Preview text:

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM KĨ THUẬT TP.HCM
KHOA ĐÀO TẠO QUỐC TẾ SERVO REPORT MATLAB SIMULATION
COURSE: SERV334029E_23_1_01FIE
Instructor: M.S Võ Lâm Chương GROUP 4
Ho Chi Minh City, December 2023 lOMoARcPSD| 37054152 I. Question 1:
Using DC servo motors in the catalogues according to No. of Group as follows:
Each group has to choose the load parameters including soft-coupling stiffness (KL),
inertia moment (JL), and viscous damping (DL) to satisfy the condition: 3 ≤ ≤ 10 and 0
≤ ≤ 0.02 (at least 2 different loads in this range)
Group 4 ,so we practice on Sanyo Denki Brand ( KB506 series) lOMoARcPSD| 37054152
1. Create a simulink block diagram for a single axis servo system
- Highspeed 4th ordermodel:
- Middle speed2nd ordermodel: lOMoARcPSD| 37054152
- Lowspeed1st order model: lOMoARcPSD| 37054152
2. Calculate all necessary parameters including load parameters and control parameters
From the KB506 catalogue, we have some fixed parameters:
Rotor inertia:JM=0.22×10−4 (kg.m2)Rated speed:N R=3000 (min−1)
We choose Gear Ratio:NG=1
In an industrial servo system, the following conditions are used successfully: - 3≤N L≤10 - 0≤ξL≤0.02
Shaft’s diameter = 7 (mm)
Torque = 1 (N.m), Angular = 1o
Torque 1 K L= Angular = π =57.296¿ 1× o 180
We suppose the first load have: N L=4 lOMoARcPSD| 37054152 ξ L=0.01
Calculate J L: JL 2 2 −4 −4 2 N L=
2 =¿J L=N L×NG ×J M=4×1 ×0.22×10 =0.88×10 (kg.m ) NG J M
Calculate DL: D L 2√ J L KL L L
Calculate ωL: (rad /s)
Servo controller for 4th cp=0.24,cv=0.82
K p=c pωL=0.24×806.9=193.656
Kv=cv ωL=0.82×806.9=661.658 JL −4 0.88×10−4 −4 2 JT=J M+ N2 =0.22×10 + 1
=1.1×10 (kg.m ) G K g
v =Kv J T=661.658×1.1×10−4=0.07278238 lOMoARcPSD| 37054152
Position response of single axis servo system 12 Position 10 8 6 4 2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Time (s) 600
Velocity response of single axis servo system Velocity 500 400 300 200 100 0 -100 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Time (s)
Servo controller for 2nd: lOMoARcPSD| 37054152
vo => 250rpm ≤v2 1000rpm => We choose: v2=60 rad/s
cp2=0.234303566,cv2=4cp2=0.9372114264
K p2=cp2ωL=0.234303566×806.9=189.059
Kv2=cv2ωL=0.9372114264×806.9=756.237
Position response of single axis servo system 12 Position 10 8 6 4 2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Time (s) lOMoARcPSD| 37054152
Velocity response of single axis servo system 70 Velocity 60 50 40 30 20 10 0 -10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Time (s)
Servo controller for 1st: v0= 5000rpm = 523 (rad/s) v v = 250rpm =
π(rad/s)
We choose: v1=26rad/s Calculate ωL:K L 806.899 ωL= JL =
b0=(1+N L)c p cv=(1+4 )∗0.24∗0.82=0.984 b1=(1+NL)(cv+2cpc vξL)+2N Lξ L
= (1+4)(0.82+2*0.24*0.82*0.01) + 2*4*0.01 =4.19968 b0 lOMoARcPSD| 37054152 cp1=c p2= =0.234303566 b1
=>K p1=cp1ωL=189.059
Position response of single axis servo system 11 10 Position 9 8 7 6 5 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 TIME (S)
Velocity response of single axis servo system 30 Velcocity 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time(s) lOMoARcPSD| 37054152
We suppose the second load have: N L=10 ξ L=0.02
Calculate J L: JL 2 2 −4 −5 2 N L=
2 =¿JL=N L×NG ×JM=10×1 ×0.047×10 =4.7×10 (kg.m ) NG J M
Calculate DL: D L 2√ J L KL L L L L
Servo controller for 4th cp=0.24,cv=0.82
K p=c pωL=0.24×1104.11=264.99
Kv=cv ωL=0.82×1104.11=905.37 JL −4 4.7×10−5 −5 2 JT=J M+ N2 =0.047×10 + 1 =5.17×10 (kg.m ) G K g
v =Kv J T=905.37×5.17×10−5=0.047