Kiểm tra định kỳ HK2 Toán 12 lần 1 năm 2018 – 2019 trường Lương Định Của – Cần Thơ

Đề kiểm tra định kỳ HK2 Toán 12 lần 1 năm học 2018 – 2019 trường THPT Lương Định Của – Cần Thơ là đề kiểm tra một tiết Giải tích 12 chương 3, nội dung kiểm tra

Trang 1/4 - Mã đề thi 133 - https://toanmath.com/
TRƯỜNG THPT LƯƠNG ĐỊNH CỦA
TỔ TOÁN TIN 2018- 2019
ĐỀ KIỂM TRA ĐỊNH KỲ HỌC KỲ II
MÔN TOÁN 12 - LẦN 1
ĐỀ CHÍNH THỨC
Thời gian: 45 phút (không kể thời gian phát đề)
Mã đề thi
133
Họ và tên: ……………………………….……………..…….…. Lớp: ………..………
Câu 1. hiệu diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng
(như hình bên). Hỏi khẳng định nào dưới đây là khẳng định đúng?
A. B.
C. . D.
Câu 2. Cho hàm số
fx
liên tục trên
;ab



Fx
là một nguyên hàm của
fx
. Tìm khẳng định sai.
A.
d
b
a
f x x Fb Fa

. B.
d0
a
a
fx x
.
C.
dd
ba
ab
fx x fx x

. D.
d
b
a
f x x Fa Fb
.
Câu 3. Tích phân
2
cos
0
e .sin d
x
xx
bằng .
A.
e1
. B.
e1
. C.
e
. D.
1e
.
Câu 4. Cho hình
H
hình phẳng giới hạn bởi parabol
2
44
yx x
, đường cong
3
yx
trục
hoành (phần tô đậm trong hình vẽ). Tính diện tích
S
của hình
H
.
A.
11
2
S 
. B.
11
2
S
. C.
7
12
S
. D.
20
3
S
.
S
( )
y fx
=
, x ax b= =
( )
( )
d d.
cb
ac
S fx x fx x= +
∫∫
(
)
( )
d d.
cb
ac
S fx x fx x
= +
∫∫
( ) ( )
dd
cb
ac
S fx x fx x
=−+
∫∫
( )
d.
b
a
S fx x
=
O
a
c
b
x
y
( )
y fx=
Trang 2/4 - Mã đề thi 133 - https://toanmath.com/
Câu 5. Tính tích phân
2
2
1
4
d
xx
Ix
x
.
A.
29
2
I
. B.
29
2
I
. C.
11
2
I
. D.
11
2
I
.
Câu 6. Cho hàm số
fx
thỏa mãn đồng thời các điều kiện
sinfx x x

01
f
. Tìm
fx
.
A.
2
1
cos
22
x
fx x
B.
2
cos 2
2
x
fx x
C.
2
cos
2
x
fx x
D.
2
cos 2
2
x
fx x
Câu 7. Cho hàm số
y fx
đạo hàm
fx
liên tục trên
1; 4



,
1 12
f
4
1
d 17
fx x
. Giá trị
của
4f
bằng
A.
19
. B.
9
. C.
29
. D.
5
.
Câu 8. Tính thể tích
V
của vật thể nằm giữa hai mặt phẳng
0
x
và
x
, biết rằng thiết diện của vật thể
bị cắt bởi mặt phẳng vuông c với trục
Ox
tại điểm hoành độ
x
0
x 
một tam giác đều cạnh
2 sin x
.
A.
23V
B.
23V
C.
3V
D.
3V
Câu 9. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số
2
2
yx

yx
bằng
A.
9
2
. B.
3
2
. C.
11
6
. D.
3
.
Câu 10. Biết
1
2
1
2 ln
d.
e
x
x a be
x

, vi
,ab
. Chọn khẳng định đúng trong các khẳng định sau:
A.
6ab 
. B.
3ab 
. C.
6ab
. D.
3ab
.
Câu 11. Một vật chuyển động với vận tốc
( )(
)
/
vt m s
gia tốc
( )
(
)
2
3
'/
1
vt ms
t
=
+
. Vận tốc ban đầu của
vật là
6/ms
. Hỏi vận tốc của vật sau 10 giây (làm tròn đến kết quả đến chữ số thập phân thứ nhất) giá trị
gần với giá trị nào sau đây?
A.
( )
13,1 /ms
. B.
( )
13, 3 /ms
. C.
( )
13, 2 /
ms
. D.
( )
13 /ms
.
Câu 12. Cho
,fg
hai hàm số liên tục trên
1; 3



thỏa mãn:
3
1
3 10f x g x dx




,
3
1
26f x g x dx




. Tính
3
1
f x g x dx



A.
9
. B.
8
. C.
6
. D.
7
.
Câu 13. Nguyên hàm của hàm số
3
29fx x
A.
4
1
9
2
x xC
. B.
4
49x xC
. C.
4
1
4
xC
. D.
3
49x xC
.
Trang 3/4 - Mã đề thi 133 - https://toanmath.com/
Câu 14. Viết công thức tính thể tích
V
của phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục
Ox
tại các điểm
xa
,
xb
ab
diện tích thiết diện bị cắt bởi mặt phẳng vuông góc với trục
Ox
tại
điểm có hoành độ
x
axb
Sx
.
A.
d
a
b
V Sx x
. B.
d
b
a
V Sx x
.
C.
2
d
b
a
V Sx x
. D.
d
b
a
V Sx x
.
Câu 15. Kết quả tích phân được viết dưới dạng . với là các s hu t. Tìm
khẳng định đúng.
A. . B. . C. . D.
Câu 16. Cho hàm số
y fx
thỏa mãn
2
0
sin . d 0xf x x f
1
. Tính
2
0
cos . d
I xf x x
.
A.
2I
. B.
1I 
. C.
1I
. D.
0I
.
Câu 17. Khi tính nguyên hàm
3
d
1
x
x
x
, bằng cách đặt
1ux
ta được nguyên hàm nào?
A.
2
2 4duu
. B.
2
3duu
. C.
2
2 4duu u
. D.
2
4duu
.
Câu 18. Viết công thức tính th tích của khi tròn xoay đưc tạo ra khi quay hình thang cong, giới hạn bởi
đồ th hàm số , trục và hai đường thẳng , xung quanh trục .
A. B. C. D.
Câu 19. Cho hai tích phân
5
2
d8fx x
2
5
d3gx x
. Tính
5
2
4 1dI fx gx x




.
A.
11
I 
. B.
13I
. C.
27I
. D.
3
I
.
Câu 20. Cho
dfx x Fx C
. Khi đó với
0a
,
a
,
b
là hằng số, ta có
A.
d
f ax b x aF ax b C 
. B.
1
df ax b x F ax b C
ab

.
C.
df ax b x F ax b C 
. D.
1
df ax b x F ax b C
a

.
Câu 21. Biết
2 22
d , .
x xx
xe x axe be C a b 
Tính tích
ab
.
A.
1
4
ab 
. B.
1
4
ab
. C.
1
8
ab 
. D.
1
8
ab
.
(
)
1
0
2 3d
x
I x ex
= +
I ae b= +
,ab
21ab+=
33
28
ab+=
3ab =
2ab−=
V
( )
y fx=
Ox
( )
,x ax ba b= = <
Ox
( )
b
a
V f x dx=
( )
2
b
a
V f x dx
π
=
(
)
2
b
a
V f x dx=
(
)
b
a
V f x dx
π
=
Trang 4/4 - Mã đề thi 133 - https://toanmath.com/
Câu 22. Tích phân bằng
A. . B. . C. . D. .
Câu 23. Tính
2
6
0
sin cos d .
I x xx
A.
1
.
7
I 
B.
1
.
6
I 
C.
1
.
7
I
D.
1
.
6
I
Câu 24. Diện tích hình phẳng giới hn bi đ th hàm s
2
23yx x
, trục
Ox
các đưng thng
1
x 
,
2x
bằng
A.
1
3
B.
7
C.
17
D.
9
Câu 25. Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường
2
e
x
yx
,
0y
,
0
x
,
1
x
xung quanh trục
Ox
A.
2
eV
. B.
e2
V 
. C.
e2V

. D.
9
4
V
.
------------- HẾT -------------
1
2
0
(3 2 1)dI xx x 
1
I 
1I
2
I
3I
ĐÁP ÁN CÁC MÃ ĐỀ
------------------------
Mã đề [133]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
C
D
A
C
D
D
C
B
A
A
C
C
A
D
A
D
A
B
B
D
C
B
C
D
B
Mã đề [355]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
A
C
D
A
B
D
C
C
A
A
C
C
C
B
A
B
B
A
D
B
D
A
C
D
C
Mã đề [288]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
D
C
A
B
A
D
D
A
C
A
A
B
C
C
C
B
A
B
C
B
A
B
D
A
D
Mã đề [444]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
B
A
C
A
B
D
A
D
C
D
C
A
B
B
C
B
C
A
C
D
D
D
D
B
A
| 1/5

Preview text:

TRƯỜNG THPT LƯƠNG ĐỊNH CỦA
ĐỀ KIỂM TRA ĐỊNH KỲ HỌC KỲ II
TỔ TOÁN TIN 2018- 2019
MÔN TOÁN 12 - LẦN 1 ĐỀ CHÍNH THỨC
Thời gian: 45 phút (không kể thời gian phát đề) Mã đề thi
Họ và tên: ……………………………….……………..…….…. Lớp: ………..……… 133
Câu 1. Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f (x) , trục hoành, đường thẳng
x = a, x = b (như hình bên). Hỏi khẳng định nào dưới đây là khẳng định đúng? y O a c b x y = f (x) c b c b A. S = f
∫ (x)dx+ f
∫ (x)dx . B. S = f
∫ (x)dx+ f ∫ (x)d .x a c a c c b b
C. S = − f
∫ (x)dx+ f
∫ (x)dx . D. S = f ∫ (x)d .x a c a
Câu 2. Cho hàm số f x liên tục trên a;b
  và F x là một nguyên hàm của f x. Tìm khẳng định sai. b a A. f
 xdx F bF a. B. f
 xdx  0. a a b a b C. f
 xdx   f
 xdx . D. f
 xdx F aF b. a b a 2 Câu 3. Tích phân cos
e x.sin xdx  bằng . 0 A. e 1 . B. e  1. C. e . D. 1  e .
Câu 4. Cho hình H  là hình phẳng giới hạn bởi parabol 2
y x  4x  4 , đường cong 3
y x và trục
hoành (phần tô đậm trong hình vẽ). Tính diện tích S của hình H . A. 11 S   . B. 11 S  . C. 7 S  . D. 20 S  . 2 2 12 3
Trang 1/4 - Mã đề thi 133 - https://toanmath.com/ 2 2
Câu 5. Tính tích phân x  4x I  dx  . x 1 A. 29  I  . B. 29 I  . C. 11 I  . D. 11 I  . 2 2 2 2
Câu 6. Cho hàm số f x thỏa mãn đồng thời các điều kiện f x  x  sinx f 0  1. Tìm f x. A. x f x 2 x 1   cos x
B. f x 2   cos x  2 2 2 2 C.   2 x x f x   cos x
D. f x 2   cos x  2 2 2 4
Câu 7. Cho hàm số y f x có đạo hàm f x liên tục trên 1;  4     , f   1  12 và f
 xdx  17. Giá trị 1 của f 4 bằng A. 19 . B. 9. C. 29 . D. 5.
Câu 8. Tính thể tích V của vật thể nằm giữa hai mặt phẳng x  0 và x , biết rằng thiết diện của vật thể
bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0  x  là một tam giác đều cạnh 2 sin x .
A. V  23
B. V  2 3
C. V  3
D. V  3
Câu 9. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số 2
y  2  x y x bằng A. 9 . B. 3 . C. 11 . D. 3 . 2 2 6 e
Câu 10. Biết 2 lnx 1 dx a   . b e
, với a,b   . Chọn khẳng định đúng trong các khẳng định sau: 2 x 1
A. a b  6 .
B. a b  3 .
C. a b  6 .
D. a b  3.
Câu 11. Một vật chuyển động với vận tốc v(t)(m / s) có gia tốc v (t) 3 ' = ( 2
m / s ) . Vận tốc ban đầu của t +1
vật là 6m / s . Hỏi vận tốc của vật sau 10 giây (làm tròn đến kết quả đến chữ số thập phân thứ nhất) có giá trị
gần với giá trị nào sau đây?
A. 13,1(m / s) .
B. 13,3(m / s).
C. 13,2(m / s) .
D. 13(m / s) . 3
Câu 12. Cho f, g là hai hàm số liên tục trên 1;  3     thỏa mãn: f
  x 3gxdx  10   , 1 3 3 2  f   
 xg x  dx  6   . Tính f
  x gxdx   1 1 A. 9. B. 8 . C. 6. D. 7 .
Câu 13. Nguyên hàm của hàm số f x 3  2x  9 là A. 1 4 1
x  9x C . B. 4
4x  9x C . C. 4 x C . D. 3
4x  9x C . 2 4
Trang 2/4 - Mã đề thi 133 - https://toanmath.com/
Câu 14. Viết công thức tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox
tại các điểm x a , x b a b có diện tích thiết diện bị cắt bởi mặt phẳng vuông góc với trục Ox tại
điểm có hoành độ x a x b là S x. a b
A. V S
 xdx .
B. V  S  xdx . b a b b C. 2 V  S
 xdx .
D. V S  xdx . a a 1
Câu 15. Kết quả tích phân = ∫(2 +3) x I x
e dx được viết dưới dạng I = ae + b . với a,b là các số hữu tỉ. Tìm 0 khẳng định đúng.
A. a + 2b =1 . B. 3 3
a + b = 28 .
C. ab = 3.
D. a b = 2 2 2
Câu 16. Cho hàm số y f x thỏa mãn sinx.f
xdx f 0  1. Tính I  cosx.f   xdx . 0 0
A. I  2.
B. I  1.
C. I  1. D. I  0 .
Câu 17. Khi tính nguyên hàm x  3 dx
, bằng cách đặt u x  1 ta được nguyên hàm nào? x  1 A.   2
2 u  4du . B.  2 u   3du . C. u   2
2 u  4du . D.   2 u  4du .
Câu 18. Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi
đồ thị hàm số y = f (x) , trục Ox và hai đường thẳng x = a, x = b(a < b) , xung quanh trục Ox . b b b b A. V = f
∫ (x)dx B. 2 V = π f
∫ (x)dx C. 2 V = f
∫ (x)dx
D. V = π f ∫ (x)dx a a a a 5 2 f
 xdx  8 g
 xdx  3 5
Câu 19. Cho hai tích phân 2 và 5 . Tính If
  x 4gx 1    dx   . 2
A. I  11.
B. I  13 .
C. I  27 . D. I  3 . Câu 20. Cho f
 xdx F xC . Khi đó với a  0 , a , b là hằng số, ta có A. 1 f
 ax bdx aF ax bC . B. f
 ax bdx
F ax b C . a b C. 1 f
 ax bdx F ax bC . D. f
 ax bdx F ax bC . a Câu 21. Biết 2x 2x 2 d x xe
x axe be C a, b  
. Tính tích ab . A. 1 ab   . B. 1 ab  . C. 1 ab   . D. 1 ab  . 4 4 8 8
Trang 3/4 - Mã đề thi 133 - https://toanmath.com/ 1 Câu 22. Tích phân 2 I
(3x  2x  1)dx  bằng 0
A. I  1 .
B. I  1.
C. I  2 . D. I  3 . 2 Câu 23. Tính 6 I
sin x cos xdx.  0 A. 1 I   . B. 1 I   . C. 1 I  . D. 1 I  . 7 6 7 6
Câu 24. Diện tích hình phẳng giới hạn bởi đồ thị hàm số 2
y x  2x  3 , trục Ox và các đường thẳng
x  1, x  2 bằng A. 1 B. 7 C. 17 D. 9 3 x
Câu 25. Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường 2
y xe , y  0 ,
x  0 , x  1 xung quanh trục Ox A. 2
V e .
B. V e  2.
C. V  e  2. D. 9 V  . 4
------------- HẾT -------------
Trang 4/4 - Mã đề thi 133 - https://toanmath.com/
ĐÁP ÁN CÁC MÃ ĐỀ
------------------------ Mã đề [133]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
C D A C D D C B A A C C A D A D A B B D C B C D B Mã đề [355]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A C D A B D C C A A C C C B A B B A D B D A C D C Mã đề [288]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
D C A B A D D A C A A B C C C B A B C B A B D A D Mã đề [444]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
B A C A B D A D C D C A B B C B C A C D D D D B A
Document Outline

  • Made 133
  • Dap an