Assignment - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Assignment - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Môn:

Calculus 1 (MA001IU) 42 tài liệu

Thông tin:
2 trang 7 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Assignment - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Assignment - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

87 44 lượt tải Tải xuống
Assignment I - CALCULUS I
Dr. Duong Thanh PHAM
Deadline: 8PM, October 15th 2021
Exercise 1.
Let A(1 (4, 2) and B , 3) be two points in R
2
. Find
(i)
AB
(ii) Parametric and symmetric equations of the line passing through A and .B
Exercise 2. Find a formula for the inverse of the function
f
(x) = x
2
+ 2x, x . 1
Exercise 3.
Let f (x) =
p
2017 sin(x + 1)
(i) Find the domain and the range of .f
(ii) Find functions g, h so that f(x) = g(h( (x)), x −∞ , ).
Exercise 4. Let C be a circle with radius 2 centred at the point (2, 0).
(i) Write an equation for the circle .C
(ii) Is curve C the graph of a function of x? Explain your answer.
(iii) Write parametric equations to traverse C once, in a clockwise direction, starting from the origin.
Exercise 5. (i) Evaluate the limit
lim
x2
6 x 2
3 x 1
.
(ii) By using the Squeeze Theorem, or otherwise, evaluate the limit
lim
xπ
(
x π) sin
π
x
π
.
Exercise 6. Use Squeeze theorem to evaluate the limit
lim
x
0
x cos(ln | |x ).
Exercise 7. Which of the following is true for the function f(x) given by
f
(x) =
2x 1 if 1x <
x
2
+ 1 if 1 x 1
x + 1 if x > .1
(i) f is continuous everywhere,
(ii) f is continuous everywhere except at x = 1 and x = 1,
(iii) f is continuous everywhere except at 1,x =
(iv) f is continuous everywhere except at x = 1,
(v) None of the above.
Explain your choice in details.
1
Exercise 8. Let
g
(x) =
cos x if 0x <
0 if x = 0
1
x
2
if x > 0.
(i) Explain why g(x) is discontinuous at x = 0.
(ii) Sketch the graph of g(x).
Exercise 9. The radius of the earth is roughly 4000 miles, and an object located x miles from the
center of the earth weighs w(x) lb, where
w
(x) =
ax if 0 < x 4000
b
x
2
if x > 4000
and a and b are positive constants.
(i) Show that w(x) is continuous on (0; ) if and only if
a
=
b
4000
3
(ii) Find any horizontal asymptotes and sketch the graph of w(x).
Exercise 10. Show that the equation
x
3
x sin x 1 = x
x + 2
has a real root in the interval [0, 2].
2
| 1/2

Preview text:

Assignment I - CALCULUS I Dr. Duong Thanh PHAM
Deadline: 8PM, October 15th 2021
Exercise 1. Let A(1, 2) and B(4, 3) be two points in R2. Find −−→ (i) AB
(ii) Parametric and symmetric equations of the line passing through A and B.
Exercise 2. Find a formula for the inverse of the function f (x) = x2 + 2x, x ≥ −1.
Exercise 3. Let f (x) = p2017 − sin(x + 1)
(i) Find the domain and the range of f .
(ii) Find functions g, h so that f (x) = g(h(x)), x ∈ (−∞, ∞).
Exercise 4. Let C be a circle with radius 2 centred at the point (2, 0).
(i) Write an equation for the circle C.
(ii) Is curve C the graph of a function of x? Explain your answer.
(iii) Write parametric equations to traverse C once, in a clockwise direction, starting from the origin. Exercise 5. (i) Evaluate the limit √6 − x − 2 lim √ . x→2 3 − x − 1
(ii) By using the Squeeze Theorem, or otherwise, evaluate the limit π lim (x − π) sin . x→π x − π
Exercise 6. Use Squeeze theorem to evaluate the limit lim x cos(ln |x|). x→0
Exercise 7. Which of the following is true for the function f (x) given by  2x − 1 if x < −1   f (x) = x2 + 1 if − 1 ≤ x ≤ 1  x + 1 if x > 1.
(i) f is continuous everywhere,
(ii) f is continuous everywhere except at x = −1 and x = 1,
(iii) f is continuous everywhere except at x = −1,
(iv) f is continuous everywhere except at x = 1, (v) None of the above.
Explain your choice in details. 1 Exercise 8. Let cos x if x < 0   g(x) = 0 if x = 0  1 − x2 if x > 0.
(i) Explain why g(x) is discontinuous at x = 0. (ii) Sketch the graph of g(x).
Exercise 9. The radius of the earth is roughly 4000 miles, and an object located x miles from the
center of the earth weighs w(x) lb, where ax if 0 < x  ≤ 4000 w(x) = b  if x > 4000 x2
and a and b are positive constants.
(i) Show that w(x) is continuous on (0; ∞) if and only if b a = 40003
(ii) Find any horizontal asymptotes and sketch the graph of w(x).
Exercise 10. Show that the equation √ x3 − x sin x − 1 = x x + 2
has a real root in the interval [0, 2]. 2