



















Preview text:
  lOMoAR cPSD| 58759230 Steel Structures  Chapter 3 Steel beams    Contents    1. Introduction  2. Beam section types  3. General dimensions 
4. Design of steel floors 
5. Design of rolled beams 
6. Design of built-up beams  7. Worked examples  2      lOMoAR cPSD| 58759230 Introduction   
Beams or girders - structural members are subjected to bending    3  Introduction   
Beams or girders - structural members are subjected to bending      lOMoAR cPSD| 58759230 4  Beam section types      Rolled sections  Built-up sections    5      lOMoAR cPSD| 58759230 General dimensions  Span lengths  • L 1 : actual ength 
• L 0 : clear (unsupported) length  • l : effective span length  • L : span length  Section height , h    mi h n hh max 
• h min : satisfyingdeflection requirements 
• h max : satisfying function requirements    6  Design of steel floors  1. Selection of l/t      lOMoAR cPSD| 58759230 l 4n 72E       0 1  1    4 c  t     15  nq    0    n  2   l  ; 1 0     E  E     1      7  Design of steel floors  2. Select t  Uniformed load  Floor thickness    3. Calculate   (1 )2 3 t0  2 ; 0  3845q lcE I41  8      lOMoAR cPSD| 58759230 Design of steel floors  4. Strength requirement     H Mmax c f    A  Wx  Mmax 1M 0  H   l2EI or H   Q 42  l  2 E t1 2  5. Deflection requirement    0   [ ]    1     9  Rolled steel beams 
1. Selection of the beam section      lOMoAR cPSD| 58759230 M  x  x  1 c f    1 c    W W req  max 
c1 =1,12: considering plastic def. 
c = 1 : no considering plastic def.  10      lOMoAR cPSD| 58759230 Rolled steel beams 
2. Checking for adequate strength      Mmax 
 c f ; VmaxSx  c fv ;  1 cW  nx   It   xw   2  2    t f   3  1 ,15 c      11  Rolled steel beams  3. Chec  
king the strength of the beam web  for local load  F      c   c f  wz tl   c : localstress.  t w : webthickness  l z = b+2h y = b+2(t f+ r )        lOMoAR cPSD| 58759230 Rolled steel beams 
4. Checking the deflection requirement  l        l  12  5. Checking for general  stability  Mmax  c f  bWc 
• Wc : beam section modulus in compression  • c = 0.95  •  2  b : buckling factor, b  1   y h E     
• : depending on (Table 3.3, p. 122) 
• l : effective length of the beam 1    l  f    0  x  o  ▪ If 1 0,85  b= 1  It  lo 2  ▪ If 1 > 0,85  b= 0,68 + 0,21 1 and b 1  1,54 I     y  h  13      lOMoAR cPSD| 58759230 Rolled steel beams  Rolled steel beams 
Moment of inertia in torsion It for rolled I beams    14  Ví dụ: 
Cho một hệ sàn dầm như  hình vẽ có:  - B = 6m; L=12m;  - Hoạt tải tiêu chuẩn  qc=500 daN/m2, hệ số  vượt tải 1,1. 
Thiết kế sàn thép và dầm 
phụ (dầm hình) biết ộ võng 
cho phép của bản sàn là L/150 và của dầm phụ là  L/350.        lOMoAR cPSD| 58759230 Rolled steel beams  15  Built-up beams  1. Configuration of beams    16      lOMoAR cPSD| 58759230 Built-up beams  2. Selection of the beam  section  Section  W height, h h   min  h  k   h h kt  max  tw  Weld-beam: k = 1,15 ÷ 1,20  Bolt-beam: k = 1,20 ÷ 1,25  hmin   5 f  1  g pc  c        l ltb   tb gc g pc p  24 E    17  Built-up beams 
2 . Selection of the beam section  Web thickness , t w  max V Sx  min  3 max V     f   t  t   vc  w   w  xw It  2 wcv h f  3 h  t       w  7  forh 12 m  1000  w h f  t   w  
for local buckling req.  5 , 5 E      hw (m)  1,0  1,5  2,0  3,0  4,0  5,0      lOMoAR cPSD| 58759230 Built-up beams  tw (mm)  8-10  10-12  12-14  16-18  20-22  22-24  hw/tw 
100-125 125-150 145-165 165-185 185-200 210-230  18 
2 . Selection of the beam section ( welds ) 
Flange dimensions , b f and t f 3  3  h ww th  Mmax  h ww th  I             f 
Ix Iw W x 212   c f 212  2  2  h  h  2 I  I       f   bt   f  2 fk  fk   Af  bt  f f  4 f f  2    2  hfk  • t f > t w  • t f 30 mm.  • b f/t f 30 
• b f= h/ 2 h/5; b f 180 mm; b f h/10  19      lOMoAR cPSD| 58759230 Built-up beams  Built-up beams 
2 . Selection of the beam section ( bolts ) 
Flange dimensions, b d and t d  2 Id      dd bt  2  1  nh d  I         d
 Ix Iw Ig  3  Mmax  h ww th    4  I  2    0 g  g  aA g   c f 212     • b g = 12
h/ h/9; t g = t w ; t g =( b g /11 b g /10)  • b d 2 b g + t w  • a 1 15 t d ( one plate )    • a 1 8 t d two p (  lates )    20  3. Chec   king for adequate strength   for normal stress  x  x  M   h 0  max          c f  1  cWnx    for shear stress  max V Sx       c fv  xw It  x  x  h 0 = h w  21      lOMoAR cPSD| 58759230 Built-up beams  Built-up beams 
3. Checking for adequate strength 
 for normal and shear stresses       2  2  t1 3 1 1,15 c f   
 for normal, shear and local stresses  x  x  h0=hw          2  2  2  t  1
 c  1 c 3 1 1,15 c f  1  M1 hw ; 1 V S 1xf ; c   F  c f     Wnx h  I tx w  t lw z  22  4. Checking for  deflection  requirement  l  2  h E     x ol f    0 , 5h fk    l      lOMoAR cPSD| 58759230 Built-up beams 
5. Checking for global stability    M  y    b cW  f c  1    2   L t    8  h b0 f    1 b tatf w33f  ;  a     fk f  
• : depending on (Table 3.3, p. 122) 
• l0: effective transverse length of the beam    23  Built-up beams 
5. Checking for global stability      lOMoAR cPSD| 58759230 Built-up beams      24 
5. Checking for global stability  25      lOMoAR cPSD| 58759230 Built-up beams  Built-up beams 
5. Checking for global stability      26      lOMoAR cPSD| 58759230 Built-up beams 
Critical stress ofa plate  C 2 2    2   E  t  t      k  cr  2          121  b  b     stable cr       unstable cr    27 
6. Checking for local stability  Built-up beams 
6. Checking for local stability 
Stability of the beam flange in compression      lOMoAR cPSD| 58759230 Built-up beams  2  t    free edge      E cr  0, f   25    f  b    0 f      b 0f  E     0, 5  t  f f      28 
6. Checking for local stability  29