-
Thông tin
-
Quiz
Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang
Xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, thành phố Bắc Giang, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm.
Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang:
+ Tìm giá trị nhỏ nhất của biểu thức 2 A x y xy y x 13 4 2 16 2019.
+ Chứng minh rằng: 3 2 n 3 chia hết cho 48 với mọi số nguyên lẻ n.
+ Cho tam giác ABC vuông tại A AB AC đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng qua D song song với AB cắt BC và AC lần lượt ở M và N. a) Chứng minh tứ giác ABDM là hình thoi. b) Chứng minh AM vuông góc với CD. c) Gọi I là trung điểm của MC chứng minh rằng IN vuông góc HN.
Đề thi Toán 8 455 tài liệu
Toán 8 1.8 K tài liệu
Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang
Xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, thành phố Bắc Giang, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm.
Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang:
+ Tìm giá trị nhỏ nhất của biểu thức 2 A x y xy y x 13 4 2 16 2019.
+ Chứng minh rằng: 3 2 n 3 chia hết cho 48 với mọi số nguyên lẻ n.
+ Cho tam giác ABC vuông tại A AB AC đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng qua D song song với AB cắt BC và AC lần lượt ở M và N. a) Chứng minh tứ giác ABDM là hình thoi. b) Chứng minh AM vuông góc với CD. c) Gọi I là trung điểm của MC chứng minh rằng IN vuông góc HN.
Chủ đề: Đề thi Toán 8 455 tài liệu
Môn: Toán 8 1.8 K tài liệu
Thông tin:
Tác giả:
Tài liệu khác của Toán 8
Preview text:
PHÒNG GD&ĐT TP BẮC GIANG
ĐỀ KHẢO SÁT HỌC SINH GIỎI
TRƯỜNG THCS SONG MAI NĂM HỌC 2023-2024 Môn: Toán - Lớp: 8
Thời gian làm bài: 120 phút
Câu 1. (2,0 điểm)
a) Phân tích đa thức thành nhân tử: x3 – 19x + 30
b) Cho x = by + cz ; y = ax + cz ; z = ax + by và x + y + z ≠ 0; xyz ≠ 0. Chứng minh: 1 1 1 + + = 2
1+ a 1+ b 1+ c
Câu 2. (1,5 điểm)
a) Giải phương trình: 2(6x +7)2 (3x+ 4)(x + 1) – 12= 0
b) Tìm x, y nguyên thỏa mãn: x2 + 2y2 + 3xy – x – y + 3 = 0.
Câu 3. (3,0 điểm)
a) Tìm a,bsao cho 3 2
f (x) = ax + bx +10x − 4 chia hết cho đa thức 2
g(x) = x + x − 2
b) Tìm giá trị nhỏ nhất của biểu thức: A= 2 x + 2 13
y + 4xy − 2y −16x + 2019
c) Chứng minh rằng: 3 2
n − 3n − n + 3 chia hết cho 48 với mọi số nguyên lẻ n .
Câu 4. (3,0 điểm)
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH . Gọi D là điểm
đối xứng của A qua H . Đường thẳng qua D song song với AB cắt BC và AC lần
lượt ở M và N .
a) Chứng minh tứ giác ABDM là hình thoi.
b) Chứng minh AM vuông góc với CD
c) Gọi I là trung điểm của MC , chứng minh rằng IN vuông góc HN
Câu 5. (0,5,0 điểm)
Cho a, b là các số thực dương khác nhau. Chứng minh 1 1 4 + > a b a + b Từ đó chứng minh 1 1 1 1 1 A> 1 với A= + + + ...+ + 2019 2020 2021 6054 6055
--------------------------- Hết ---------------------------
PHÒNG GD&ĐT TP BẮC GIANG HƯỚNG DẪN CHẤM
TRƯỜNG THCS SONG MAI
ĐỀ KHẢO SÁT HỌC SINH GIỎI NĂM HỌC 2023-2024 Môn: Toán - Lớp: 8
Dưới đây chỉ là sơ lược các bước giải và thang điểm. Bài giải của học sinh cần chặt
chẽ, hợp logic toán học. Nếu học sinh làm bài theo cách khác hướng dẫn chấm mà đúng
thì chấm và cho điểm tối đa của bài đó. Đối với bài hình học nếu học sinh vẽ sai hình hoặc
không vẽ hình thì không được tính điểm. Câu Hướng dẫn giải Điểm
a) x3 – 19x + 30 = x3- 4x -15x - 30 0,25 = x(x2 - 4) - (15x - 30)
= x(x - 2)(x + 2) - 15(x - 2) 0,25 = (x - 2)(x2 – 2x - 15)
= (x - 2)(x2 + 3x – 5x – 15x) 0,25 = (x - 2)(x + 3)(x - 5) 0,25
b) Ta có x = by + cz (1); y = ax + cz (2); z = ax + by (3)
Cộng vế với vế của (1) và (2) ta có: x + y = ax + by + 2cx = z + 2cz 0,25
x + y − z x + y + z 1
Suy ra: 2cz = x + y – z ⇒ c = ⇒ 1 + c = 2z 2z ⇒ 1 = 2z 0,25
1+ c x + y + z
Tương tự: 1 + a = x + y + z ⇒ 1 = 2x 2x 1+ a x + y + z 0,25
1 + b = x + y + z ⇒ 1 = 2y 2 y 1+ b x + y + z
2(x + y + z )
Vậy 1 + 1 + 1 = 2x + 2y + 2z = = 2 0,25
1+ a 1+ b 1+ c x + y + z x + y + z x + y + z x + y + z a)
Ta có: 2(6x +7)2 (3x+ 4)(x + 1) – 12 = 0 ⇔ 2(6x + 7)2 (3x + 4)(x + ) 1 =12 0.25
⇔ (6x + 7)2 (6x + 8)(6x + 6) = 72
Đặt 6x + 7 = t, đẳng thức trên trở thành t2(t + 1)(t- 1) = 72 ⇔ t2(t2 - 1) = 72 0.25 ⇔ t4 - t2 - 72 = 0 ⇔ (t2 +8)(t2- 9) = 0
⇔ t2 = 9 (Vì t2 + 8 dương) 2 ⇔ t = 3 hoặc t = -3 Nếu t = 3 suy ra x = - 2 3 Nếu t = -3, suy ra x= - 5 3 0.25 Vậy x= - 2 hoặc x= - 5 3 3
b) Ta có: x2 + 2y2 + 3xy - x - y + 3 = 0.
⇔ ....... ⇔ (x + y)(x + 2y - 1) = - 3 0.25
Vì x,y nguyên nên x + y và x + 2y - 1 là các ước của - 3. Ta có bảng sau: 0.25 Câu Hướng dẫn giải Điểm x + y 1 -3 -1 3 x + 2y -1 -3 1 3 -1 x 4 -8 -6 6 y -3 5 5 -3
Vậy các cặp số nguyên (x; y) cần tìm là (4; 3), (-8;5), (-6; 5), (4; -3). 0.25 a) 3 2
f (x) = ax + bx +10x − 4 ; 2
g(x) = x + x − 2
Ta có g(x) = (x −1)(x + 2)
Do f (x) chia hết cho đa thức g(x) nên f (x) = q(x).g(x) với q(x) là đa thức
f (x) = (x −1)(x + 2).q(x) 0, 5 Với
x = 1 ta được f (1) = 0 hay a + b + 6 = 0 Với x = 2 − ta được f ( 2) − = 0 hay 8
− a + 4b − 24 = 0 ⇔ 2
− a + b − 6 = 0 0,25 a + b = 6 − a = 4 − Khi đó ta có ⇔ 2 − a + b = 6 b = 2 − Vậy a = 4, − b = 2 − . 0,25 b) A= 2 13x + 2
y + 4xy − 2y −16x + 2019 0, 5 = (2x + y − 2 1) + (3x − 2 2) + 2014 ≥ 2014 Min 2 1 A= 2014 khi − x = , y = 0,5 3 3 3 c) Ta có: 3 2
n − n − n + = ( 3 n − n) −( 2 3 3 3n − 3) = n( 2 n − ) − ( 2 1 3 n − ) 1 = n(n − ) 1 (n + ) 1 − 3(n − ) 1 (n + ) 1 = (n − ) 1 (n + ) 1 (n − 3) Vì n 0,5
lẻ nên.𝑛𝑛 = 2𝑘𝑘 + 1 (𝑘𝑘 ∈ 𝑍𝑍) Do đó (n − ) 1 (n + )
1 (n − 3) = (2k +1− ) 1 (2k +1+ ) 1 (2k +1− 3)
= 2k (2k + 2)(2k − 2) = 8k (k + ) 1 (k − ) 1 0,25 Vì k (k + ) 1 (k − )
1 là tích của ba số nguyên liên tiếp nên k (k + ) 1 (k − ) 1 chia hết cho 2 và 3. Mà ƯCLN(
2,3) =1 nên k (k + ) 1 (k − ) 1 chia hết cho 6 , suy ra 8k (k + ) 1 (k − ) 1 chia hết cho 48. Vậy 3 2
n − 3n − n + 3 chia hết cho 48 với mọi số nguyên lẻ n . 0,25 Câu Hướng dẫn giải Điểm 4
a) Chứng minh được A ∆ BH = D ∆ MH 0,5
⇒ AB = MD mà AB / /MD 0, 5
Nên ABDM là hình bình hành lại có 2 đường chéo vuông góc
Suy ra ABDM là hình thoi. 0, 5
b) Sử dụng quan hệ từ vuông góc đến song song chứng minh được 0,25 DN ⊥ AC 0,25
Chứng minh được M là trực tâm của A ∆ DC 0,25
Suy ra AM vuông góc với CD
c) Sử dụng kiến thức trong tam giác vuông đường trung tuyến ứng với cạnh
huyền bằng nửa cạnh huyền. 0,25
Suy ra được = = = INC ICN MDH HNM 0,25 Mà + MNI INC = 90° ⇒ +
HNM MNI = 90° ⇒ IN ⊥ HN 025
*) Cho a, b là các số thực dương khác nhau. Chứng minh 1 1 4 + > a b a + b 0,25
a b > a ≠ b ⇒ a − 2 b > ⇒ a + 2 , 0, ( ) 0 ( b) > 4ab a + b 4 1 1 4 ⇒ > ⇒ + > ab ab a b ab *) Cho 1 1 1 1 1 A= + + + ...+ +
Chứng minh rằng A>1 2019 2020 2021 6054 6055 5 Áp dụng câu a ta có 1 1 1 1 1 1 1 A= + ( + ) + ( + ) + ...+ ( + ) 2019 2020 6055 2021 6054 4037 4038 1 4 4 4 A> + ( + + ...+ ) 2019 2020 + 6055 2021+ 6054 4037 + 4038 1 1 1 1 A> + + + ...+ ( có 2019 phân số) 2019 2019 2019 2019 0,25 ⇒ A> 1