Experiment Report 1
MEASUREMENT OF RESISTANCE, CAPACITENCE,
INDUCTANCE AND RESONANT FREQUENCIES OF RLC USING
OSCILLOSCOPE
Name: Nguyễn Nhật Minh
Group: 04
Student ID: 20224347
Verification of the instructors
I. EXPERIMENT MOTIVATIONS
-Understand a typical circuit
-Learn how to use electrical equipment including oscilloscope and function
generator
-Improving experimental skills.
II. EXPERIMENT RESULTS.
1.Resistance Measurement:
Trial f (Hz) R( )
11000 2022
22000 2025
33000 2026
2.Capacitance Measurement:
Trial f (Hz) R (Ω)
11000 2403
22000 1186
33000 804
3.Inductance Measurement
Trial f (Hz) R (Ω)
110000 56
220000 107
330000 166
4.Determination of Resonant Frequency:
Trial Series RLC Parallel RLC
122699 (Hz) 22704 (Hz)
223004 (Hz) 23002 (Hz)
323114 (Hz) 23105 (Hz)
II. Data Analysis:
1.Resistance Measurement:
We have
RX=R0
Rx=
i=1
3
Ri
3=2024()
ΔRx≈S. D
i=1
3
(
RxiRx
)
2
3=1()
Hence:
Rx=2024±1()
2.Capacitence Measurement:
Zx=1
2πfCx
=R0
hence
CX=1
2πfR0
C1=6.62×108(F)
;
C2=6.71×108(F)
;
C3=6.60×108(F)
CX=
i=1
3
Cxi
3=6.64×108(F)
ΔCX S. D≈
i=1
3
¿ ¿ ¿ ¿ ¿
Hence:
CX=
(6.64±0.03 )
×108(F)
3.Inductance Measurement:
ZL=2πf .Lx=R0
hence
Lx=R0
2πf
We have:
L1=8.9×104(H)
L2=8.5×104(H)
L3=8.9×104(H)
Lx=
i=1
3
Lxi
3=8.7×104(H)
ΔLx S. D
i=1
3
(
LxiLx
)
2
3=0.1×104(H)
Hence:
LX=( )8.7±0.1)×104(H
4.Determination of Resonant Frequency:
a. :Series RLC Circuit
fx=
i=1
3
fxi
3=22936(Hz)
Δf x S .D
i=1
3
(fXifX)2
3=99(Hz)
Hence:
fXSeries=fx+Δfx=
(22,936±0.1 ).103(Hz)
:b.Parallel RLC Circuit
fX=
i=1
3
fxi
3=22937(Hz)
Δf X S. D
i=1
3
(
fXifX
)
2
3=98(Hz)
Hence:
fX¿=fx+Δfx=
(
22,937±0.1
)
.103(Hz)
c.Theoretical Result and Conclusion
f=1
2π
LC
fX=1
2π
8.7×10 104×6.64× 8=20940(Hz)
Hence:
fXT heoretical=20940
(
Hz
)
We can see that:
The theoretical result of resonant frequency is approximately equal to the
directly measured results. We can see that the RLC circuit (with properly
small resistance) becomes a good approximation to an ideal LC circuit.

Preview text:

Experiment Report 1
MEASUREMENT OF RESISTANCE, CAPACITENCE,
INDUCTANCE AND RESONANT FREQUENCIES OF RLC USING OSCILLOSCOPE
Verification of the instructors
Name: Nguyễn Nhật Minh Group: 04 Student ID: 20224347
I. EXPERIMENT MOTIVATIONS -Understand a typical circuit
-Learn how to use electrical equipment including oscilloscope and function generator
-Improving experimental skills. II. EXPERIMENT RESULTS.
1.Resistance Measurement: Trial f (Hz) R(Ω) 11000 2022 22000 2025 33000 2026
2.Capacitance Measurement: Trial f (Hz) R (Ω) 11000 2403 22000 1186 33000 804
3.Inductance Measurement Trial f (Hz) R (Ω) 110000 56 220000 107 330000 166
4.Determination of Resonant Frequency: Trial Series RLC Parallel RLC 122699 (Hz) 22704 (Hz) 223004 (Hz) 23002 (Hz) 323114 (Hz) 23105 (Hz) II. Data Analysis:
1.Resistance Measurement: We have RX=R0 3 ∑ Ri i=1 Rx= 3=2024()
√3∑(RxiRx)2 ΔR i=1 x≈S. D ≈ 3=1() Hence:
Rx=2024±1()
2.Capacitence Measurement: Zx=1 =R0 hence CX=1 2πfCx 2πfR0
C1=6.62×10−8(F) ; C2=6.71×10−8(F) ; C3=6.60×10−8(F) 3 ∑ Cxi C i=1 X=
3=6.64×10−8(F) 3
Δ CX≈ S. D≈ √∑¿¿¿¿¿ i=1 Hence:
CX= (6.64±0.03 )×10−8(F)
3.Inductance Measurement: L Z x=R0
L=2πf .Lx=R0 hence 2πf We have:
L1=8.9×10−4(H)
L2=8.5×10−4(H)
L3=8.9×10−4(H) 3 ∑ Lxi i=1 L 3=8.7 x= ×10−4(H)
√3∑(LxiLx)2 i=1 ΔL 3=0.1 x≈ S. D ≈ ×10−4(H) Hence:
LX=( 8.7±0.1)×10−4(H)
4.Determination of Resonant Frequency:
a. Series RLC Circuit: 3 ∑ fxi i=1 fx= 3=22936(Hz) √3∑(f XifX)2 i=1 Δf x≈ S .D ≈ 3=99(Hz) Hence:
fXSeries=fx+Δfx=
(22,936±0.1 ).103(Hz)
b.Parallel RLC Circuit: 3 ∑ fxi f i=1 X= 3=22937(Hz)
√3∑(fXifX )2 i=1 Δf X≈ S. D ≈ 3=98(Hz) Hence:
fX−¿=fx+Δfx=
(22,937±0.1 ).103(Hz)❑
c.Theoretical Result and Conclusion f=1 2π LC fX=1
8.7×10−4×6.64×10−8=20940(Hz) 2π √ Hence:
fXT heoretical=20940 (Hz) We can see that:
The theoretical result of resonant frequency is approximately equal to the
directly measured results. We can see that the RLC circuit (with properly
small resistance) becomes a good approximation to an ideal LC circuit.