Note Calculus 1 Midterm - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Note Calculus 1 Midterm - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Môn:

Calculus 1 (MA001IU) 42 tài liệu

Thông tin:
2 trang 7 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Note Calculus 1 Midterm - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Note Calculus 1 Midterm - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

132 66 lượt tải Tải xuống
Chapter 1
Straight line
Slope: m =
𝑦𝑦
2
𝑦𝑦
1
𝑥𝑥
2
𝑥𝑥
1
= tan α
Slope - intercept form: y = mx +b
Point - slope form: y – y – x
1
= m (x
1
)
Translation from f(x), c >0
Left
𝑓𝑓
(
𝑥 𝑥 + 𝑐𝑐
)
Right
𝑓𝑓
(
𝑥𝑥 𝑐𝑐
)
Up
𝑓𝑓
(
𝑥𝑥
)
+ 𝑐𝑐
Down
𝑓𝑓
(
𝑥𝑥
)
𝑐𝑐
Stretches and reflection
Stretch
vertically
𝑐𝑐𝑓𝑓( )𝑥𝑥
Compress horizontally
𝑓𝑓( )𝑐𝑐𝑥𝑥
Reflect x
– axis
𝑓𝑓(𝑥𝑥)
Reflect y
- axis
𝑓𝑓(𝑥𝑥)
Graph of common function:
Trigonometric:
Power:
Exponential:
Logarithmic:
Composition:
𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓(𝑓𝑓
(
𝑥𝑥
)
)
One to one:
f(x f(x
1
)
2
) x whenever
1
x
2
Inverse function: given f(x) is one to one
and defined in domain A and range B
f
-1
(y) = x has domain B and range A
Example: Let y = + 4xf(x) = x
2
, x > 0. Find
the inverse function of f(x)
Solution: y = x
2
+ 4x
x y + 4 =
2
+ 4x + 4
𝑦 𝑦 + 4 = x + 2
x =
𝑦 𝑦 + 4 – 2
Therefore, the inverse function of x
2
+ 4x is
y =
𝑥 𝑥 + 4 – 2
Limit: lim
𝑥𝑥
𝑎𝑎
𝑓𝑓( )𝑥𝑥 = L lim
𝑥𝑥𝑎𝑎
𝑓𝑓
(
𝑥𝑥
)
= L
lim
𝑥𝑥𝑎𝑎
+
𝑓𝑓
(
𝑥𝑥
)
= L
Continuity: a function f(x) is continuous at
c if 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥𝑐𝑐
𝑓𝑓
(
𝑥𝑥
)
= 𝑓𝑓 𝑐𝑐
( )
Continuity from the left: 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥𝑐𝑐
𝑓𝑓 𝑓𝑓 𝑐𝑐
(
𝑥𝑥
)
= ( )
Continuity from the right: 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥𝑐𝑐
+
𝑓𝑓 𝑐𝑐
(
𝑥𝑥
)
= 𝑓𝑓( )
Squeeze theorem:
if x f(x) ≤ g(x) ≤ h(x) in an open interval containing x
o
,
and if lim
𝑥𝑥
𝑎𝑎
𝑓𝑓( )𝑥𝑥 = lim
𝑥𝑥
𝑎𝑎
( )𝑥𝑥 = L lim
𝑥𝑥
𝑎𝑎
𝑓𝑓(𝑥𝑥 ) = L
Example: Show that lim
𝑥𝑥
→0
𝑥 𝑥 cos
1
𝑥𝑥
= 0
Solution:
𝑥𝑥 cos
1
𝑥𝑥
|
𝑥𝑥
|
|
𝑥𝑥
|
𝑥 𝑥 cos
1
𝑥 𝑥
|
𝑥𝑥
|
and lim
𝑥𝑥
→0
|
𝑥𝑥
|
= lim
𝑥𝑥
→0
|
𝑥𝑥
|
= 0
lim
𝑥𝑥
→0
𝑥 𝑥 cos
1
𝑥𝑥
= 0
Asymptote:
If lim
𝑥𝑥
→∞
𝑓𝑓(𝑥𝑥) = L
1
and/or lim
𝑥𝑥
→−∞
𝑓𝑓( )𝑥𝑥 = L
2
then y = L
1
and/or y = L
2
is
horizontal asymptote
If lim
𝑥𝑥𝑎𝑎
+
𝑓𝑓
(
𝑥𝑥
)
= ± and/or lim
𝑥𝑥𝑎𝑎
𝑓𝑓
(
𝑥𝑥
)
= ± then x = a is vertical asymp
Intermediate value theorem: f(x) is continuous on [a,b], f(a) ≤ N ≤ f(b)
=> there is a number c, a ≤ c ≤ b such that f(c) = N
Example: Suppose f is continuous on [1, 5] and the only solutions of the
equation f(x) = 6 are x = 1 and x = 4. If f(2) = 8, explain why f(3) > 6.
Solution:
f(3) = 6 f(x) = 6 at x = 3 (invalid) f(3) ≠ 6.
f(3) < 6 f(3) < 6 < f(2)
and f is continuous on [2,3]. Using IVF, there
is at least c [2,3] at which f(c) = 6. Since c ≠ 1 and c 4, f(3) < 6 is
invalid.
Therefore,
f(3) > 6
.
Chapter 2
𝑓𝑓
(
𝑥𝑥
)
= lim
ℎ→0
𝑓𝑓
(
𝑥𝑥+ℎ 𝑓𝑓
)
(𝑥𝑥)
Rule of differentiation:
(x
n
)’ = nx
n-1
(a
x
)’ = a
x
ln(a)
(log
𝑎 𝑎
𝑥𝑥)’ =
1
𝑥 𝑥
𝑙𝑙𝑙𝑙
(
𝑎𝑎
)
(𝑙𝑙𝑙𝑙 𝑥𝑥)’ =
1
𝑥𝑥
(sin 𝑥𝑥)’ = cos 𝑥𝑥
(cos 𝑥𝑥 ) = sin 𝑥𝑥
(tan 𝑥𝑥)’ = 1 + 𝑡𝑡𝑡𝑡𝑙𝑙
2
𝑥𝑥
= sec
2
𝑥𝑥
(cot 𝑥𝑥)’ =
(
1 + 𝑐𝑐𝑓𝑓𝑡𝑡
2
𝑥𝑥
)
= 𝑐𝑐𝑐𝑐𝑐𝑐
2
𝑥𝑥
(sec sec𝑥𝑥)’ = 𝑥 𝑥 tan 𝑥𝑥
(csc 𝑥𝑥)’ = csc 𝑥 𝑥 cot 𝑥𝑥
(𝑐𝑐𝑙𝑙𝑙𝑙
−1
𝑥𝑥
𝑎𝑎
)’ =
1
𝑎𝑎
2
𝑥𝑥
2
(cos
−1
𝑥𝑥
𝑎𝑎
)’ =
1
𝑎𝑎
2
𝑥𝑥
2
(𝑡𝑡𝑡𝑡𝑙𝑙
−1
𝑥𝑥
𝑎𝑎
)’ =
𝑎𝑎
𝑎𝑎
2
+𝑥𝑥
2
(𝑐𝑐𝑓𝑓𝑡𝑡
−1
𝑥𝑥
𝑎𝑎
)’ =
𝑎𝑎
𝑎𝑎
2
+𝑥𝑥
2
(𝑐𝑐𝑠𝑠𝑐𝑐
−1
𝑥𝑥
𝑎𝑎
)’ =
𝑎𝑎
𝑥𝑥
𝑥𝑥
2
𝑎𝑎
2
(𝑐𝑐𝑐𝑐𝑐𝑐
−1
𝑥𝑥
𝑎𝑎
)’ =
𝑎𝑎
𝑥𝑥
𝑥𝑥
2
𝑎𝑎
2
Differentiable and continuous:
At c if 𝑓𝑓
(
𝑐𝑐
)
exist
On (a,b) if it is differentiable at any
number in that interval
f(x) is differentiable at a f(x) is
continuous
Chain rule: if y = f(u) and u = g(x) are
both differentiable
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥
=
𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
Derivative of inverse function:
If f(x) is one to one and differentiable
( ) (
𝑓𝑓
−1
𝑡𝑡
)
=
1
𝑓𝑓
𝑓𝑓
−1
(
𝑡𝑡
)
Example: let f(x) = 2x + cos 𝑥𝑥, find
( ) )
𝑓𝑓
−1
(
1
Solution:
𝑓𝑓
(
𝑥𝑥
)
= 2 - sin 𝑥𝑥 > 0 x 𝑓𝑓
(
𝑥𝑥
)
is one
to one function
𝑓𝑓
(
𝑥𝑥
)
= 1 x = 0 𝑓𝑓
−1
(
1
)
= 0
𝑓𝑓
(
0
)
= 2
(
𝑓𝑓
−1
)
(
1
)
=
1
𝑓𝑓
𝑓𝑓
−1
(
1
)
=
1
𝑓𝑓
(
0
)
=
1
2
Implicit differentiation:
Example: Find y’ if sin( ) 𝑥 𝑥 + 𝑦𝑦 = y
2
(1)
Solution:
(1) ( cos 𝑥 𝑥 + 𝑦𝑦) (1 + y’) = 2yy’
cos(𝑥 𝑥 𝑥 𝑥+ 𝑦𝑦) - = 2yy’ cos( + 𝑦𝑦) 𝑦𝑦
y’ =
cos(𝑥𝑥+𝑦𝑦)
2𝑦𝑦 𝑥𝑥+𝑦𝑦
cos( )
Logarithmic differentiation:
Method: 1. Take ln of both side of y = 𝑓𝑓
(
𝑥𝑥
)
2. Differentiate both side
3. Solve for y’
Example:
Find derivative of y =
(
1 + 𝑥𝑥
)
1
𝑥𝑥
(1)
Solution:
(1)
ln 𝑦𝑦 =
1
𝑥𝑥
) ln(1 + 𝑥𝑥
1
𝑦𝑦
y’ =
−1
𝑥 𝑥
2
ln
(
1 + 𝑥𝑥
)
+
1
𝑥𝑥
(𝑥𝑥+1)
y’ =
−1
𝑥 𝑥
2
ln
(
1 + 𝑥𝑥
)
+
1
𝑥𝑥
( )𝑥𝑥+1
𝑦𝑦
y’ =
−1
𝑥 𝑥
2
ln
(
1 + 𝑥𝑥
)
+
1
𝑥𝑥
( )𝑥𝑥+1
(
1 + 𝑥𝑥
)
1
𝑥𝑥
Linear approximation:
𝑓𝑓 𝑓𝑓
(
𝑥𝑥
)
L(x) =
(
𝑡𝑡 𝑡𝑡
)
+ 𝑓𝑓
( )
(x-a)
Differentials:
dy =
𝑓𝑓
(
𝑥𝑥
)
dx
Example: The sphere has radius 21cm, with error
in measurement at most 0.05cm. Find maximum
error of volume of the sphere
Solution:
We let the radius is r = 21cm, so the error is
dr = 0.05cm, the volume is V =
4
3
𝜋𝜋r
3
The error of the volume is:
dV =
4
3
𝜋𝜋𝑟𝑟
3
dr
dV = 4
𝜋𝜋r
2
dr
dV = 4𝜋𝜋 × 21
2
×0.05 277 (cm
3
)
Therefore, the maximum error in the
calculated volume is 277 cm
3
Chapter 3
Related rates
Method:
1. Assign variable. Restate the problem in terms of
derivatives
2. Find an equation relating the variables and differentiate it
3. Use the known equations and data to find the unknown
derivative
Example: A water tank has the shape of an inverted circular
cone with base radius 2 m and height 4 m. If water is being
pumped into the tank at a rate of 2 m
3
/min, find the rate at
which the water level is rising when the water is 3 m deep.
Solution: We called V, r, h is the volume,
radius and height of the water at time t.
Since the water is filled in the cone, its
volume is:
V =
1
3
πr h
2
. Also,
𝑟𝑟
=
2
4
=
1
2
V =
1
3
π�
1
2
ℎ�
2
h =
1
12
πh
3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
=
1
4
πh
2
𝑑𝑑
𝑑𝑑𝑑𝑑
2 =
1
4
π3
2
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑
𝑑𝑑𝑑𝑑
0.28 (m/min)
Therefore, the water level rising at a rate of 0.28m/min
| 1/2

Preview text:

Chapter 1 Straight line
Translation from f(x), c >0
Stretches and reflection 𝑦𝑦2−𝑦𝑦1 Left
𝑓𝑓(𝑥 𝑥 + 𝑐𝑐) Stretch vertically
𝑐𝑐𝑓𝑓(𝑥𝑥) • Slope: m = = tan α 𝑥𝑥2−𝑥𝑥1 Right
𝑓𝑓(𝑥𝑥 − 𝑐𝑐) Compress horizontally
𝑓𝑓(𝑐𝑐𝑥𝑥)
• Slope - intercept form: y = mx +b Up 𝑓𝑓(𝑥𝑥) + 𝑐𝑐 Reflect x – axis −𝑓𝑓(𝑥𝑥)
• Point - slope form: y – y1 = m (x – x1) Down
𝑓𝑓(𝑥𝑥) − 𝑐𝑐 Reflect y - axis 𝑓𝑓(−𝑥𝑥)
Graph of common function: • Power: • Exponential: • Trigonometric: • Logarithmic:
Composition: 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓(𝑓𝑓(𝑥𝑥) )
Squeeze theorem: if f(x) ≤ g(x) ≤ h(x) ∀x in an open interval containing xo, One to one: f(x
𝑓𝑓 𝑥𝑥 = ℎ 𝑥𝑥 = L ⇒ 𝑓𝑓 1)≠ f(x2) whenever x1≠x2 and if lim ( ) lim( ) lim (𝑥𝑥) = L 𝑥𝑥 →𝑎𝑎 𝑥𝑥 →𝑎𝑎 𝑥𝑥 →𝑎𝑎
Inverse function: given f(x) is one to one 1
Example: Show that lim 𝑥 𝑥 cos = 0 𝑥𝑥 →0 𝑥𝑥
and defined in domain A and range B 1 1 ⇒ Solution:
�𝑥𝑥 cos � ≤ |𝑥𝑥| ⇔ −|𝑥𝑥| ≤ 𝑥 𝑥 co s ≤ |𝑥𝑥|
f -1(y) = x has domain B and range A 𝑥𝑥 𝑥 𝑥
Example: Let y = f(x) = x2 + 4x, x > 0. Find
and lim −|𝑥𝑥| = lim|𝑥𝑥| = 0 𝑥𝑥 →0 𝑥𝑥 →0 the inverse function of f(x) ⇒ 1 lim 𝑥 𝑥 cos = 0 𝑥𝑥 Solution: y = x2 + 4x 𝑥𝑥 →0 ⇔ Asymptote: y + 4 x = 2 + 4x + 4
𝑓𝑓(𝑥𝑥) = L1 and/or lim
𝑓𝑓(𝑥𝑥) = L2 then y = L and/or y = L is ⇔ • If lim 1 2 �𝑦 𝑦 + 4 = x + 2 𝑥𝑥 →∞ 𝑥𝑥 →−∞ horizontal asymptote
⇔ x = �𝑦 𝑦 + 4 – 2
• If lim 𝑓𝑓(𝑥𝑥) = ±∞ and/or lim
𝑓 𝑓(𝑥𝑥) = ±∞ then x = a is vertical asymp
Therefore, the inverse function of x2 + 4x is 𝑥𝑥→𝑎𝑎+ 𝑥𝑥→𝑎𝑎−
Intermediate value theorem: f(x) is continuous on [a,b], f(a) ≤ N ≤ f(b) y = √𝑥 𝑥 + 4 – 2
=> there is a number c, a ≤ c ≤ b such that f(c) = N Limit: lim 𝑓𝑓(𝑥𝑥) = L ⇔ li 𝑓 m𝑓(𝑥𝑥) = L 𝑥𝑥 →𝑎𝑎 𝑥𝑥→𝑎𝑎−
Example: Suppose f is continuous on [1, 5] and the only solutions of the
lim 𝑓𝑓(𝑥𝑥) = L e quation f(x) = 6 are x =
1 and x = 4. If f(2) = 8, explain why f(3) > 6. 𝑥𝑥→𝑎𝑎+ Solution:
Continuity: a function f(x) is continuous at
• f(3) = 6 ⇒ f(x) = 6 at x = 3 (invalid) ⇒ f(3) ≠ 6.
c if 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑐𝑐)
• f(3) < 6 ⇒ f(3) < 6 < f(2) and f is continuous on [2,3]. Using IVF, there 𝑥𝑥→𝑐𝑐
Continuity from the left: 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑐𝑐)
is at least c ∈ [2,3] at which f(c) = 6. Since c ≠ 1 and c ≠ 4, f(3) < 6 is 𝑥𝑥→𝑐𝑐− invalid.
Continuity from the right: 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑐𝑐) 𝑥𝑥→𝑐𝑐+ • Therefore, f(3) > 6. Chapter 2 Derivative
Differentiable and continuous:
Logarithmic differentiation:
𝑓𝑓(𝑥𝑥+ℎ) −𝑓𝑓(𝑥𝑥) 𝑓𝑓′(𝑥𝑥) 𝑓𝑓(𝑥𝑥) = lim
• At c if 𝑓𝑓′(𝑐𝑐) exist
Method: 1. Take ln of both side of y = ℎ→0 ℎ
• On (a,b) if it is differentiable at any 2. Differentiate both side
Rule of differentiation: number in that interval 3. Solve for y’ 1 • (xn)’ = nxn-1
• f(x) is differentiable at a ⇒ f(x) is
Example: Find derivative of y = (1 + 𝑥𝑥) 𝑥𝑥 (1 ) continuous • (ax)’ = ax ln(a) Solution: 1 1
Chain rule: if y = f(u) and u = g(x) are
(1) ⇔ ln 𝑦𝑦 = ln(1 + 𝑥𝑥) • (log 𝑥𝑥 𝑎 𝑎 𝑥𝑥)’ =
𝑥 𝑥 𝑙𝑙𝑙𝑙(𝑎𝑎) both differentiable ⇔ 1 −1 1 y’ = 1
𝑑𝑑𝑦𝑦 𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑 𝑦𝑦 𝑥𝑥2 ln(1 + 𝑥𝑥) + 𝑥𝑥(𝑥𝑥+1)
• (𝑙𝑙𝑙𝑙 𝑥𝑥)’ = = 𝑥𝑥
𝑑𝑑𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑥𝑥 ⇔ 1 y’ = �−1 � 𝑦𝑦 𝑥𝑥2 ln(1 + 𝑥𝑥) + 𝑥𝑥(𝑥𝑥+1)
• (sin 𝑥𝑥)’ = cos 𝑥𝑥
Derivative of inverse function: 1 1 �
• (cos 𝑥𝑥)’ = − sin 𝑥𝑥
If f(x) is one to one and differentiable ⇔ y’ = �−1 (1 + 𝑥𝑥 𝑥𝑥 ) 𝑥𝑥2 ln(1 + 𝑥𝑥) + 𝑥𝑥(𝑥𝑥+1)
• (tan 𝑥𝑥)’ = 1 + 𝑡𝑡𝑡𝑡𝑙𝑙2 𝑥𝑥 1 (𝑓𝑓−1)′(𝑡𝑡) = Linear approximation:
𝑓𝑓′�𝑓𝑓−1(𝑡𝑡)� = sec2 𝑥𝑥
𝑓𝑓(𝑥𝑥) ≈ L(x) = 𝑓𝑓(𝑡𝑡) + 𝑓𝑓′(𝑡𝑡) (x-a)
• (cot 𝑥𝑥)’ = − (1 + 𝑐𝑐𝑓𝑓𝑡𝑡2 𝑥𝑥 E )
x ample: let f(x) = 2x + cos 𝑥𝑥, find Differentials:
= − 𝑐𝑐𝑐𝑐𝑐𝑐2 𝑥𝑥 (𝑓𝑓−1) (1) dy = 𝑓𝑓′(𝑥𝑥) dx Solution:
Example: The sphere has radius 21cm, with error
• (sec 𝑥𝑥)’ = sec 𝑥 𝑥 tan 𝑥𝑥
• 𝑓𝑓′(𝑥𝑥) = 2 - sin 𝑥𝑥 > 0 ∀x ⇒ 𝑓𝑓(𝑥𝑥) is io nn e
m easurement at most 0.05cm. Find maximum
• (csc 𝑥𝑥)’ = − csc 𝑥 𝑥 cot 𝑥𝑥 to one function error of volume of the sphere 1
• (𝑐𝑐𝑙𝑙𝑙𝑙−1 𝑥𝑥 )’ =
• 𝑓𝑓(𝑥𝑥) = 1 ⇒ x = 0 ⇒ 𝑓𝑓−1(1) = 0 Solution: 𝑎𝑎 √𝑎𝑎2−𝑥𝑥2 • 𝑓𝑓′(0) = 2
• We let the radius is r = 21cm, so the error is
• (cos−1 𝑥𝑥)’ = − 1 ⇒ 1 1 1 (𝑓𝑓−1)′(1) = = = 4 𝑎𝑎 √𝑎𝑎2−𝑥𝑥2
𝑓𝑓′�𝑓𝑓−1(1)� 𝑓𝑓′(0) 2
dr = 0.05cm, the volume is V = 𝜋𝜋r3 3 𝑎𝑎
• (𝑡𝑡𝑡𝑡𝑙𝑙−1 𝑥𝑥 )’ =
Implicit differentiation:
• The error of the volume is: 𝑎𝑎 𝑎𝑎2+𝑥𝑥2 ′
Example: Find y’ if sin(𝑥 𝑥 + 𝑦𝑦) = y2 (1 )
dV = �4 𝜋𝜋𝑟𝑟3� dr
• (𝑐𝑐𝑓𝑓𝑡𝑡−1 𝑥𝑥 )’ = − 𝑎𝑎 3 𝑎𝑎 𝑎𝑎2+𝑥𝑥2 Solution: 𝑎𝑎 ⇔ dV = 4 𝜋𝜋r2 dr
• (𝑐𝑐𝑠𝑠𝑐𝑐−1 𝑥𝑥 )’ = (1) ⇔ co (
s 𝑥 𝑥 + 𝑦𝑦) (1 + y’) = 2yy’ 𝑎𝑎
𝑥𝑥√𝑥𝑥2−𝑎𝑎2 ⇔
⇔ dV = 4𝜋𝜋 × 212×0.05 ≈ 277 (cm3)
cos(𝑥 𝑥 + 𝑦𝑦) = 2yy’ - cos(𝑥 𝑥 + 𝑦𝑦) 𝑦𝑦′
• (𝑐𝑐𝑐𝑐𝑐𝑐−1 𝑥𝑥 )’ = − 𝑎𝑎 𝑎𝑎 cos
• Therefore, the maximum error in the
𝑥𝑥√𝑥𝑥2−𝑎𝑎2 ⇔ (𝑥𝑥+𝑦𝑦) y’ =
2𝑦𝑦 − cos(𝑥𝑥+𝑦𝑦) calculated volume is 277 cm3 Chapter 3 Related rates
Solution: We called V, r, h is the volume, Method:
radius and height of the water at time t.
1. Assign variable. Restate the problem in terms of
Since the water is filled in the cone, its 𝑟𝑟 2 1 derivatives 1 volume is: V = 2 3 πr h. Also, ℎ = 4 = 2
2. Find an equation relating the variables and differentiate it 2 1
3. Use the known equations and data to find the unknown ⇒ 1 V = π�1ℎ� h = 3 2 12 πh3 derivative 𝑑𝑑𝑑𝑑 1 𝑑𝑑ℎ
Example: A water tank has the shape of an inverted circular ⇔ = πh2 𝑑𝑑𝑑𝑑 4 𝑑𝑑𝑑𝑑
cone with base radius 2 m and height 4 m. If water is being 1 𝑑𝑑ℎ 𝑑𝑑ℎ
pumped into the tank at a rate of 2 m3/min, find the rate at ⇔ 2 = π ⇔ ≈ 4 32 0.2 8 (m/min)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
which the water level is rising when the water is 3 m deep.
Therefore, the water level rising at a rate of 0.28m/min