Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa

Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 – 2021.

Số báo danh
……………………..
PHÒNG GD&ĐT HÀ TRUNG
ĐỀ GIAO LƯU HỌC SINH GIỎ
I CÁC MÔN VĂN HÓA
CẤP HUYỆN NĂM HỌC 2020-2021
Môn : TOÁN 7
Ngày thi : 09 tháng 4 năm 2021
Thời gian : 150 phút ( không kể thời gian giao đề)
Đề thi gồm 06 câu, 01 trang
Câu 1(4,0 điểm): Thực hiện phép tính:
a)
7 10 7 9 2
. .
35 9 19 35 35
A
b)
15 9 20 9
10 19 29 6
5.4 .9 4.3 .8
B
c)
1 1 1 1 1
1 1 1 1 ... 1
1.3 2.4 3.5 4.6 98.100
C
d)
10 5 5 3 3
155 0,9
7 11 23 5 13
26 13 13 7 3
403 0,2
7 11 23 91 10
D
Câu 2 ( 3,5 điểm)
a. Tìm x :
2 1 1 6
3 4.3 3 6
x x x
b. Tìm x,y,z biết :
3 2 2 5 5 3
5 3 2
x y z x y z
50
x y z
Câu 3 (3,0 điểm)
a) Cho đa thức :
8 7 6 5
( ) 99 99 99 99 25
f x x x x x x
. Tính f(100)
b) Số A được chia thành 3 số tỉ lệ theo
2 3 1
: :
5 4 6
. Biết rằng tổng các bình phương
của 3 số đó bằng 24309. Tìm số A.
Câu 4 (3,0 điểm):
a) Tìm
,
x y Z
biết : xy+2x-y = 5
b) Cho
2 2 2 2
1 1 1 1
...
2 3 4 2000
A
. Chứng minh A< 1.
Câu 5 (5,5 điểm):
1) Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường
thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia Ac
tại F. Chứng minh rằng:
a) AE = AF
b) BE = CF
c)
2
AB AC
AE
2) Cho A nằm trong góc xOy nhọn. Tìm điểm B,C lần lượt thuộc Ox, Oy sao cho
tam giác ABC có chu vi nhỏ nhất
Câu 6 (1,0 điểm): Tìm các số x,y,z nguyên dương thỏa mãn : x + y + z = xyz
---HẾT---
| 1/1

Preview text:

PHÒNG GD&ĐT HÀ TRUNG
ĐỀ GIAO LƯU HỌC SINH GIỎI CÁC MÔN VĂN HÓA
CẤP HUYỆN NĂM HỌC 2020-2021 Số báo danh Môn : TOÁN 7
Ngày thi : 09 tháng 4 năm 2021 ……………………..
Thời gian : 150 phút ( không kể thời gian giao đề)
Đề thi gồm 06 câu, 01 trang
Câu 1(4,0 điểm): Thực hiện phép tính: a) 7 10 7 9 2 A  .  .  35 9 19 35 35 15 9 20 9 b) 5.4 .9  4.3 .8 B  10 19 29 6 5.2 .6  7.2 .27 c)  1  1  1  1   1  C  1 1 1 1 ... 1         1.3  2.4  3.5  4.6   98.100  10 5 5 3 3 155      0,9 d) 7 11 23 5 13 D   26 13 13 7 3 403     0,2  7 11 23 91 10 Câu 2 ( 3,5 điểm) a. Tìm x : x2 x 1  x 1  6 3  4.3  3  6
b. Tìm x,y,z biết : 3x  2y 2z  5x 5y  3z   và x  y  z  50 5 3 2 Câu 3 (3,0 điểm) a) Cho đa thức : 8 7 6 5
f (x)  x  99x  99x  99x  99x  25 . Tính f(100)
b) Số A được chia thành 3 số tỉ lệ theo 2 3 1
: : . Biết rằng tổng các bình phương 5 4 6
của 3 số đó bằng 24309. Tìm số A. Câu 4 (3,0 điểm):
a) Tìm x, y  Z biết : xy+2x-y = 5 b) Cho 1 1 1 1 A     ...  . Chứng minh A< 1. 2 2 2 2 2 3 4 2000 Câu 5 (5,5 điểm):
1) Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường
thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia Ac tại F. Chứng minh rằng: a) AE = AF b) BE = CF c) AB  AC AE  2
2) Cho A nằm trong góc xOy nhọn. Tìm điểm B,C lần lượt thuộc Ox, Oy sao cho
tam giác ABC có chu vi nhỏ nhất
Câu 6 (1,0 điểm): Tìm các số x,y,z nguyên dương thỏa mãn : x + y + z = xyz ---HẾT---