 200, ta lấy ra k số bất kì sao cho trong các số vừa
lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
-------------HẾT------------
Cán bộ coi thi không giải thích gì thêm!
Họ và tên thí sinh: .................................... Số báo danh: ...............Phòng thi: .......
PHÒNG GD&ĐT YÊN LẠC
TRƯỜNG THCS TRUNG NGUYÊN
HƯỚNG DẪN CHẤM
ĐỀ KSCL ĐT HSG CẤP HUYỆN
MÔN: TOÁN 7
NĂM HỌC 2020-2021
Ngày kh
ảo sát 30/3/2021
Hướng dẫn chung:
- Học sinh giải theo cách khác mà đúng, đảm bảo tính lôgic, khoa học thì giám khảo vẫn cho điểm
tối đa.
- Câu hình học, học sinh không vẽ hình hoặc vẽ hình sai phần nào không chấm điểm phần đó.
Câu
Nội dung Điểm
1
4 2
4
10 .81 16.15
4 .675
A
=
238
224444
5
.
3
.
2
5.3.23.5.2
=
238
22224
5
.
3
.
2
)13.5(5.3.2
=
4
225 1
2 .3
=
4
224
2 .3
=
3
.
2
7.2
4
5
=
14
3
0,5
0,5
0,5
0,5
2
Từ
5
4
3
zyx
ta suy ra: 4
25
100
25
322
75
3
32
2
18
2
25
16
9
222222222
zyxzyxzyx
Suy ra:
10
8
6
10
8
6
100
64
36
2
2
2
z
y
x
x
y
x
z
y
x
( Vì x, y, zng dấu)
KL: Có hai bộ (x; y; z) thỏa mãn là : (6; 8 ;10) và (-6; -8;-10)
0,5
0,5
0,5
0,5
3
Vì (x - 2)
4
0; (2y – 1)
2018
0 với mọi x, y nên
(x - 2)
4
+ (2y – 1)
2014
0 với mọi x, y.
Mà theo đề bài : (x - 2)
4
+ (2y – 1)
2014
0
Suy ra (x - 2)
4
+ (2y – 1)
2014
= 0
Hay: (x - 2)
4
= 0 và (2y – 1)
2018
= 0
suy ra x = 2, y =
1
2
Khi đó
tính đư
ợc:
M = 24.
0,25
0,25
0,25
0,25
0,25
0,25
0,5
4
Từ:
d
dcba
c
dcba
b
dcba
a
dcba 2222
Suy ra :
2 2 2 2
1 1 1 1
a b c d a b c d a b c d a b c d
a b c d
a b c d a b c d a b c d a b c d
a b c d
(*)
Nếu a + b + c + d = 0
a + b = -(c+d) ; (b + c) = -(a + d)
c
b
ad
b
a
dc
a
d
cb
d
c
ba
M
= -4
Nếu a + b + c + d
0 thì từ (*)
a = b = c = d
c
b
ad
b
a
dc
a
d
cb
d
c
ba
M
= 4
0,25
0,5
0,25
0,25
0,25
0,
2
5
KL: ......
0,25
5
Xét x =0:
(0) 2018 2018
f c
Xét x =1:
(1) 2019 2018 1
f a b c a b
(1)
Xét x =-1:
( 1) 2017 2017 1
f a b c a b
(2)
Cộng vế (1) và (2) suy ra a=0
Thay a=0 vào (1) tìm được: b=1
Từ đó tìm được
2018
f x x
Suy ra:
2019 1
f
0,25
0,25
0,25
0,25
0,25
0,25
0,5
6
Ta có: Q =
x
x
12
227
= 2+
x
12
3
.
Suy ra Q lớn nhất khi
x
12
3
lớn nhất
* Nếu x > 12 thì
3
12 0 0
12
x
x
.
* Nếu x < 12 thì
3
12 0 0
12
x
x
.
Từ 2 trường hợp trên suy ra
x
12
3
lớn nhất khi 12-x>0
Vì phân số
x
12
3
có tử và mẫu là các số nguyên dương, tử không đổi nên phân số có
giá trị lớn nhất khi mẫu là số nguyên dương nhỏ nhất.
Hay
12 1 11
x x
Suy ra A có giá trị lớn nhất là 5 khi x =11
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
7
Do a Z
+
5
b
= a
3
+ 3a
2
+ 5 > a + 3 = 5
c
Vậy 5
b
> 5
c
b>c
5
b
5
c
Hay (a
3
+ 3a
2
+ 5)
(a+3)
a
2
(a+3) + 5
a + 3
Mà a
2
(a+3)
a + 3
5
a + 3
a + 3 Ư (5)
Hay: a+ 3 { 1 ; 5 } (1)
Do a Z
+
a + 3 4 (2)
Từ (1) và (2) suy ra a + 3 = 5
a =2
Từ đó tính được: 5
b
=2
3
+ 3.2
2
+ 5 = 25 = 5
2
b = 2
Và 5
c
=a + 3 = 2+3= 5
c = 1
Vậy: a = 2; b = 2; c = 1
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
----------Hết---------
8
- Chứng minh tam giác BOM cân tại B vì
0
30
BOM BMO
- BK là đường cao của tam giác cân BMO
nên K là trung điểm của OM =>KM=KO (1)
- Chứng minh
(c.h g.n)
BKO OHB
- Suy ra BH=OK (2)
- Từ (1) và (2) suy ra BH=MK. đpcm
0,5
0,5
0,5
0,25
0,25
9
- Dựng tam giác ADM vuông cân tại A
(D, B khác phía đối với AM)
- Chứng minh
(c.g.c)
ABM ACD
vì:
AD=AM (
AMD
vuông cân tại A)
BAM CAD
(cùng phụ với
CAM
AB=AC (giả thiết)
- Suy ra: CD=BM=3cm
- Tính được MD
2
=AD
2
+AM
2
= 8
- Chỉ ra tam giác DMC vuông tại M
- Suy ra: MC
2
= CD
2
-MD
2
=9-8=1
=>CD=1cm
0,25
0,5
0,25
0,25
0,25
0,25
0,25
10
- Xét 100 số 101; 102; 103; ....; 200. Trong 100 số này rõ ràng không có số nào là bội
của số kia (vì 101.2>200).
Do đó k
101 (1)
- Xét 101 số bất kì lấy ra từ 200 số đã cho:
1 2 3 101
1 ... 200
a a a a .
Ta viết 101 số vừa lấy ra dưới dạng:
1
2
3
101
1 1
2 2
3 3
101 101
2 .
2 .
2 .
...........
2 .
n
n
n
n
a b
a b
a b
a b
Với n
i
là số tự nhiên, còn b
i
là các các số lẻ. (
1;101
i )
Suy ra các b
i
là các phần tử của tập gồm 100 số tự nhiên lẻ đầu tiên: {1; 3; 5; ...;199}.
Vì có 101 các số b
i
mà chỉ có 100 giá trị nên sẽ tồn tại ít nhất 2 số b
i
b
j
nào đó bằng
nhau.
Suy ra trong hai số
2 .
i
n
i i
a b
2 .
j
n
j j
a b
sẽ có một số là bội của số còn lại.
Như vậy nếu lấy ra 101 số trong 200 số đã cho thì luôn có 2 số mà số này là bội của số
kia (2)
Từ (1) và (2) suy ra giá trị nhỏ nhất của k là 101.
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
A
B
C
M
D
x
y
z
O
B
K
H
M

Preview text:

PHÒNG GD&ĐT YÊN LẠC
ĐỀ KSCL ĐT HSG CẤP HUYỆN TRƯỜNG THCS TRUNG NGUYÊN MÔN: TOÁN 7 NĂM HỌC 2020-2021
(Thời gian làm bài: 120 phút không kể thời gian giao đề) Ngày khảo sát 30/3/2021
Thí sinh không được sử dụng máy tính cầm tay! 4 2 10 .8116.15
Câu 1. (2,0 điểm) Rút gọn biểu thức sau: A  4 4 .675 x y z
Câu 2. (2,0 điểm) Tìm ba số x, y, z thỏa mãn:   và 2 2 x  2 2 y  3 2 z  100 . 3 4 5
Câu 3. (2,0 điểm) Cho các số x, y thỏa mãn (x - 2)4 + (2y - 1)2018  0 .
Tính giá trị của biểu thức M = 11x2y + 4xy2.
Câu 4. (2,0 điểm) Cho các số thực a, b, c, d thỏa mãn dãy tỉ số bằng nhau: 2a  b  c  d a  b 2  c  d a  b  2c  d a  b  c  2d    a b c d a  b b  c c  d d  a
Tính giá trị của biểu thức: M     c  d d  a a  b b  c
Câu 5. (2,0 điểm) Cho đa thức bậc hai:   2
f x  ax  bx  c (x là ẩn; a, b, c là hệ số).
Biết rằng: f 0  2018 , f   1  2019 , f  
1  2017 . Tính f 2019. 27  2x
Câu 6. (2,0 điểm) Tìm giá trị lớn nhất của biểu thức Q = (với x là số nguyên). 12  x
Câu 7. (2,0 điểm) Tìm các số nguyên dương a, b, c thoả mãn a3+ 3a2 +5 = 5b và a + 3 = 5c
Câu 8. (2,0 điểm) Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên
tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt
Oz tại M. Chứng minh rằng BH=MK.
Câu 9. (2,0 điểm) Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA=2cm, MB=3cm và  0 AMC  135 . Tính MC.
Câu 10. (2,0 điểm) Từ 200 số tự nhiên 1; 2; 3;...; 200, ta lấy ra k số bất kì sao cho trong các số vừa
lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
-------------HẾT------------
Cán bộ coi thi không giải thích gì thêm!
Họ và tên thí sinh: .................................... Số báo danh: ...............Phòng thi: ....... PHÒNG GD&ĐT YÊN LẠC HƯỚNG DẪN CHẤM TRƯỜNG THCS TRUNG NGUYÊN
ĐỀ KSCL ĐT HSG CẤP HUYỆN MÔN: TOÁN 7 NĂM HỌC 2020-2021 Ngày khảo sát 30/3/2021 Hướng dẫn chung:
- Học sinh giải theo cách khác mà đúng, đảm bảo tính lôgic, khoa học thì giám khảo vẫn cho điểm tối đa.
- Câu hình học, học sinh không vẽ hình hoặc vẽ hình sai phần nào không chấm điểm phần đó. Câu Nội dung Điểm 4 2 10 .8116.15 4 4 4 4 2 2  A  2 5 . 3 . 2 .3 5 . = 4 4 .675 8 3 2 2 .3 5 . 0,5 4 2 2 2 2 2 3 . .5 5 ( .3  ) 1 225 1 1 = = 0,5 8 3 2 2 3 . 5 . 4 2 .3 224 25.7 = = = 14 0,5 4 2 .3 24.3 3 0,5 x y z 2 2 2 x y z 2 2 x 2 2 y 3 2 z 2 2 x  2 2 y  3 2 z 100 0,5 Từ   ta suy ra:         4 3 4 5 9 16 25 18 32 75  25  25 0,5 x  6  y 2   8 x  36  2   x 2   10 Suy ra: y  64   ( Vì x, y, z cùng dấu)  x  6 0,5 2 z  100  y  8  z  10
KL: Có hai bộ (x; y; z) thỏa mãn là : (6; 8 ;10) và (-6; -8;-10) 0,5
Vì (x - 2)4  0; (2y – 1) 2018  0 với mọi x, y nên 0,25
(x - 2)4 + (2y – 1) 2014  0 với mọi x, y. 0,25
Mà theo đề bài : (x - 2)4 + (2y – 1) 2014  0
Suy ra (x - 2)4 + (2y – 1) 2014 = 0 0,25 3
Hay: (x - 2)4 = 0 và (2y – 1) 2018 = 0 0,25 suy ra x = 2, y = 1 0,25 2 0,25
Khi đó tính được: M = 24. 0,5 2a  b  c  d a  b 2  c  d a  b  2c  d a  b  c  2d Từ:    a b c d 2a  b  c  d a  2b  c  d a  b  2c  d a  b  c  2d Suy ra : 1  1  1  1 0,25 a b c d              a b c d a b c d a b c d a b c d    (*) 0,5 4 a b c d
Nếu a + b + c + d = 0  a + b = -(c+d) ; (b + c) = -(a + d) a  b b  c c  d d  a 0,25  M     = -4 c  d d  a a  b b  c 0,25
Nếu a + b + c + d  0 thì từ (*)  a = b = c = d     0,25  a b b c c d d a M     = 4 c  d d  a a  b b  c 0,25 KL: ...... 0,25
Xét x =0: f (0)  2018 c  2018 0,25
Xét x =1: f (1)  2019  a  b  c  2018  a  b 1 (1) 0,25
Xét x =-1: f (1)  2017  a  b  c  2017  a  b  1 (2) 0,25 5
Cộng vế (1) và (2) suy ra a=0
Thay a=0 vào (1) tìm được: b=1 0,25 0,25
Từ đó tìm được f  x  x  2018 0,25
Suy ra: f 2019  1 0,5 27  2x 3 Ta có: Q = = 2+ . 0,25 12  x 12  x 3 0,25 Suy ra Q lớn nhất khi lớn nhất 12  x 3 0,25
* Nếu x > 12 thì 12  x  0  0 . 12  x 3 0,25
* Nếu x < 12 thì 12  x  0  0 . 6 12  x 3
Từ 2 trường hợp trên suy ra lớn nhất khi 12-x>0 12  x 0,25 3 Vì phân số
có tử và mẫu là các số nguyên dương, tử không đổi nên phân số có 12  x
giá trị lớn nhất khi mẫu là số nguyên dương nhỏ nhất. 0,25 Hay 12  x  1  x  11
Suy ra A có giá trị lớn nhất là 5 khi x =11 0,25 0,25
Do a  Z+  5b = a3 + 3a2 + 5 > a + 3 = 5c 0,25
Vậy 5b > 5c  b>c  5b  5c 0,25 Hay (a3 + 3a2 + 5)  (a+3)  a2 (a+3) + 5  a + 3 0,25
Mà a2 (a+3)  a + 3  5  a + 3  a + 3  Ư (5) 7 0,25
Hay: a+ 3  {  1 ;  5 } (1)
Do a  Z+  a + 3  4 (2) 0,25
Từ (1) và (2) suy ra a + 3 = 5  a =2 0,25
Từ đó tính được: 5b =23 + 3.22 + 5 = 25 = 52  b = 2
Và 5c =a + 3 = 2+3= 5  c = 1 0,25 0,25 Vậy: a = 2; b = 2; c = 1
- Chứng minh tam giác BOM cân tại B vì x  BOM   0 BMO  30
- BK là đường cao của tam giác cân BMO 0,5
nên K là trung điểm của OM =>KM=KO (1) 0,5 B - Chứng minh BKO  O  HB (c.h g.n) z 8 0,5 M - Suy ra BH=OK (2) K 0,25
- Từ (1) và (2) suy ra BH=MK. đpcm O H 0,25 y
- Dựng tam giác ADM vuông cân tại A D 0,25
(D, B khác phía đối với AM) - Chứng minh ABM  A  CD (c.g.c) vì:
AD=AM ( AMD vuông cân tại A) A  BAM   CAD (cùng phụ với  CAM 0,5 9 AB=AC (giả thiết) - Suy ra: CD=BM=3cm 0,25
- Tính được MD2=AD2+AM2 = 8 0,25
- Chỉ ra tam giác DMC vuông tại M 0,25 M
- Suy ra: MC2 = CD2-MD2 =9-8=1 B 0,25 C =>CD=1cm 0,25
- Xét 100 số 101; 102; 103; ....; 200. Trong 100 số này rõ ràng không có số nào là bội 0,25
của số kia (vì 101.2>200). Do đó k  101 (1) 0,25
- Xét 101 số bất kì lấy ra từ 200 số đã cho: 1  a  a  a  ...  a  200 . 1 2 3 101 0,25
Ta viết 101 số vừa lấy ra dưới dạng: 1 a  2n .b 1 1 2 a  2n .b 2 2 3 a  2n .b 3 3 ........... 10 1 n 01 a  2 .b 101 101 Với n 0,25
i là số tự nhiên, còn bi là các các số lẻ. ( i  1;101 )
Suy ra các bi là các phần tử của tập gồm 100 số tự nhiên lẻ đầu tiên: {1; 3; 5; ...;199}.
Vì có 101 các số bi mà chỉ có 100 giá trị nên sẽ tồn tại ít nhất 2 số bi và bj nào đó bằng 0,25 nhau. Suy ra trong hai số a  2 n i
n .b và a  2 j.b sẽ có một số là bội của số còn lại. i i j j 0,25
Như vậy nếu lấy ra 101 số trong 200 số đã cho thì luôn có 2 số mà số này là bội của số kia (2) 0,25
Từ (1) và (2) suy ra giá trị nhỏ nhất của k là 101. 0,25 ----------Hết---------