Đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT chuyên Lý Tự Trọng – Cần Thơ

Đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT chuyên Lý Tự Trọng – Cần Thơ mã đề 132 được biên soạn nhằm tổng kết lại các nội dung Toán 11 học sinh đã được học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019

Trang 1/6 - Mã đề thi 132
SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ
TRƯỜNG THPT CHUYÊN LÝ TỰ TRỌNG
KIỂM TRA HỌC KÌ I NĂM HỌC 2018 – 2019
Môn: TOÁN; lớp 11
Thời gian làm bài: 90 phút
ĐỀ CHÍNH THỨC
(Đề gồm 02 phần in trên 03 trang)
Họ tên học sinh:……………………………………………. MSHS:………………….
A. PHẦN TRẮC NGHIỆM (6,0 điểm)
Câu 1: Gieo một con súc sắc cân đối đồng chất. Gọi
A
biến cố số chấm xuất hiện trên mặt của
con súc sắc chia hết cho
3
” . Tính
.P A
A.
3.
P A
B.
2
.
3
P A
C.
1
.
3
P A
D.
P A
Câu 2: Cho tứ diện
.ABCD
Gọi
M
N
theo thứ tự là trung điểm của
BC
.CD
Gọi
d
là giao tuyến
của hai mặt phẳng
AMN
ABD
(tham khảo hình vẽ). Khẳng định nào sau đây là đúng?
A. Đường thẳng
d
đi qua điểm
A
và song song với
.BD
B. Đường thẳng
d
đi qua điểm
A
và song song với
.MD
C. Đường thẳng
d
đi qua điểm
A
và song song với
.BC
D. Đường thẳng
d
đi qua điểm
A
và song song với
.NB
Câu 3: Cho hình chóp
.
S ABCD
đáy
ABCD
hình thang,
/ / , 3 .AD BC AD BC
Gọi
,M N
lần lượt
trung diểm của
, ;AB CD G
trọng tâm của tam giác
SAD
(tham khảo hình vẽ). Mặt phẳng
GMN
cắt hình chóp
.
S ABCD
theo thiết diện là
A. Tam giác. B. Hình thang có hai cạnh bên không song song.
C. Ngũ giác. D. Hình bình hành.
Câu 4: Gieo
3
đồng xu cân đối đồng chất là một phép thử ngẫu nhiên có không gian mẫu là
A.
, , , .NN NS SN SS
B.
, , , , , , , .NNN SSS NNS SSN NSN SNS NSS SNN
C.
, , , , , .NNN SSS NNS SSN NSN SNS
D.
, , , , , .NNN SSS NNS SSN NSS SNN
Mã đề 132
Trang 2/6 - Mã đề thi 132
Câu 5: Cho hình chóp
.
S ABCD
đáy
ABCD
hình bình hành (tham khảo hình vẽ). Tìm giao tuyến
của hai mặt phẳng
SAD
.SBC
A. Giao tuyến của hai mặt phẳng
SAD
SBC
đường thẳng
SE
với
E
giao điểm của
AC
.BD
B. Giao tuyến của hai mặt phẳng
SAD
SBC
là đường thẳng
SE
với
E
là giao điểm của
AD
.BC
C. Giao tuyến của hai mặt phẳng
SAD
SBC
là đường thẳng
d
đi qua
S
và song song với
.AD
D. Giao tuyến của hai mặt phẳng
SAD
SBC
là đường thẳng
d
đi qua
S
và song song với
.AB
Câu 6: Cho tứ diện
.ABCD
Gọi
I
J
theo thứ tự trung điểm của
AD
;AC
G
trọng tâm của
tam giác
BCD
(tham khảo hình vẽ). Xác định giao tuyến của hai mặt phẳng
GIJ
.BCD
A. Giao tuyến của hai mặt phẳng
GIJ
BCD
là đường thẳng đi qua
I
và song song với
.AB
B. Giao tuyến của hai mặt phẳng
GIJ
BCD
là đường thẳng đi qua
J
và song song với
.BD
C. Giao tuyến của hai mặt phẳng
GIJ
BCD
là đường thẳng đi qua
G
và song song với
.CD
D. Giao tuyến của hai mặt phẳng
GIJ
BCD
là đường thẳng đi qua
G
và song song với
.BC
Câu 7: Cho một đa giác đều
18
đỉnh nội tiếp trong một đường tròn tâm
O
. Gọi
X
tập hợp các tam
giác các đỉnh các đỉnh của đa giác trên. Tính xác suất để chọn được một tam giác từ tập
X
tam
giác cân nhưng không phải là tam giác đều.
A.
144
.
136
B.
7
.
816
C.
23
.
136
D.
21
.
136
Câu 8: Trên giá sách 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển
sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán.
A.
1
.
21
B.
37
.
42
C.
5
.
42
D.
2
.
7
Câu 9: Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến
A n
đúng với mọi số tự
nhiên
n p
(
p
là một số tự nhiên), ta tiến hành ba bước
Bước 1: Kiểm tra mệnh đúng trong trường hợp
.n p
Bước 2: Giả sử mệnh đề đúng với
n k
(
*
,k p k
), tức ta có
A k
đúng.
Bước 3: Khi
1,
n k
ta chứng minh
1
A k
đúng
Trang 3/6 - Mã đề thi 132
Kết luận: theo phương pháp quy nạp toán học
A n
đúng với mọi số tự nhiên
n p
(
p
một số tự
nhiên)
Khẳng định nào sau đây đúng vcác bước chứng minh một bài toán theo phương pháp quy nạp toán
học?
A. Các bước tiến hành đúng. B. Bước 1 tiến hành sai.
C. Bước 2 tiến hành sai. D. Bước 3 tiến hành sai.
Câu 10: Một học sinh chứng minh mệnh đề “
8 1
n
chia hết cho
7
với mọi
*
n
” như sau
Bước 1: Giả sử đúng với
*
,
n k k
tức là
8 1
k
chia hết cho
7.
Bước 2: Ta có
1
8 1 8 8 1 7,
k k
kết hợp với giả thiết
8 1
k
chia hết cho
7
nên suy ra được
1
8 1
k
chia hết cho
7
. Vậy
8 1
n
chia hết cho
7
với mọi
*
.
n
Khẳng định nào sau đây là đúng?
A. Học sinh chứng minh đúng.
B. Học sinh chứng minh sai vì không kiểm tra mệnh đề đúng trong trường hợp
1.
n
C. Học sinh chứng minh sai vì không có giả thiết quy nạp.
D. Học sinh chứng minh sai vì không sử dụng giả thiết quy nạp.
Câu 11: Trong các khẳng định sau, khẳng định nào là đúng?
A. Nếu đường thẳng
d
song song với mặt phẳng
P
thì trong mặt phẳng
P
tồn tại một đường
thẳng
a
song song với đường thẳng
.d
B. Nếu đường thẳng
d
song song với mặt phẳng
,P
đường thẳng
a
bất kỳ nằm trong mặt phẳng
P
thì
a
d
chéo nhau.
C. Nếu đường thẳng
d
song song với mặt phẳng
P
thì trong mặt phẳng
P
duy nhất một đường
thẳng
a
song song với đường thẳng
.d
D. Nếu đường thẳng
d
song song với mặt phẳng
P
thì
d
song song với mọi đường thẳng nằm trong
mặt phẳng
.P
Câu 12: Cho
3 3 3 3
1 2 3 ...
n
S n
với
*
.
n
Khẳng định nào sau đây là đúng?
A.
2
2
1
.
4
n
n n
S
B.
3
3
1
.
4
n
n n
S
C.
2
2
1
.
4
n
n n
S
D.
3
3
1
.
4
n
n n
S
Câu 13: 8 bạn học sinh lớp 11A trong đó An Bình được xếp ngẫu nhiên theo một hàng ngang.
Tính xác suất để An và Bình ngồi cạnh nhau.
A.
1
.
8
B.
1
.
4
C.
1
.
64
D.
1
.
25
Câu 14: Một lớp 20 nam sinh 15 nữ sinh. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài
tập. Tính xác suất để 4 học sinh được chọn có cả nam và nữ.
A.
4615
.
5263
B.
4610
.
5236
C.
4615
.
5236
D.
4651
.
5236
Câu 15: Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển
sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau.
A.
37
.
42
B.
2
.
7
C.
1
.
21
D.
5
.
42
Câu 16: Trong một lớp học 54 học sinh trong đó 22 nam 32 nữ. Cho rằng ai cũng thể tham
gia làm cán sự lớp. Chọn ngẫu nhiên 4 người để làm ban cán sự lớp gồm 1 lớp trưởng, 1 lớp phó học tập,
1 bí thư đoàn, 1 lớp phó lao động (mỗi người một chức vụ). Tính xác suất để ban cán sự lớp đều là nữ.
A.
4
32
4
54
.
4!
C
C
B.
2 2
32 22
4
54
.
.
A C
A
C.
2 2
32 22
4
54
.
.
C C
A
D.
4
32
4
54
.
4!
A
C
Câu 17: Hai người độc lập nhau ném bóng vào r(biết rằng mỗi người ném bóng vào rổ của mình). Gọi
A
biến cố: “cả hai người cùng không ném trúng bóng vào rổ”, gọi
B
biến cố “có ít nhất một người
ném trúng bóng vào rổ”. Khẳng định nào sau đây là đúng?
A.
A
B
là hai biến cố chắc chắn.
B.
A
B
là hai biến cố không thể.
Trang 4/6 - Mã đề thi 132
C.
A
B
là hai biến cố đối nhau.
D.
A
B
là hai biến cố xung khắc và không phải là đối nhau.
Câu 18: Cho
1 1 1 1
...
1.2 2.3 3.4 1
n
S
n n
với
*
.n N
Tính
3
.S
A.
3
1
.
12
S
B.
3
1
.
6
S
C.
3
3
.
4
S
D.
3
2
.
3
S
Câu 19: Trong các khẳng định sau, khẳng định nào đúng?
A. Nếu hai đường thẳng chéo nhau thì hai đường thẳng đó có điểm chung.
B. Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.
C. Nếu hai đường thẳng đồng phẳng thì hai đường thẳng đó song song với nhau.
D. Nếu hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì hai đường thẳng đó chéo nhau.
Câu 20: Khi thực hiện phép thử
,T
Gọi
,A B
hai biến cố liên quan đến phép thử
.T
Khi đó
,
P A P B
lần lượt là xác suất của hai biến cố
, .A B
Khẳng định nào sau đây là sai?
A. Nếu
A B
thì
A
B
là hai biến cố đối nhau.
B. Nếu
0
P B
thì
B
là biến cố không thể.
C. Nếu
1
P A
thì
A
là biến cố chắc chắn.
D. Nếu
,A B
là hai biến cố đối nhau thì
1.
P A P B
Câu 21: Gieo một đồng tiền cân đối đồng chất liên tiếp 3 lần. Tính xác suất của biến cố A: “có đúng 2 lần
xuất hiện mặt sấp”
A.
1
.
2
P A
B.
1
.
4
P A
C.
3
.
8
P A
D.
7
.
8
P A
Câu 22: Cho hình chóp
.
S ABCD
đáy
ABCD
hình bình hành. Gọi
,M N
lần lượt trung điểm của
,SA SC
(tham khảo hình vẽ). Tìm giao tuyến
d
của hai mặt phẳng
BMN
A.
d
là đường thẳng đi qua
B
và song song với
.AC
B.
d
là đường thẳng đi qua
S
và song song với
.AD
C.
d
là đường thẳng đi qua
B
và song song với
.CD
D.
d
là đường thẳng đi qua hai điểm
, .M N
Câu 23: Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên
bi. Tính xác suất lấy được cả 3 viên bi đỏ.
A.
143
.
280
B.
1
.
560
C.
1
.
16
D.
1
.
28
Câu 24: Cho ba mặt phẳng
, ,P Q R
lần lượt giao nhau theo ba giao tuyến phân biệt
, , .a b c
Khẳng
định nào sau đây là đúng?
A. Ba đường thẳng
, ,a b c
đôi một cắt nhau.
B. Ba đường thẳng
, ,a b c
đôi một cắt nhau và tạo thành một tam giác.
C. Ba đường thẳng
, ,a b c
song song.
D. Ba đường thẳng
, ,a b c
song song hoặc đồng quy.
Trang 5/6 - Mã đề thi 132
Câu 25: Dùng quy nạp chứng minh mệnh đề chứa biến
A n
đúng với mọi số tự nhiên
n p
(
p
một
số tự nhiên). bước 1 (bước sở) của chứng minh quy nạp, bắt đầu chứng minh
A n
đúng với
n
bằng
A.
1.
n p
B.
1.
n
C.
1.
n p
D.
.n p
Câu 26: Gieo ngẫu nhiên
2
con súc sắc cân đối đồng chất. Tìm xác suất của biến cố: “Hiệu số chấm xuất
hiện trên
2
con súc sắc bằng
1
”.
A.
1
9
. B.
2
9
. C.
5
6
. D.
5
18
.
Câu 27: Một tổ học sinh 7 nam 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người
được chọn đều là nữ.
A.
1
.
5
B.
7
.
15
C.
8
.
15
D.
1
.
15
Câu 28: Cho hình chóp
.
S ABCD
đáy
ABCD
hình thang đáy lớn
.AD
Lấy điểm
M
thuộc cạnh
SD
sao cho
2 .MD SM
Gọi
N
là giao điểm của
SA
MBC
(tham khảo hình vẽ). Tính tỉ số
.
SN
SA
A
D
B
S
C
M
A.
1
.
3
SN
SA
B.
1
.
2
SN
SA
C.
3.
SN
SA
D.
2.
SN
SA
Câu 29: Khi thực hiện phép thử
T
chỉ có một số hữu hạn các kết quả đồng khả năng xuất hiện. Gọi
n
số kết quả thể xảy ra của phép thử,
A
biến cố liên quan đến phép thử
,T
n A
số kết quả
thuận cho biến cố
,A
P A
là xác suất của biến cố
.A
Khẳng định nào sau đây đúng?
A.
.
P A n
B.
.
n
P A
n A
C.
.P A n A
D.
.
n A
P A
n
Câu 30: Cho tứ diện
.ABCD
Gọi
,I J
lần lượt trọng tâm của các tam giác
ABC
ABD
(tham khảo
hình vẽ). Khẳng định nào sau đây đúng?
A.
IJ
song song với
.CD
B.
IJ
song song với
.AB
C.
IJ
CD
chéo nhau. D.
IJ
cắt
.AB
-----------------------------------------------
Trang 6/6 - Mã đề thi 132
B. PHẦN TỰ LUẬN (4,0 điểm)
Câu 31 (1,0 điểm). Chứng minh rằng với mọi
*
n
thì
7 1
n
chia hết cho
6.
Câu 32 (1,0 điểm). Trường THPT chuyên Lý Tự Trọng có
15
học sinh Đoàn viên ưu tú, trong đó khối
12
3
nam
3
nữ, khối
11
2
nam
3
nữ, khối
10
2
nam
2
nữ. Đoàn trường chọn ra
1
nhóm gồm
4
học sinh là Đoàn viên ưu tú để tham gia lao động Nghĩa trang liệt sĩ. Tính xác suất để nhóm
được chọn có cả nam và nữ, đồng thời mỗi khối có
1
học sinh nam.
Câu 33 (2,0 điểm). Cho hình chóp
.
S ABCD
đáy
ABCD
hình bình hành tâm
.O
Gọi
,M N
lần
lượt là trung điểm
, .SA SB
a) Chứng minh rằng đường thẳng
MO
song song với mặt phẳng
.SCD
b) Xác định thiết diện của hình chóp tạo bởi mặt phẳng
.MON
-
---------- HẾT ----------
Học sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm.
| 1/6

Preview text:

SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ
KIỂM TRA HỌC KÌ I NĂM HỌC 2018 – 2019
TRƯỜNG THPT CHUYÊN LÝ TỰ TRỌNG Môn: TOÁN; lớp 11
Thời gian làm bài: 90 phút ĐỀ CHÍNH THỨC Mã đề 132
(Đề gồm 02 phần in trên 03 trang)
Họ tên học sinh:……………………………………………. MSHS:………………….
A. PHẦN TRẮC NGHIỆM (6,0 điểm)
Câu 1: Gieo một con súc sắc cân đối và đồng chất. Gọi A là biến cố “ số chấm xuất hiện trên mặt của
con súc sắc chia hết cho 3 ” . Tính P A. 2 1
A. P A  3.
B. P A  .
C. P A  .
D. P A  1. 3 3
Câu 2: Cho tứ diện ABC .
D Gọi M N theo thứ tự là trung điểm của BC CD. Gọi d là giao tuyến
của hai mặt phẳng  AMN  và  ABD (tham khảo hình vẽ). Khẳng định nào sau đây là đúng?
A. Đường thẳng d đi qua điểm A và song song với BD.
B. Đường thẳng d đi qua điểm A và song song với M . D
C. Đường thẳng d đi qua điểm A và song song với BC.
D. Đường thẳng d đi qua điểm A và song song với N . B
Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD / / BC, AD  3BC. Gọi M , N lần lượt
là trung diểm của AB,CD; G là trọng tâm của tam giác SAD (tham khảo hình vẽ). Mặt phẳng GMN
cắt hình chóp S.ABCD theo thiết diện là A. Tam giác.
B. Hình thang có hai cạnh bên không song song. C. Ngũ giác. D. Hình bình hành.
Câu 4: Gieo 3 đồng xu cân đối đồng chất là một phép thử ngẫu nhiên có không gian mẫu là
A. NN , NS, SN , SS.
B. NNN , SSS, NNS, SSN , NSN , SNS, NSS, SNN.
C. NNN , SSS, NNS, SSN , NSN , SNS.
D. NNN , SSS, NNS, SSN , NSS, SNN.
Trang 1/6 - Mã đề thi 132
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (tham khảo hình vẽ). Tìm giao tuyến
của hai mặt phẳng SAD và SBC .
A. Giao tuyến của hai mặt phẳng SAD  và SBC  là đường thẳng SE với E là giao điểm của AC BD.
B. Giao tuyến của hai mặt phẳng SAD  và SBC  là đường thẳng SE với E là giao điểm của AD BC.
C. Giao tuyến của hai mặt phẳng SAD  và SBC  là đường thẳng d đi qua S và song song với AD.
D. Giao tuyến của hai mặt phẳng SAD  và SBC  là đường thẳng d đi qua S và song song với AB.
Câu 6: Cho tứ diện ABCD. Gọi I J theo thứ tự là trung điểm của AD AC; G là trọng tâm của
tam giác BCD (tham khảo hình vẽ). Xác định giao tuyến của hai mặt phẳng GIJ  và  BCD.
A. Giao tuyến của hai mặt phẳng GIJ  và  BCD là đường thẳng đi qua I và song song với AB.
B. Giao tuyến của hai mặt phẳng GIJ  và  BCD là đường thẳng đi qua J và song song với BD.
C. Giao tuyến của hai mặt phẳng GIJ  và  BCD là đường thẳng đi qua G và song song với CD.
D. Giao tuyến của hai mặt phẳng GIJ  và  BCD là đường thẳng đi qua G và song song với BC.
Câu 7: Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O . Gọi X là tập hợp các tam
giác có các đỉnh là các đỉnh của đa giác trên. Tính xác suất để chọn được một tam giác từ tập X là tam
giác cân nhưng không phải là tam giác đều. 144 7 23 21 A. . B. . C. . D. . 136 816 136 136
Câu 8: Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển
sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán. 1 37 5 2 A. . B. . C. . D. . 21 42 42 7
Câu 9: Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến An đúng với mọi số tự
nhiên n p ( p là một số tự nhiên), ta tiến hành ba bước
Bước 1: Kiểm tra mệnh đúng trong trường hợp n p.
Bước 2: Giả sử mệnh đề đúng với n k ( *
k p, k   ), tức ta có Ak  đúng.
Bước 3: Khi n k 1, ta chứng minh Ak   1 đúng
Trang 2/6 - Mã đề thi 132
Kết luận: theo phương pháp quy nạp toán học An đúng với mọi số tự nhiên n p ( p là một số tự nhiên)
Khẳng định nào sau đây đúng về các bước chứng minh một bài toán theo phương pháp quy nạp toán học?
A. Các bước tiến hành đúng.
B. Bước 1 tiến hành sai.
C. Bước 2 tiến hành sai.
D. Bước 3 tiến hành sai.
Câu 10: Một học sinh chứng minh mệnh đề “ 8n  1 chia hết cho 7 với mọi * n   ” như sau
Bước 1: Giả sử đúng với n k  *
k   , tức là 8k 1 chia hết cho 7. Bước 2: Ta có k 1
8  1  88k  
1  7, kết hợp với giả thiết 8k  1 chia hết cho 7 nên suy ra được k 1 8  1
chia hết cho 7 . Vậy 8n 1 chia hết cho 7 với mọi * n   .
Khẳng định nào sau đây là đúng?
A. Học sinh chứng minh đúng.
B. Học sinh chứng minh sai vì không kiểm tra mệnh đề đúng trong trường hợp n  1.
C. Học sinh chứng minh sai vì không có giả thiết quy nạp.
D. Học sinh chứng minh sai vì không sử dụng giả thiết quy nạp.
Câu 11: Trong các khẳng định sau, khẳng định nào là đúng?
A. Nếu đường thẳng d song song với mặt phẳng  P thì trong mặt phẳng  P tồn tại một đường
thẳng a song song với đường thẳng d .
B. Nếu đường thẳng d song song với mặt phẳng  P , đường thẳng a bất kỳ nằm trong mặt phẳng
P thì a d chéo nhau.
C. Nếu đường thẳng d song song với mặt phẳng  P thì trong mặt phẳng  P có duy nhất một đường
thẳng a song song với đường thẳng d .
D. Nếu đường thẳng d song song với mặt phẳng  P thì d song song với mọi đường thẳng nằm trong
mặt phẳng  P. Câu 12: Cho 3 3 3 3
S  1  2  3  ...  n với *
n   . Khẳng định nào sau đây là đúng? n n n  2 2 1 n n  3 3 1 n n  2 2 1 n n  3 3 1 A. S  . B. S  . C. S  . D. S  . n 4 n 4 n 4 n 4
Câu 13: Có 8 bạn học sinh lớp 11A trong đó có An và Bình được xếp ngẫu nhiên theo một hàng ngang.
Tính xác suất để An và Bình ngồi cạnh nhau. 1 1 1 1 A. . B. . C. . D. . 8 4 64 25
Câu 14: Một lớp có 20 nam sinh và 15 nữ sinh. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài
tập. Tính xác suất để 4 học sinh được chọn có cả nam và nữ. 4615 4610 4615 4651 A. . B. . C. . D. . 5263 5236 5236 5236
Câu 15: Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển
sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau. 37 2 1 5 A. . B. . C. . D. . 42 7 21 42
Câu 16: Trong một lớp học có 54 học sinh trong đó có 22 nam và 32 nữ. Cho rằng ai cũng có thể tham
gia làm cán sự lớp. Chọn ngẫu nhiên 4 người để làm ban cán sự lớp gồm 1 lớp trưởng, 1 lớp phó học tập,
1 bí thư đoàn, 1 lớp phó lao động (mỗi người một chức vụ). Tính xác suất để ban cán sự lớp đều là nữ. 4 C 2 2 A .C 2 2 C .C 4 A A. 32 . B. 32 22 . C. 32 22 . D. 32 . 4 4!C 4 A 4 A 4 4!C 54 54 54 54
Câu 17: Hai người độc lập nhau ném bóng vào rổ (biết rằng mỗi người ném bóng vào rổ của mình). Gọi
A là biến cố: “cả hai người cùng không ném trúng bóng vào rổ”, gọi B là biến cố “có ít nhất một người
ném trúng bóng vào rổ”. Khẳng định nào sau đây là đúng?
A. A B là hai biến cố chắc chắn.
B. A B là hai biến cố không thể.
Trang 3/6 - Mã đề thi 132
C. A B là hai biến cố đối nhau.
D. A B là hai biến cố xung khắc và không phải là đối nhau. 1 1 1 1 Câu 18: Cho S     ...  với *
n N . Tính S . n 1.2 2.3 3.4 n n   1 3 1 1 3 2 A. S  . B. S  . C. S  . D. S  . 3 12 3 6 3 4 3 3
Câu 19: Trong các khẳng định sau, khẳng định nào đúng?
A. Nếu hai đường thẳng chéo nhau thì hai đường thẳng đó có điểm chung.
B. Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.
C. Nếu hai đường thẳng đồng phẳng thì hai đường thẳng đó song song với nhau.
D. Nếu hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì hai đường thẳng đó chéo nhau.
Câu 20: Khi thực hiện phép thử T , Gọi ,
A B là hai biến cố liên quan đến phép thử T. Khi đó
P A, P B lần lượt là xác suất của hai biến cố , A .
B Khẳng định nào sau đây là sai?
A. Nếu A B   thì A B là hai biến cố đối nhau.
B. Nếu P B  0 thì B là biến cố không thể.
C. Nếu P A  1 thì A là biến cố chắc chắn. D. Nếu ,
A B là hai biến cố đối nhau thì P A  P B  1.
Câu 21: Gieo một đồng tiền cân đối đồng chất liên tiếp 3 lần. Tính xác suất của biến cố A: “có đúng 2 lần xuất hiện mặt sấp” 1 1 3 7
A. P A  .
B. P A  .
C. P A  .
D. P A  . 2 4 8 8
Câu 22: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M , N lần lượt là trung điểm của ,
SA SC (tham khảo hình vẽ). Tìm giao tuyến d của hai mặt phẳng  BMN  và ABCD .
A. d là đường thẳng đi qua B và song song với AC.
B. d là đường thẳng đi qua S và song song với AD.
C. d là đường thẳng đi qua B và song song với CD.
D. d là đường thẳng đi qua hai điểm M , N.
Câu 23: Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên
bi. Tính xác suất lấy được cả 3 viên bi đỏ. 143 1 1 1 A. . B. . C. . D. . 280 560 16 28
Câu 24: Cho ba mặt phẳng  P,Q , R lần lượt giao nhau theo ba giao tuyến phân biệt a, b, . c Khẳng
định nào sau đây là đúng?
A. Ba đường thẳng a, b, c đôi một cắt nhau.
B. Ba đường thẳng a, b, c đôi một cắt nhau và tạo thành một tam giác.
C. Ba đường thẳng a, b, c song song.
D. Ba đường thẳng a, b, c song song hoặc đồng quy.
Trang 4/6 - Mã đề thi 132
Câu 25: Dùng quy nạp chứng minh mệnh đề chứa biến An đúng với mọi số tự nhiên n p ( p là một
số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu chứng minh An đúng với n bằng
A. n p 1. B. n  1.
C. n p 1. D. n p.
Câu 26: Gieo ngẫu nhiên 2 con súc sắc cân đối đồng chất. Tìm xác suất của biến cố: “Hiệu số chấm xuất
hiện trên 2 con súc sắc bằng 1”. 1 2 5 5 A. . B. . C. . D. . 9 9 6 18
Câu 27: Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người
được chọn đều là nữ. 1 7 8 1 A. . B. . C. . D. . 5 15 15 15
Câu 28: Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn là AD. Lấy điểm M thuộc cạnh SN
SD sao cho MD  2SM . Gọi N là giao điểm của SA và  MBC  (tham khảo hình vẽ). Tính tỉ số . SA S M A D B C SN 1 SN 1 SN SN A.  . B.  . C.  3. D.  2. SA 3 SA 2 SA SA
Câu 29: Khi thực hiện phép thử T chỉ có một số hữu hạn các kết quả đồng khả năng xuất hiện. Gọi n 
là số kết quả có thể xảy ra của phép thử, A là biến cố liên quan đến phép thử T , n A là số kết quả thuận cho biến cố ,
A P A là xác suất của biến cố .
A Khẳng định nào sau đây đúng? n  n A
A. P A  n .
B. P A  .
C. P A  n A.
D. P A  . n An 
Câu 30: Cho tứ diện ABCD. Gọi I , J lần lượt là trọng tâm của các tam giác ABC ABD (tham khảo
hình vẽ). Khẳng định nào sau đây đúng?
A. IJ song song với CD.
B. IJ song song với AB.
C. IJ CD chéo nhau.
D. IJ cắt AB.
-----------------------------------------------
Trang 5/6 - Mã đề thi 132
B. PHẦN TỰ LUẬN (4,0 điểm)
Câu 31 (1,0 điểm). Chứng minh rằng với mọi *
n   thì 7n 1 chia hết cho 6.
Câu 32 (1,0 điểm). Trường THPT chuyên Lý Tự Trọng có 15 học sinh là Đoàn viên ưu tú, trong đó khối
12 có 3 nam và 3 nữ, khối 11 có 2 nam và 3 nữ, khối 10 có 2 nam và 2 nữ. Đoàn trường chọn ra 1
nhóm gồm 4 học sinh là Đoàn viên ưu tú để tham gia lao động Nghĩa trang liệt sĩ. Tính xác suất để nhóm
được chọn có cả nam và nữ, đồng thời mỗi khối có 1 học sinh nam.
Câu 33 (2,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M , N lần
lượt là trung điểm S , A SB.
a) Chứng minh rằng đường thẳng MO song song với mặt phẳng  SCD .
b) Xác định thiết diện của hình chóp tạo bởi mặt phẳng MON . ----------- HẾT ----------
Học sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm.
Trang 6/6 - Mã đề thi 132