Sách xác suất thống kê và tín hiệu ngẫu nhiên | Trường Đại học Bách khoa Hà Nội

Sách môn học MI2036 – Xác suất thống kê và tín hiệu ngẫu nhiên | Trường Đại học Bách khoa Hà Nội được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo. Mời bạn đọc đón xem!

Probability & Statistics
for Engineers & Scientists
This page intentionally left blank
Probability & Statistics for
Engineers & Scientists
NINTH EDITION
Ronald E. Walpole
Roanoke College
Raymond H. Myers
Virginia Tech
Sharon L. Myers
Radford University
Keying Ye
University of Texas at San Antonio
Prentice Hall
Editor in Chief: Deirdre Lynch
Acquisitions Editor: Christopher Cummings
Executive Content Editor: Christine O’Brien
Asso ciate Editor: Christina Lepre
Senior Managing Editor: Karen Wernholm
Senior Production Project Manager: Tracy Patruno
Design Manager: Andrea Nix
Cover Designer: Heather Scott
Digital Assets Manager: Marianne Groth
Asso ciate Media Producer: Vicki Dreyfus
Marketing Manager: Alex Gay
Marketing Assistant: Kathleen DeChavez
Senior Author Support/Technology Specialist: Joe Vetere
Rights and Permissions Advisor: Michael Joyce
Senior Manufacturing Buyer: Carol Melville
Pro duction Coordination: L i fla nd et al. Bookmakers
Comp osition: Keying Ye
Cover photo: Marjory Dressler/Dressler Photo-Graphics
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Pearson was aware of a trademark claim, the
designations have been printed in initial caps or all caps.
Library of Congress Cataloging-in-Publication Data
Probability & statistics for engineers & scientists/Ronald E. Walpole ... [et al.] 9th ed.
p. cm.
ISBN 978-0-321-62911-1
1. E ng in ee ri ng —S ta ti st ic al m et hods. 2 . Probabilit ie s. I. Walpole, Ronald E.
TA340.P738 2011
519.02’462–dc22
2010004857
Copyright
c
2012, 2007, 2002 Pearson Education, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of material in this work, please submit
a written request to Pearson Educatio n, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900,
Boston, MA 02116, fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.
12345678910EB1413121110
ISBN 10: 0-321-62911-6
ISBN 13: 978-0-321-62911-1
This book is dedicated to
Billy and Julie
R.H.M. and S.L.M.
Limin, Carolyn and Emily
K.Y.
This page intentionally left blank
Contents
Preface .......................................................... xv
1IntroductiontoStatisticsandDataAnalysis........... 1
1.1 Overview: Statistical Inference, Sampl es , Populations, and the
Role of Probability .............................................. 1
1.2 Sampling Procedures; Collection of Data ........................ 7
1.3 Measures of Location: The Sample Mean and Median . . . . . . . . . . . 11
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Measures of Variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Discrete and Continuous Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Statistical Modeling, Scientific Inspection, and Graphical Diag-
nostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 General Types of Statistical Studies: Designed Experiment,
Observational Study, and Retrospective Study . . . . . . . . . . . . . . . . . . 27
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2Probability.................................................. 35
2.1 Sample Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Counting Sample Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4 Probability of an Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Additive Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6 Conditional Probability, Independence, and the Product Rule . . . 62
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
viii Contents
2.8 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3 Random Va r ia bl e s and Proba bi li ty Distributions ...... 81
3.1 Concept of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Discrete Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3 Continuous Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4 Joint Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4 Mathematical Expectation ................................ 111
4.1 Mean of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 Variance and Covariance of Random Variables. . . . . . . . . . . . . . . . . . . 119
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3 Means and Variances of Linear Combinations of Random Variables 128
4.4 Chebyshev’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.5 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5 Some Discrete Probability Distribut io n s ................ 143
5.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Binomial and Multinomial Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 143
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4 Negative Binomial and Geometric Distributions . . . . . . . . . . . . . . . . . 158
5.5 Poisson D i st ri b ut io n and the Poisson Process. . . . . . . . . . . . . . . . . . . . 161
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.6 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Contents ix
6 Some Continuous Probabi li ty Distributions............. 171
6.1 Continuous Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3 Areas under the Normal Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.4 Applications of the Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 182
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Normal Approximation to the Binomial . . . . . . . . . . . . . . . . . . . . . . . . . 187
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.6 Gamma and Exponential Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.7 Chi-Squared Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.8 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.9 Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.10 Weibull Distribution (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.11 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7 Functions o f Random Variables (Optiona l).............. 211
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2 Transformations of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3 Moments and Moment-Generating Functions . . . . . . . . . . . . . . . . . . . . 218
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8 Fundamental Samplin g Distributions and
Data Descriptions
........................................ 225
8.1 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.2 Some Important Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.3 Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.4 Sampling Distribution of Means and the Central Limit Th eo re m . 233
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.5 Sampling Distribution of S
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.6 t-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.7 F -Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
8.8 Quantile and Probability Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.9 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
x Contents
9 One- and Two-Sa mp l e Estimation P r ob le m s ............ 265
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.2 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.3 Classical Methods of Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.4 Single Sample: Estimating the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.5 Standard Error of a Point Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.6 Prediction Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.7 Tolerance Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.8 Two Samples: Estimating the Dierence between Two Means . . . 285
9.9 Paired Ob ser vations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
9.10 Single Sample: Estimating a Proportion . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.11 Two Samples: Estimating the Dierence between Two Proportions 300
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
9.12 Single Sample: Estimating the Variance . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.13 Two Samples: Estimating the Ratio of Two Variances . . . . . . . . . . . 305
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
9.14 Maximum Likelihood Estimation (Optional) . . . . . . . . . . . . . . . . . . . . . 307
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.15 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
10 One- and Two-Sample Tests of Hypo th es e s ............. 319
10.1 Statistical Hypotheses: General Concepts . . . . . . . . . . . . . . . . . . . . . . . 319
10.2 Testing a Statistical Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
10.3 The Use of P -Values for Decision Making in Testing Hypotheses. 331
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.4 Single Sample: Tests Concerning a Single Mean . . . . . . . . . . . . . . . . . 336
10.5 Two Samples: Tests on Two Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
10.6 Choice of Sample Size for Testing Means . . . . . . . . . . . . . . . . . . . . . . . . 349
10.7 Graphical Methods for Comparing Means . . . . . . . . . . . . . . . . . . . . . . . 354
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
10.8 One Sample: Test on a Single Proportion. . . . . . . . . . . . . . . . . . . . . . . . 360
10.9 Two Samples: Tests on Two Proportions . . . . . . . . . . . . . . . . . . . . . . . . 363
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
10.10 One- and T wo-Sample Tests Concerning Varianc es . . . . . . . . . . . . . . 366
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.11 Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
10.12 Test for In d ependence (Categorical Data) . . . . . . . . . . . . . . . . . . . . . . . 373
Contents xi
10.13 Test for Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
10.14 Two-Sample Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
10.15 Potential Mis co nc ep ti on s and Hazards; Relationship to Materia l
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
11 Simple Linear Regression and Correlation .............. 389
11.1 Introduction t o Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.2 The S im pl e L in ea r R eg re ss io n M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.3 Least Squares and the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
11.4 Properties of the Least Squares Estimators . . . . . . . . . . . . . . . . . . . . . . 400
11.5 Inferences Concerning the Regression Coecients. . . . . . . . . . . . . . . . 403
11.6 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
11.7 Choice of a Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
11.8 Analysis-of-Variance Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
11.9 Test for Linearity of Regression: Data with Rep e ate d Observations 416
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
11.10 Data Plots and Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
11.11 Simple Linear Regression Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
11.12 Correlati on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
11.13 Potential Mis co nc ep ti on s and Hazards; Relationship to Materia l
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
12 Multiple Linear Regression and Certain
Nonlinear Regression Models
........................... 443
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
12.2 Estimating the Coecients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
12.3 Linear Regression Model Using Matrices . . . . . . . . . . . . . . . . . . . . . . . . 447
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
12.4 Properties of the Least Squares Estimators . . . . . . . . . . . . . . . . . . . . . . 453
12.5 Inferences in Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 455
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
12.6 Choice of a Fitted Model through Hypothesis Testing . . . . . . . . . . . 462
12.7 Special Case of Orthogonality (Optional) . . . . . . . . . . . . . . . . . . . . . . . . 467
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
12.8 Categorical or Indicator Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
xii Contents
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.9 Sequential Methods for Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.10 Study of Residuals and Violation of Assumptions (Model Check-
ing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
12.11 Cross Validation, C
p
, and Other Criteria for Model Selection . . . . 487
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.12 Special Nonlinear Models for Nonideal Conditions . . . . . . . . . . . . . . . 496
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
12.13 Potential Mis co nc ep ti on s and Hazards; Relationship to Materia l
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
13 One-Factor Experiments: General........................ 507
13.1 Analysis-of-Variance Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
13.2 The S tr at eg y of Experimental Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
13.3 One-Way Analysis of Variance: Completely Randomized Design
(One-Way ANOVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
13.4 Tests for the Equality of Several Variances . . . . . . . . . . . . . . . . . . . . . . 516
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
13.5 Single-Degree-of-Freedom Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 520
13.6 Multiple Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
13.7 Comparing a Set of Treatments in Blocks . . . . . . . . . . . . . . . . . . . . . . . 532
13.8 Randomized Complete Block Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
13.9 Graphical Methods and Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 540
13.10 Data Tr an sf or mat i on s in Analysis of Variance . . . . . . . . . . . . . . . . . . . 543
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
13.11 Random Eects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
13.12 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
13.13 Potential Mis co nc ep ti on s and Hazards; Relationship to Materia l
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
14 Factorial Experiments (Two or More Factors).......... 561
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
14.2 Interaction i n t h e Two-Factor Experiment . . . . . . . . . . . . . . . . . . . . . . . 562
14.3 Two-Factor Analy si s of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
14.4 Three-Factor Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Contents xiii
14.5 Factorial Experiments for Random Eects and M ix ed Models. . . . 588
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
14.6 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
15 2
k
Factorial Ex periments and Fractions ................. 597
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
15.2 The 2
k
Factorial: Calculation of Eects and Analysis of Varianc e 598
15.3 Nonreplicated 2
k
Factorial Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
15.4 Factorial Experiments in a Regression Setting . . . . . . . . . . . . . . . . . . . 612
15.5 The O rt ho go na l Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
15.6 Fractional Factorial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
15.7 Analysis of Fractional Factorial Experiments . . . . . . . . . . . . . . . . . . . . 632
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
15.8 Higher Fractions and Screening Designs . . . . . . . . . . . . . . . . . . . . . . . . . 636
15.9 Construction of Resolution III and IV Designs with 8, 16, and 32
Design Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
15.10 Other Two-Level Resolution II I De si gns ; The Plackett-Burman
Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
15.11 Introduction to Response Surface Methodology . . . . . . . . . . . . . . . . . . 639
15.12 Robust Parameter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
15.13 Potential Mis co nc ep ti on s and Hazards; Relationship to Materia l
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
16 Nonparametric Statistics .................................. 655
16.1 Nonparametric Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
16.2 Signed-Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
16.3 Wilcoxon Rank-Sum Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
16.4 Kruskal-Wallis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
16.5 Runs Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
16.6 Tolerance Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
16.7 Rank Correlation Coecient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
xiv Contents
17 Statistical Quality Control ................................ 681
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
17.2 Nature of the Control Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
17.3 Purposes of the Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
17.4 Control Chart s for Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
17.5 Control Cha rt s fo r Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
17.6 Cusum Control Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
18 Bayesian Statistics ......................................... 709
18.1 Bayesian Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
18.2 Bayesian Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
18.3 Bayes Estimates Using Decisio n T he ory Framework . . . . . . . . . . . . . 717
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
Bibliography .................................................... 721
Appendix A: Statistical Tables and Proo f s.................. 725
Appendix B: Answers to Odd-Numbered Non-Review
Exercises
.................................................. 769
Index
........................................................... 785
Preface
General Approach and Mathematical Level
Our emphasis in creating the ninth edition is less on adding new mater i al and more
on providing clarity and deeper und er st a nd in g . This objective was accomplished in
part by including new end-of-chapter material that adds connective tissue between
chapters. We aectionately call these comments at the end of the chapter “Pot
Holes.” They are very useful to remind students of the big picture and how each
chapter fits into that picture, and they aid the student in learning about limitations
and pitfalls that may result if procedures are misused. A deeper understanding
of real-world use of statistics is made available through class projects, which were
added in several chapters. These projects provide the opportunity for students
alone, or in groups, to gather their own experimental data and draw inferences. In
some cases, the work involves a problem whose solution will illustrat e the meaning
of a concept or provide an empirical understanding of an important statistical
result. Some existing e xa m pl es were expanded and new ones were introduced to
create “case studies,” in which commentary is p r ovided to give the student a clear
understanding of a statistical concept in the context of a practical situation.
In this edition, we continue to em p ha si z e a balance between theory and a pp l i-
cations. Calculus a nd other types of mathematical support (e.g., linear algebra)
are used at about the same level as in previous editions. The coverage of an-
alytical tools in statistics is en ha n ce d with the use of calculus when discussion
centers on rules and concepts in probability. Probability distributions and sta-
tistical inference are h ig h li ghted in Chap te r s 2 through 10. Linear algebra and
matrices are very lightly applied in Chapters 11 th ro ug h 15, where linear regres-
sion and analysis of variance are covered. Students using this text should have
had the equivalent of one semester of dierential and integral calculus. Linear
algebra is helpful but not necessary so long as the section in Chapter 12 on mul-
tiple linear r eg r es si o n using matrix algebra is not covered by the instructor. As
in previou s editions, a large number of exercises that deal with real-life scientific
and engineering applications are available to challenge the student. The many
data sets associated with the exercises are available for download fr om the website
http://www.pearsonhighered.com/datasets.
xv
xvi Preface
Summary of the Changes in the Ninth Edition
Class projects were added in several chapters to provide a deep e r understand-
ing of the real-world use of statistics. Students are asked to produce or gather
their own experimental data and draw inferences from these data.
More case studies were added and others expanded to help stu de nts under-
stand the statistical methods being presented in the context of a real-life situ-
ation. For example, the interpretation of confidence limi t s, prediction limits,
and tolerance limits is given using a real-life situation.
“Pot Holes” were added at the e nd of some chapters and expanded in others.
These comments are intended to present each chapter in the context of the
big picture and discuss how the chapters relate to one another. They also
provide cautions about the possible misuse of statistical techniques presented
in the chapter.
Chapter 1 has been enhanced to include more on single-number sta ti st ic s as
well as graph ic al techniques. New funda me ntal materi al on sampling and
experimental design is presented.
Examples added to Chapter 8 on sampling distributions are intended to moti-
vate P -values and hypothesis testing. This prepares the student for the more
challengin g mater ia l on these topics that will be presented in Chapter 10.
Chapter 12 contains additional development regarding the eect of a single
regression variable in a model in which collinearity with other variables is
severe.
Chapter 15 now introduce s material on the important topic of response surface
methodology (RSM). The use of noise variables in RSM allows the illu st r at io n
of mean and variance (dual response surface) modeling.
The central composite design (CCD) is introduced in Chapter 15.
More examples are given in Chapter 18, and the discussion of using Bayesian
methods for statistical decision making has been enhance d.
Content and Course Planning
This text is designed for either a one- or a two-semester course. A reaso na ble
plan for a one-semester course might include Chapters 1 through 10. This would
result in a cur r ic u lu m that concl ud e d with the fundamentals o f both est i ma t i on
and hypothesis testing. Instructors who desire that students be exposed to simple
linear regression may wish to include a por ti on of Chapter 11. For instructors
who desire to have analysis of variance included rather than r e g re ss i on , the one-
semester course may include Chapter 13 rather than Chapters 11 and 12. Chapter
13 features one-factor analysis of variance. Another option is to eliminate portions
of Chapters 5 and/or 6 as well as Chapter 7. With this opt i on , one or more of
the discrete or continuous distributions in Chapters 5 and 6 may be eliminated.
These distributions include the negative binomial, geometric, gamma, Weibull ,
beta, and log normal dis tr ib u ti on s . Other features that one might consider re-
moving from a one-semester curriculum include maximum likelihood estimation,
Preface xvii
prediction, and/or tolerance limits in Chapter 9. A one-semester curriculum has
built-in flexibility, depending on the relative interest of the instructor in regression,
analysis of variance, experimental design, and response surface methods ( Ch ap te r
15). There are several discrete and continuous dis t ri bu t io ns (Chapter s 5 and 6)
that have applications in a variety of engineering and scientific areas.
Chapters 11 through 18 contain substantial material that can be added for the
second semester of a two-semester course. The material on simple and multiple
linear regressio n is in Chapters 1 1 and 12, respectively. Chapter 12 alone oers a
substantial amount of flexibility. Multiple linear regression includes such “special
topics” as categorical or indicator variables, sequential methods of model selection
such as stepwise regression, the study of residuals for the detection of violations
of assumptions, cross valid at io n and the use of the PRESS statistic as well as
C
p
, and logisti c regression. The use of orthogonal regressors, a precursor to the
experimental design in Chapter 15, is highlighted. Chapters 13 and 14 oer a
relatively large amount of material on analysis of variance (ANOVA) with fixed,
random, and mixed models. Chap te r 15 highlights the appl ic at io n of two-level
designs in the context of full and f r ac ti o na l factorial expe ri me nts (2
k
). Special
screening designs are illustrated. Chapter 15 also features a new section on response
surface methodology (RSM) to illu s tr at e the use of experimental design for finding
optimal proce ss conditions. The fitting of a second order model through the use of
a central composite design is discussed. RSM is expan de d to cover the analy si s o f
robust parameter design type problems. Noise variables are used to accommodate
dual response surface models. Ch apt er s 16, 17, and 18 contain a moderate amount
of material on nonparametric statistics, quality control, and Bayesian inference.
Chapter 1 is an overview of statistical inference presented on a mathematically
simple level. It has been expanded from the eighth edition to more thoroughly
cover single-number statistics and graphical techniques. It is designed to give
students a preliminary prese ntation of elementary concepts that will allow them to
understand more involved de ta il s that follow. Elementary concepts in sampling,
data collection, and experimental design a re presented, a nd rudimentary aspects
of graphical to o ls are introduced, as well as a sense of what is garnered from a
data set. Stem-and-leaf plots and box-and-whisker plots have been added. Graphs
are better organized and labeled. The discussion of uncertainty and variation in
a system i s thorough and well illustrated. There are examples of how to sort
out the import ant characteristics of a scientific process or system, and these ideas
are illustrate d in practical settings such as manufacturing processes, biomedica l
studies, a nd studies of biological and other scientific systems. A contrast is made
between the use of discrete and continuous data. Emphasis is placed on the use
of models and the information concerning statistical models that can be obtained
from graphical tools.
Chapters 2, 3, and 4 deal with basic probability as well as discrete and contin-
uous random variables. Chapters 5 and 6 focus on spec ifi c discrete and continuous
distributions as well as rela t io ns h ip s among them. These chapters also highlig ht
examples of applications of the distributions in real-life scientific and engineering
studies. Examples, case st ud ie s, and a large number of exercises edify the student
concerning the use of these distribu t io n s . Proj e c ts bring the practical use of these
distributions to li fe through group work. Chapter 7 is the most theoretical chapter
xviii Preface
in the text. It deals with transformati o n of random var ia bl e s and will likely not be
used unless the instructor wishes to teach a relatively theoretical course. Chapter
8 contains graphical material, expanding on the more elementary set of graphi-
cal tool s presented and illustrated in Chapter 1. P r ob ab i li ty plotting is discussed
and illustrated with examples. Th e very important concept of sampling distrib u-
tions is presented thoroughly, and illustrations are given that involve the central
limit theorem and the distribution of a sample variance under normal, independent
(i.i.d.) sampling. The t and F distributions are introduced to motivate their use
in chapters to follow. New material in Chapter 8 helps the student to visualize the
importance of hypothesis testing, motivating the concept of a P -value.
Chapter 9 contains mater ia l on one- and two-sample point and interval esti-
mation. A t ho ro ug h discussion with examples points out the contrast between the
dierent types of intervals—confidence intervals, predi ct io n i ntervals, and tole r-
ance intervals. A case study illustrates the three types of statistical intervals in the
context of a manufacturing situation. This case study highlights the dierences
among the intervals, their sources, and the assumptions made in their develop-
ment, as well as what typ e of scientific study or question requires the use of each
one. A new approximation method has been added for the inference concerning a
proportion. C ha pt e r 10 begins with a basic presentation on the pragm at ic mean-
ing of hypothesis testing, with emphasis on such fundamental concepts as null and
alternative hypotheses, the role of probability and the P -value, and the p ower of
a test. Following this, illustrations are given of te s ts concerning one and two sam-
ples under standard cond i ti on s . The two-sample t-test with paired observations
is also described. A case study helps the student to develop a clear picture of
what interaction among factors really means as well as the dangers that can arise
when interaction between treatm ents and experimental units exists. At the end of
Chapter 10 is a very important section that rel at es Chapters 9 and 10 (estimation
and hypothesi s testing) to Chapters 11 through 16, where st at i st ic a l modeli n g is
prominent. It is important that the student be aware of the strong con ne ct i on .
Chapters 11 and 12 contain material on simple and multiple linear r e gr es s io n,
respectively. Considerably more attention is given in this edition to the eect that
collinearity among the regression variables plays. A situation is presented that
shows how the role of a single regression variable can depend in large part on what
regressors are in the model with it. Th e sequential model selection procedures (for-
ward, ba ckward, stepwise, etc.) are then revisited in regard to this concept, a n d
the rationale for using certain P - values with these procedures is provided. Chap-
ter 12 oers material on nonlinear modeling with a special presentation of logistic
regression, which has app li ca ti on s in engineering and the biological sciences. The
material on multiple regression is quite extensive and thus provides co n si d er a b le
flexibility for the instructor, as indicated earlier. At the end of Chapter 12 is com-
mentary relating that chapter to Chapters 14 and 15. Several features were added
that provide a better understanding of the material in general. For example, the
end-of-chapter material deals with cautions and dicul ti es one might encounter.
It is pointed out that the r e are types of responses th a t occur naturally in practice
(e.g. proportion responses, count responses, and several oth ers ) with which stan-
dard least squares regression should not be used because standard assumptions do
not hold and violation of assumptions may in du ce serious errors. The su gg e st io n is
Preface xix
made that data transformation on the response may alleviate the probl em in some
cases. Flexibility is again available in Chapters 13 and 14, on the topic of analysis
of variance. Chapter 13 covers one-factor ANOVA in the context of a completely
randomized des ig n. Complementary topics include tests on variances and multiple
comparisons. Comparisons of treatments in blocks are hig hl ig hted, along with th e
topic of randomized complete blocks. Graphical methods are extended to ANOVA
to aid th e student in supplementing the formal inference with a pictori al type of in-
ference that can aid scientists and engineers in presenting mater ia l. A new project
is given in which students inco rporate the appropriate randomiz at i o n into each
plan and use graphical techniques and P -values in reporting the results. Chapter
14 extends the material in Chapter 13 to accommodate two or more f ac to rs that
are in a factorial structure. The ANOVA presentation in Cha pt er 14 includes work
in both rando m and fixed ee ct s models. Chapter 15 oers material associated
with 2
k
factorial designs; examples and case studies present the use of screening
designs and special higher fractions of the 2
k
. Two new and special featur es are
the presentations of response surface methodology (RSM) and r obust parameter
design. These topics are linked in a case st ud y that describes and illustrates a
dual response surface design and analysis featuring the us e of process mean and
variance response surfa ces.
Computer Software
Case studies, begin n in g in Chapter 8, feature computer printout and graphical
material generated using both SAS and MINITAB. The inclusion of the computer
reflects our belief that students should have the experience of reading and inter-
preting computer printout a nd graphics, e ven if the software in the text is not that
which is used by the instructor. Exposure to more than one type of software can
broaden the experience base for the student. There is no reason to b elieve that
the software used in the course will be th at which the student will be called upon
to use in practice following graduation. Examples and case studies in the text are
supplemented, where appropriate, by various types of residual plots, quantile plots,
normal probability plots, and other plots. Such plots are particularly prevalent in
Chapters 11 through 15.
Supplements
Instructor’s Solutions Manual. This resource contains worked-out solutions to all
text exercises and is available for download from Pearson Education’s Instr uc to r
Resource Center.
Student Solutions Manual ISBN-10: 0-321-64013-6; ISBN-13: 978-0-321-64013-0.
Featuring complete solutions to selected exercises, this is a great tool for students
as they study and work through the problem material.
PowerPoint
R
Lecture Slides ISBN-10: 0-321-73731-8; ISBN-13: 978-0-321-73731-
1. These slides include most of the figures and tables from the text. Slides are
av ailable to download from Pearson Educations Instructor Resource Center.
| 1/812

Preview text:

Probability & Statistics for Engineers & Scientists
This page intentionally left blank
Probability & Statistics for Engineers & Scientists N I N T H E D I T I O N Ronald E. Walpole Roanoke College Raymond H. Myers Virginia Tech Sharon L. Myers Radford University Keying Ye
University of Texas at San Antonio Prentice Hall Editor in Chief: Deirdre Lynch
Acquisitions Editor: Christopher Cummings
Executive Content Editor: Christine O’Brien
Associate Editor: Christina Lepre
Senior Managing Editor: Karen Wernholm
Senior Production Project Manager: Tracy Patruno Design Manager: Andrea Nix Cover Designer: Heather Scott
Digital Assets Manager: Marianne Groth
Associate Media Producer: Vicki Dreyfus Marketing Manager: Alex Gay
Marketing Assistant: Kathleen DeChavez
Senior Author Support/Technology Specialist: Joe Vetere
Rights and Permissions Advisor: Michael Joyce
Senior Manufacturing Buyer: Carol Melville
Production Coordination: Lifland et al. Bookmakers Composition: Keying Ye
Cover photo: Marjory Dressler/Dressler Photo-Graphics
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Pearson was aware of a trademark claim, the
designations have been printed in initial caps or all caps.
Library of Congress Cataloging-in-Publication Data
Probability & statistics for engineers & scientists/Ronald E. Walpole . . . [et al.] — 9th ed. p. cm. ISBN 978-0-321-62911-1
1. Engineering—Statistical methods. 2. Probabilities. I. Walpole, Ronald E. TA340.P738 2011 519.02’462–dc22 2010004857 Copyright c
⃝ 2012, 2007, 2002 Pearson Education, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of material in this work, please submit
a written request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900,
Boston, MA 02116, fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.
1 2 3 4 5 6 7 8 9 10—EB—14 13 12 11 10 ISBN 10: 0-321-62911-6 ISBN 13: 978-0-321-62911-1 This book is dedicated to Billy and Julie R.H.M. and S.L.M. Limin, Carolyn and Emily K.Y.
This page intentionally left blank Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1
Introduction to Statistics and Data Analysis . . . . . . . . . . . 1 1.1
Overview: Statistical Inference, Samples, Populations, and the
Role of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2
Sampling Procedures; Collection of Data . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3
Measures of Location: The Sample Mean and Median . . . . . . . . . . . 11
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4
Measures of Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5
Discrete and Continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6
Statistical Modeling, Scientific Inspection, and Graphical Diag-
nostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.7
General Types of Statistical Studies: Designed Experiment,
Observational Study, and Retrospective Study . . . . . . . . . . . . . . . . . . 27
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2
Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1
Sample Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3
Counting Sample Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4
Probability of an Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5
Additive Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.6
Conditional Probability, Independence, and the Product Rule . . . 62
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.7
Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 viii Contents 2.8
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3
Random Variables and Probability Distributions . . . . . . 81 3.1
Concept of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2
Discrete Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3
Continuous Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4
Joint Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.5
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4
Mathematical Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.1
Mean of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2
Variance and Covariance of Random Variables. . . . . . . . . . . . . . . . . . . 119
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.3
Means and Variances of Linear Combinations of Random Variables 128 4.4
Chebyshev’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.5
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5
Some Discrete Probability Distributions . . . . . . . . . . . . . . . . 143 5.1
Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2
Binomial and Multinomial Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 143
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.3
Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.4
Negative Binomial and Geometric Distributions . . . . . . . . . . . . . . . . . 158 5.5
Poisson Distribution and the Poisson Process . . . . . . . . . . . . . . . . . . . . 161
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.6
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Contents ix 6
Some Continuous Probability Distributions . . . . . . . . . . . . . 171 6.1
Continuous Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2
Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.3
Areas under the Normal Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.4
Applications of the Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 182
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.5
Normal Approximation to the Binomial . . . . . . . . . . . . . . . . . . . . . . . . . 187
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.6
Gamma and Exponential Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.7
Chi-Squared Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.8
Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.9
Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.10
Weibull Distribution (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.11
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7
Functions of Random Variables (Optional). . . . . . . . . . . . . . 211 7.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.2
Transformations of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7.3
Moments and Moment-Generating Functions . . . . . . . . . . . . . . . . . . . . 218
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8
Fundamental Sampling Distributions and
Data Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.1
Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.2
Some Important Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.3
Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 8.4
Sampling Distribution of Means and the Central Limit Theorem . 233
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 8.5
Sampling Distribution of S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 8.6
t-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 8.7
F -Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.8
Quantile and Probability Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 8.9
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 x Contents 9
One- and Two-Sample Estimation Problems . . . . . . . . . . . . 265 9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 9.2
Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 9.3
Classical Methods of Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 9.4
Single Sample: Estimating the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 9.5
Standard Error of a Point Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 9.6
Prediction Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 9.7
Tolerance Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 9.8
Two Samples: Estimating the Difference between Two Means . . . 285 9.9
Paired Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 9.10
Single Sample: Estimating a Proportion . . . . . . . . . . . . . . . . . . . . . . . . . 296 9.11
Two Samples: Estimating the Difference between Two Proportions 300
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 9.12
Single Sample: Estimating the Variance . . . . . . . . . . . . . . . . . . . . . . . . . 303 9.13
Two Samples: Estimating the Ratio of Two Variances . . . . . . . . . . . 305
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 9.14
Maximum Likelihood Estimation (Optional) . . . . . . . . . . . . . . . . . . . . . 307
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 9.15
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
10 One- and Two-Sample Tests of Hypotheses . . . . . . . . . . . . . 319 10.1
Statistical Hypotheses: General Concepts . . . . . . . . . . . . . . . . . . . . . . . 319 10.2
Testing a Statistical Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 10.3
The Use of P -Values for Decision Making in Testing Hypotheses . 331
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 10.4
Single Sample: Tests Concerning a Single Mean . . . . . . . . . . . . . . . . . 336 10.5
Two Samples: Tests on Two Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 10.6
Choice of Sample Size for Testing Means . . . . . . . . . . . . . . . . . . . . . . . . 349 10.7
Graphical Methods for Comparing Means . . . . . . . . . . . . . . . . . . . . . . . 354
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 10.8
One Sample: Test on a Single Proportion. . . . . . . . . . . . . . . . . . . . . . . . 360 10.9
Two Samples: Tests on Two Proportions . . . . . . . . . . . . . . . . . . . . . . . . 363
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
10.10 One- and Two-Sample Tests Concerning Variances . . . . . . . . . . . . . . 366
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.11 Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
10.12 Test for Independence (Categorical Data) . . . . . . . . . . . . . . . . . . . . . . . 373 Contents xi
10.13 Test for Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
10.14 Two-Sample Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
10.15 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
11 Simple Linear Regression and Correlation . . . . . . . . . . . . . . 389 11.1
Introduction to Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 11.2
The Simple Linear Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 11.3
Least Squares and the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 11.4
Properties of the Least Squares Estimators . . . . . . . . . . . . . . . . . . . . . . 400 11.5
Inferences Concerning the Regression Coefficients. . . . . . . . . . . . . . . . 403 11.6
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 11.7
Choice of a Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11.8
Analysis-of-Variance Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11.9
Test for Linearity of Regression: Data with Repeated Observations 416
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
11.10 Data Plots and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
11.11 Simple Linear Regression Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
11.12 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
11.13 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
12 Multiple Linear Regression and Certain
Nonlinear Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 12.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 12.2
Estimating the Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 12.3
Linear Regression Model Using Matrices . . . . . . . . . . . . . . . . . . . . . . . . 447
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 12.4
Properties of the Least Squares Estimators . . . . . . . . . . . . . . . . . . . . . . 453 12.5
Inferences in Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 455
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 12.6
Choice of a Fitted Model through Hypothesis Testing . . . . . . . . . . . 462 12.7
Special Case of Orthogonality (Optional) . . . . . . . . . . . . . . . . . . . . . . . . 467
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 12.8
Categorical or Indicator Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 xii Contents
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 12.9
Sequential Methods for Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.10 Study of Residuals and Violation of Assumptions (Model Check-
ing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
12.11 Cross Validation, Cp, and Other Criteria for Model Selection . . . . 487
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.12 Special Nonlinear Models for Nonideal Conditions . . . . . . . . . . . . . . . 496
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
12.13 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
13 One-Factor Experiments: General. . . . . . . . . . . . . . . . . . . . . . . . 507 13.1
Analysis-of-Variance Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 13.2
The Strategy of Experimental Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 13.3
One-Way Analysis of Variance: Completely Randomized Design
(One-Way ANOVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 13.4
Tests for the Equality of Several Variances . . . . . . . . . . . . . . . . . . . . . . 516
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 13.5
Single-Degree-of-Freedom Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 520 13.6
Multiple Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 13.7
Comparing a Set of Treatments in Blocks . . . . . . . . . . . . . . . . . . . . . . . 532 13.8
Randomized Complete Block Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 13.9
Graphical Methods and Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 540
13.10 Data Transformations in Analysis of Variance . . . . . . . . . . . . . . . . . . . 543
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
13.11 Random Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
13.12 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
13.13 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
14 Factorial Experiments (Two or More Factors) . . . . . . . . . . 561 14.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 14.2
Interaction in the Two-Factor Experiment . . . . . . . . . . . . . . . . . . . . . . . 562 14.3
Two-Factor Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 14.4
Three-Factor Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 Contents xiii 14.5
Factorial Experiments for Random Effects and Mixed Models. . . . 588
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 14.6
Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
15 2k Factorial Experiments and Fractions . . . . . . . . . . . . . . . . . 597 15.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 15.2
The 2k Factorial: Calculation of Effects and Analysis of Variance 598 15.3
Nonreplicated 2k Factorial Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 15.4
Factorial Experiments in a Regression Setting . . . . . . . . . . . . . . . . . . . 612 15.5
The Orthogonal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 15.6
Fractional Factorial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 15.7
Analysis of Fractional Factorial Experiments . . . . . . . . . . . . . . . . . . . . 632
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 15.8
Higher Fractions and Screening Designs . . . . . . . . . . . . . . . . . . . . . . . . . 636 15.9
Construction of Resolution III and IV Designs with 8, 16, and 32
Design Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
15.10 Other Two-Level Resolution III Designs; The Plackett-Burman
Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
15.11 Introduction to Response Surface Methodology . . . . . . . . . . . . . . . . . . 639
15.12 Robust Parameter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
15.13 Potential Misconceptions and Hazards; Relationship to Material
in Other Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
16 Nonparametric Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 16.1
Nonparametric Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 16.2
Signed-Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 16.3
Wilcoxon Rank-Sum Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 16.4
Kruskal-Wallis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 16.5
Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 16.6
Tolerance Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 16.7
Rank Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 xiv Contents
17 Statistical Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 17.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 17.2
Nature of the Control Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 17.3
Purposes of the Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 17.4
Control Charts for Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 17.5
Control Charts for Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 17.6
Cusum Control Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
Review Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
18 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709 18.1
Bayesian Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709 18.2
Bayesian Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 18.3
Bayes Estimates Using Decision Theory Framework . . . . . . . . . . . . . 717
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
Appendix A: Statistical Tables and Proofs. . . . . . . . . . . . . . . . . . 725
Appendix B: Answers to Odd-Numbered Non-Review
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 Preface
General Approach and Mathematical Level
Our emphasis in creating the ninth edition is less on adding new material and more
on providing clarity and deeper understanding. This objective was accomplished in
part by including new end-of-chapter material that adds connective tissue between
chapters. We affectionately call these comments at the end of the chapter “Pot
Holes.” They are very useful to remind students of the big picture and how each
chapter fits into that picture, and they aid the student in learning about limitations
and pitfalls that may result if procedures are misused. A deeper understanding
of real-world use of statistics is made available through class projects, which were
added in several chapters. These projects provide the opportunity for students
alone, or in groups, to gather their own experimental data and draw inferences. In
some cases, the work involves a problem whose solution will illustrate the meaning
of a concept or provide an empirical understanding of an important statistical
result. Some existing examples were expanded and new ones were introduced to
create “case studies,” in which commentary is provided to give the student a clear
understanding of a statistical concept in the context of a practical situation.
In this edition, we continue to emphasize a balance between theory and appli-
cations. Calculus and other types of mathematical support (e.g., linear algebra)
are used at about the same level as in previous editions. The coverage of an-
alytical tools in statistics is enhanced with the use of calculus when discussion
centers on rules and concepts in probability. Probability distributions and sta-
tistical inference are highlighted in Chapters 2 through 10. Linear algebra and
matrices are very lightly applied in Chapters 11 through 15, where linear regres-
sion and analysis of variance are covered. Students using this text should have
had the equivalent of one semester of differential and integral calculus. Linear
algebra is helpful but not necessary so long as the section in Chapter 12 on mul-
tiple linear regression using matrix algebra is not covered by the instructor. As
in previous editions, a large number of exercises that deal with real-life scientific
and engineering applications are available to challenge the student. The many
data sets associated with the exercises are available for download from the website
http://www.pearsonhighered.com/datasets. xv xvi Preface
Summary of the Changes in the Ninth Edition
• Class projects were added in several chapters to provide a deeper understand-
ing of the real-world use of statistics. Students are asked to produce or gather
their own experimental data and draw inferences from these data.
• More case studies were added and others expanded to help students under-
stand the statistical methods being presented in the context of a real-life situ-
ation. For example, the interpretation of confidence limits, prediction limits,
and tolerance limits is given using a real-life situation.
• “Pot Holes” were added at the end of some chapters and expanded in others.
These comments are intended to present each chapter in the context of the
big picture and discuss how the chapters relate to one another. They also
provide cautions about the possible misuse of statistical techniques presented in the chapter.
• Chapter 1 has been enhanced to include more on single-number statistics as
well as graphical techniques. New fundamental material on sampling and
experimental design is presented.
• Examples added to Chapter 8 on sampling distributions are intended to moti-
vate P -values and hypothesis testing. This prepares the student for the more
challenging material on these topics that will be presented in Chapter 10.
• Chapter 12 contains additional development regarding the effect of a single
regression variable in a model in which collinearity with other variables is severe.
• Chapter 15 now introduces material on the important topic of response surface
methodology (RSM). The use of noise variables in RSM allows the illustration
of mean and variance (dual response surface) modeling.
• The central composite design (CCD) is introduced in Chapter 15.
• More examples are given in Chapter 18, and the discussion of using Bayesian
methods for statistical decision making has been enhanced. Content and Course Planning
This text is designed for either a one- or a two-semester course. A reasonable
plan for a one-semester course might include Chapters 1 through 10. This would
result in a curriculum that concluded with the fundamentals of both estimation
and hypothesis testing. Instructors who desire that students be exposed to simple
linear regression may wish to include a portion of Chapter 11. For instructors
who desire to have analysis of variance included rather than regression, the one-
semester course may include Chapter 13 rather than Chapters 11 and 12. Chapter
13 features one-factor analysis of variance. Another option is to eliminate portions
of Chapters 5 and/or 6 as well as Chapter 7. With this option, one or more of
the discrete or continuous distributions in Chapters 5 and 6 may be eliminated.
These distributions include the negative binomial, geometric, gamma, Weibull,
beta, and log normal distributions. Other features that one might consider re-
moving from a one-semester curriculum include maximum likelihood estimation, Preface xvii
prediction, and/or tolerance limits in Chapter 9. A one-semester curriculum has
built-in flexibility, depending on the relative interest of the instructor in regression,
analysis of variance, experimental design, and response surface methods (Chapter
15). There are several discrete and continuous distributions (Chapters 5 and 6)
that have applications in a variety of engineering and scientific areas.
Chapters 11 through 18 contain substantial material that can be added for the
second semester of a two-semester course. The material on simple and multiple
linear regression is in Chapters 11 and 12, respectively. Chapter 12 alone offers a
substantial amount of flexibility. Multiple linear regression includes such “special
topics” as categorical or indicator variables, sequential methods of model selection
such as stepwise regression, the study of residuals for the detection of violations
of assumptions, cross validation and the use of the PRESS statistic as well as
Cp, and logistic regression. The use of orthogonal regressors, a precursor to the
experimental design in Chapter 15, is highlighted. Chapters 13 and 14 offer a
relatively large amount of material on analysis of variance (ANOVA) with fixed,
random, and mixed models. Chapter 15 highlights the application of two-level
designs in the context of full and fractional factorial experiments (2k). Special
screening designs are illustrated. Chapter 15 also features a new section on response
surface methodology (RSM) to illustrate the use of experimental design for finding
optimal process conditions. The fitting of a second order model through the use of
a central composite design is discussed. RSM is expanded to cover the analysis of
robust parameter design type problems. Noise variables are used to accommodate
dual response surface models. Chapters 16, 17, and 18 contain a moderate amount
of material on nonparametric statistics, quality control, and Bayesian inference.
Chapter 1 is an overview of statistical inference presented on a mathematically
simple level. It has been expanded from the eighth edition to more thoroughly
cover single-number statistics and graphical techniques. It is designed to give
students a preliminary presentation of elementary concepts that will allow them to
understand more involved details that follow. Elementary concepts in sampling,
data collection, and experimental design are presented, and rudimentary aspects
of graphical tools are introduced, as well as a sense of what is garnered from a
data set. Stem-and-leaf plots and box-and-whisker plots have been added. Graphs
are better organized and labeled. The discussion of uncertainty and variation in
a system is thorough and well illustrated. There are examples of how to sort
out the important characteristics of a scientific process or system, and these ideas
are illustrated in practical settings such as manufacturing processes, biomedical
studies, and studies of biological and other scientific systems. A contrast is made
between the use of discrete and continuous data. Emphasis is placed on the use
of models and the information concerning statistical models that can be obtained from graphical tools.
Chapters 2, 3, and 4 deal with basic probability as well as discrete and contin-
uous random variables. Chapters 5 and 6 focus on specific discrete and continuous
distributions as well as relationships among them. These chapters also highlight
examples of applications of the distributions in real-life scientific and engineering
studies. Examples, case studies, and a large number of exercises edify the student
concerning the use of these distributions. Projects bring the practical use of these
distributions to life through group work. Chapter 7 is the most theoretical chapter xviii Preface
in the text. It deals with transformation of random variables and will likely not be
used unless the instructor wishes to teach a relatively theoretical course. Chapter
8 contains graphical material, expanding on the more elementary set of graphi-
cal tools presented and illustrated in Chapter 1. Probability plotting is discussed
and illustrated with examples. The very important concept of sampling distribu-
tions is presented thoroughly, and illustrations are given that involve the central
limit theorem and the distribution of a sample variance under normal, independent
(i.i.d.) sampling. The t and F distributions are introduced to motivate their use
in chapters to follow. New material in Chapter 8 helps the student to visualize the
importance of hypothesis testing, motivating the concept of a P -value.
Chapter 9 contains material on one- and two-sample point and interval esti-
mation. A thorough discussion with examples points out the contrast between the
different types of intervals—confidence intervals, prediction intervals, and toler-
ance intervals. A case study illustrates the three types of statistical intervals in the
context of a manufacturing situation. This case study highlights the differences
among the intervals, their sources, and the assumptions made in their develop-
ment, as well as what type of scientific study or question requires the use of each
one. A new approximation method has been added for the inference concerning a
proportion. Chapter 10 begins with a basic presentation on the pragmatic mean-
ing of hypothesis testing, with emphasis on such fundamental concepts as null and
alternative hypotheses, the role of probability and the P -value, and the power of
a test. Following this, illustrations are given of tests concerning one and two sam-
ples under standard conditions. The two-sample t-test with paired observations
is also described. A case study helps the student to develop a clear picture of
what interaction among factors really means as well as the dangers that can arise
when interaction between treatments and experimental units exists. At the end of
Chapter 10 is a very important section that relates Chapters 9 and 10 (estimation
and hypothesis testing) to Chapters 11 through 16, where statistical modeling is
prominent. It is important that the student be aware of the strong connection.
Chapters 11 and 12 contain material on simple and multiple linear regression,
respectively. Considerably more attention is given in this edition to the effect that
collinearity among the regression variables plays. A situation is presented that
shows how the role of a single regression variable can depend in large part on what
regressors are in the model with it. The sequential model selection procedures (for-
ward, backward, stepwise, etc.) are then revisited in regard to this concept, and
the rationale for using certain P -values with these procedures is provided. Chap-
ter 12 offers material on nonlinear modeling with a special presentation of logistic
regression, which has applications in engineering and the biological sciences. The
material on multiple regression is quite extensive and thus provides considerable
flexibility for the instructor, as indicated earlier. At the end of Chapter 12 is com-
mentary relating that chapter to Chapters 14 and 15. Several features were added
that provide a better understanding of the material in general. For example, the
end-of-chapter material deals with cautions and difficulties one might encounter.
It is pointed out that there are types of responses that occur naturally in practice
(e.g. proportion responses, count responses, and several others) with which stan-
dard least squares regression should not be used because standard assumptions do
not hold and violation of assumptions may induce serious errors. The suggestion is Preface xix
made that data transformation on the response may alleviate the problem in some
cases. Flexibility is again available in Chapters 13 and 14, on the topic of analysis
of variance. Chapter 13 covers one-factor ANOVA in the context of a completely
randomized design. Complementary topics include tests on variances and multiple
comparisons. Comparisons of treatments in blocks are highlighted, along with the
topic of randomized complete blocks. Graphical methods are extended to ANOVA
to aid the student in supplementing the formal inference with a pictorial type of in-
ference that can aid scientists and engineers in presenting material. A new project
is given in which students incorporate the appropriate randomization into each
plan and use graphical techniques and P -values in reporting the results. Chapter
14 extends the material in Chapter 13 to accommodate two or more factors that
are in a factorial structure. The ANOVA presentation in Chapter 14 includes work
in both random and fixed effects models. Chapter 15 offers material associated
with 2k factorial designs; examples and case studies present the use of screening
designs and special higher fractions of the 2k. Two new and special features are
the presentations of response surface methodology (RSM) and robust parameter
design. These topics are linked in a case study that describes and illustrates a
dual response surface design and analysis featuring the use of process mean and variance response surfaces. Computer Software
Case studies, beginning in Chapter 8, feature computer printout and graphical
material generated using both SAS and MINITAB. The inclusion of the computer
reflects our belief that students should have the experience of reading and inter-
preting computer printout and graphics, even if the software in the text is not that
which is used by the instructor. Exposure to more than one type of software can
broaden the experience base for the student. There is no reason to believe that
the software used in the course will be that which the student will be called upon
to use in practice following graduation. Examples and case studies in the text are
supplemented, where appropriate, by various types of residual plots, quantile plots,
normal probability plots, and other plots. Such plots are particularly prevalent in Chapters 11 through 15. Supplements
Instructor’s Solutions Manual. This resource contains worked-out solutions to all
text exercises and is available for download from Pearson Education’s Instructor Resource Center.
Student Solutions Manual ISBN-10: 0-321-64013-6; ISBN-13: 978-0-321-64013-0.
Featuring complete solutions to selected exercises, this is a great tool for students
as they study and work through the problem material. PowerPoint R
⃝ Lecture Slides ISBN-10: 0-321-73731-8; ISBN-13: 978-0-321-73731-
1. These slides include most of the figures and tables from the text. Slides are
available to download from Pearson Education’s Instructor Resource Center.