Câu hỏi trắc nghiệm ôn thi giữa kỳ môn Giải tích 2 | Đại học Bách Khoa Hà Nội
Câu hỏi trắc nghiệm ôn thi giữa kỳ môn Giải tích 2 | Đại học Bách Khoa Hà Nội. Tài liệu được biên soạn giúp các bạn tham khảo, củng cố kiến thức, ôn tập và đạt kết quả cao kết thúc học phần. Mời các bạn đọc đón xem!
Preview text:
f( x, y) = ln ( x2 + y2) D
f( x, y) f
f( x, y) ; Ef
Df = IR − {0 }; Ef = IR
Df = IR2 − {( 0 , 0 ) }; Ef = IR2 !
Df = IR2 − {( 0 , 0 ) }; Ef = IR "
Df = IR2 − {( 0 , 0 ) }; Ef = ( 0 , +∞)
# $% "& % '( ) !) x2 + y2 ≤ 9 * x2 + y2 ≤ 2 y 8 π ! 4 π 1 0 π "
+ x2
, $% "& % '( ) !) y2 +
≤ 1 * y ≥ 0 , x ≤ 0 9 4 3 π 3 π ! 3 π "
+ 2 4
( x + y) arctg( x) 2, y - $. = 0
f′ ( 0 , 0 ) ; f′ y x y( 0 , 0 )
*) f( x, y) = π x, y = 0 2 f ′ = π; = 0 ; f ′ = π ; f′ = π; f′ x ∃f′ ! f ′ 2 y x y = 0 f′x 2 y = 0 " f ′x 2 y = 1 √ √ 2 x 4 x
/ 01 2 2 3 % ' I = dx
f ( x, y) dy 4 dx
f ( x, y) dy 0 0 2 x−2 2 y 2 y+2 I = dy
f ( x, y) dx I = dy
f( x, y) dx 0 y+2 0 y 2 4 !
5 + " I = dy
f( x, y) dx 1 1
6 $% I = dy
c o s ( x3 − 1 ) dx 0 √ y
I = − 1 s in 1 !
I = − 1 s in 1 I = 1 s in 1 " I = 1 s in 1 2 3 3 2
7 f( x, y) = ( x + 2 y) e3x+y $% I = ∂ f( 1 , 0 ) ∂x
I = 4 .3 9e3 ! I = 3 9e3 I = 1 1 e3 "
I = 1 3 .3 9e 3
sin(x+y )
8 f( x, y) =
et dt x
5 +
f′ ( x, y) = esin (x+y).cos( x + y2) !
f ′ ( x, y) = e
s( x + y2) x − 2 xex
9 $% I = 2 dxdy; D = {( x, y) ∈ IR2|0 ≤ x; x2 ≤ y; y ≤ x + 2 } D I = 20 ! I = 10 I = 26 " I = 25 3 3 3 6 : $% 1 I = lim ( x2 + y2) c o s x → 0 x2 + y2 y → 0 I = 0 ! I = +∞ ∃I " I = 1 1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
f( x, y) = g( x − 2 y, 2 x + y) ; < u( x, y) = x − 2 y; v( x, y) = 2 x + y
df( x, y) = g′ dx + g′ ′ dx − g′ u v dy
df( x, y) = 3 gu vdy !
df( x, y) = ( g′ ) dx + ( g′
′ + 2 g′ ) dx + ( g′ u − 2 g′v
v − 2 g′u) dy "
df( x, y) = ( gu v
v − 2 g′u) dy
# $. ) 3 A = f= 3 B = f f( x, y) = 1 − 3 x − 4 y
> x2 + y2 ≤ 2 5
A = f( 3 , 2 ) = −1 6 ; B = f( −3 , −2 ) = 1 8
A = f ( −3 , −4 ) = 2 6 ; B = f( 3 , 4 ) = −2 4 !
5 + "
A = f ( 3 , −4 ) = 8 ; B = f( −3 , 4 ) = −6
, f( x, y) = ex+y $. + 1 $ f 3 3' # & 1 M0( 1 , 0 )
1 + ( x − 1 ) + y + (x−1) + y( x − 1 ) + y + o( ρ2) ; ρ = ( x − 1 ) 2 + y2 2 2 !
e + e( x − 1 ) + ey + e(x−1) + ey( x − 1 ) + ey + o( ρ2) ; ρ =
( x − 1 ) 2 + y2 2 2
e − e( x − 1 ) + ey + e(x−1) − ey( x − 1 ) + ey + o( ρ2) ; ρ = ( x − 1 ) 2 + y2 2 2 "
5 +
- ?3 '2) . < '( 3' "& < !& z = 4 x2 − y2 + 2 y ( −1 , 2 , 4 )
8 x + 2 y + z = 0 !
8 x + 2 y − z = 0
x + 2 y + z = 7 "
4 x+2 y −z +4 = 0 df / $.
= !3 f( x, y) = x ln ( x + 2 y) ; x = s in t, y = c o s t dt
c o s t [ln ( x + 2 y) + x ]
[ln ( x + 2 y) + x ] − 2x x+2y x+2y x+2y !
c o s t [ln ( x x 2x " x 2x s in t x+2y
6 $. f′ = !3 sin ( ) x
f( x, t) = e t t t t t t − esin ( ) ) ) ) ! − c o s (
) esin ( c o s (
) esin ( " c o s (
) e sin ( x2 x2 x x2 x2 x ∂f 7 $.
= !3 f( x, y) = e x s in y; x = st2, y = s 2t ∂t
2 stest s in ( s 2t)
+ !
est s in ( s2 t) + est c o s ( s2t) "
2 stest s in ( s2t) − s2 est c o s ( s2t)
8 f( x, y) = x4 + y4 − 4 xy + 1 (
f 2 1 ( 1 , 1 ) * ( −1 , −1 )
@ A & 2 1 * & 2 !
f + 2 ( −1 , −1 ) "
@ A & 2 1
9 $. f′′′ = !3 xxy
2 y3exy( 2 − xy 2) ! 4 y3 exy
2 y3exy ( 2 + xy2) "
+
#: f( x, y) = ln ( x + y + 3 ) $. + 1 B f 3 3' # √
& ρ = x2 + y2 x y x2 xy y 2 ln 3 + + − − − + o( ρ2 )
+ 3 3 1 8 9 1 8 x y x2 xy y 2 x y x2 xy y2 ! ln 3 + + − − − + o( ρ2) " ln 3 + + + + + + o( ρ2) 3 3 9 9 9 3 3 1 8 9 1 8 √
# $. df( 0 , 1 ) = !3 f( x, y) = ln ( x + x2 + y2) 2 dx + dy ! 2 dx + 3 dy dx − dy " dx + dy 2 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
## < !& x2 + x + 1 = z 0 < . B< ! B<
C!" ' "
+
#, < !& z + x2 + y2 + x + y = 3 0 < . B< !
C!" ' B< " D'"
#- $. 2 2 " f( x, y) = ( x2 + y) ey/2
( 0 , −2 1 2
( 0 , −2 ) + 1 "2 !
( 0 , 0 1 2 "
( 0 , −2 ) 1 2 1
#/ ?3 '2) . < '( 3' "& < z = ex−y ( 1 , −1 , 1 )
2 x+2 y −z +1 = 0 !
x + 2 y − z + 2 = 0
2 x−2 y +z −5 = 0 "
+
#6 $. z′ = !3 y
z = z( x, y) 1 2 '2) . ln ( x + yz) = 1 + xy2z3
2 xyz3 ( x + yz) − z
+
y + 3 xy2z2 ( x + yz)
2 xyz3 ( x + yz) − z
z − 2 xyz3( x + yz) ! "
y − 3 xy2z 2( x + yz)
y − 3 xy2z2 ( x + yz)
#7 EF G . f′x( 1 , 2 ) H+ & & 3 3' 3 @I$$J
@I$$ *) 2) y = 2 * f( x, y) 1 & !K !
@I$$ *) 2) y = 1 * f( x, y) 1 & !K #
@I$$ *) 2) x = 1 * f( x, y) 1 & !K # " + √
#8 $. df( 3 , 4 ) = !3 f( x, y) = x2 + y2 3 4 3 4 7 3 dx + 4 dy ! dx + dy dx + dy " 5 5 1 0 1 0 5
#9 3 f( x, y) = x4 + y4 − x2 − 2 xy − y2 (
+
f + 2 ( −1 , −1 ) !
f 2 1 ( −1 , −1 ) "
f 2 ( −1 , −1 )
,: f( x, y) = 2 x3 + xy 2 + 5 x2 + y2 (
f 2 1 ( 0 , 0 ) = 2 ( −1 , −2 ) !
f , 1 "2
f 2 ( 0 , 0 ) = + 2 ( −1 , −2 ) "
f 2
, $. ) 3 H$LMJ= 3 H$MMJ f( x, y) = x2 + 2 y 2
x2 + y2 ≤ 1 $LM = 1 = $MM = 0
$LM = 2 = $MM = −1 !
$LM = 0 = $MM = −1 "
+
,# $. 3' z′′xx( 1 , 0 ) # !3 z = ln ( x + y 2 + 1 ) 1 1 1 −1 ! " 4 2 4 3 3 CuuDuongThanCong.com
https://fb.com/tailieudientucntt xy
,, f( x, y) =
$% df( 2 , −1 ) x + y dx + 4 dy ! dx + dy
+ " 4 dx + dy
,- $% % ' I =
( x + y) dxdy *) > ) !) 2) x 2 + y2 = 1 , x2 + y 2 = 4 , y = D
0 , y = x 3 ' x ≥ 0 2 1 7
+ ! I = I = " I = 3 3 3 √
,/ < !& x + 3 y2 + z 2 − 1 = 0 0 < . B< !
C!" '
M2 < "
B< & '% 1 √
,6 $% % ' I = √
dxdy *) > ) !) 2) x2+y2 = 4 , y = x, y = x 3 D x2 + y2
3 ' y ≥ x π π 2 I = ! I = I = "
+ 3 6 9
,7 $% % ' I =
2 ydxdy *) > ) !) 2) x = y 2 + y − 1 , x = y + 3 D I = −1 6 ! I = 0 I = 1 6 " I = 4
,8 $% % ' I =
( x + y) dxdy *) > ) !) 2) y = x2, y = x D I = 3 /2 0 ! I = 1 /3 I = 3 /1 0 "
+
,9 $. z′ = !3 x z ex = 0 ey + zex e + ze e y + ex ! − − " − y + ex y + ex y + ex ey + zex 2 c o s x
-: f( x, y) =
$. + 1 B f 3 3' # ey
+
2 − 2 y − x2 + y2 + o( ρ2) !
1 + 2 y + x2 − y2 + o( ρ2) "
2 x − 2 y − x2 + y2 + o( ρ2 )
- $% % ' I =
xdxdy *) > NO5= O( 0 , 0 ) , A( 1 , 1 ) , B( 0 , 1 ) D 1 1 1 I = !
+ I = " I = 9 6 3
-# f( x, y) = x ln ( xy) $% f′′′ 0 1 xy √
-, < !&
4 − 2 x2 − z 2 + y − 1 = 0 0 < .
M2 < '" !
C!" ' B< " B<
-- $% I =
xdxdydz *) ) !) y = x; y = 3 x; x = 1 ; z = 0 ; z = 4 − y 2 1 5 I = ! I = I = "
+ 5 3 3 4 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
-/ 2 z = 5 − 4 x − 8 y *) +& x2 − 8 y2 = 8 P ( 4 , −1 ) 1 1
"2 L 2 *) λ = ( 2
P 1 2 1 +&
P 1 2 +& !
+ "
P + 1 2 +&
-6 $% I =
xdxdydz *) ) !) y = x; y = 2 x; x = 1 ; z = 0 ; z = 4 − x 1 1 3 2 I = ! I = I = "
+ 3 1 2 1 3
-7 $. * ' 3' & dz # !3 z = s in x + cosy + xy
+
dz = ( c o s x − y) dx + ( x − s in y) dy !
dz = ( c o s x + y) dx + ( x − s in y) dy "
dz = ( c o s x + y) dx + ( x + s in y) dy
-8 $. y′( x) = !3 y = y( x) 1 2 '2) . y5 + x2 y3 = 1 + yex 2 xyex
2 xyex + 2 xy 3
2 xy3 − 2 xyex !
+ "
5 y4 + 3 x2y 2 − ex
5 y 4 + 3 x2y2
5 y 4 + 3 x2y2 − ex √ -9 @
f( t) = e t *) t = x2 + y2 '2) .
+ ! xf′ + yf ′ + xf ′ x y = 0 yf ′x y = 0 "
yf ′x − xf′y = 0
/: 3 f( x, y) = a r c t g ( x) $% df( 1 , 1 ) y 1 dx + 2dy ! 1dx − 1dy 2 dx − 2dy " 1 dx + 1dy 5 5 2 2 5 2 2
/ $% % '
≤ 1 ; 0 ≤ y ≤ 2 D I = 3 ! I = 5
+ " I = 2
/# $% % ' I =
1 − x2 − y2 dxdy *) > . ) * D 2 π π I = ! I =
+ " I = π 3 2
/, < !& x2 − y2 − z2 = 2 y + 1 0 < . B< !
C!" ' B< "
B< '%
/- 2 2 " z = 3 ( x2 + y2) − x3 + 4 y P ( 0 , −2) ( 3
P 1 2 1
P + 1 2 !
P 1 8 ex
// f( x, y) =
$. + 1 B f 3 3' # 2 + y
+
4 + 4 x − 2 y + 2 x2 − 2 xy + y2 + o( ρ2) !
4 + 2 x − 3 y + 4 x2 − 2 xy + y2 + o( ρ2) "
4 x + 2 y + 2 x 2+ 2 xy + y 2 + o( ρ2) √
/6 f( x, y) = x3 − y3 $% f′ ( 0 , 0 ) , f′ x y( 0 , 0 )
f′( 0 , 0 ) = 1 , f ′ x
y( 0 , 0 ) = −1
+ !
f′ ( 0 , 0 ) = 1 , f′ x
y( 0 , 0 ) = 1 "
+ 5 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 1 √
/7 $% % ' I = √
dxdy *) > x2 + y2 ≤ 2 x; y ≤ x 3 ; y ≥ x D x2 + y2 √ √ √ √ √ I = 3 + 2 ! I = 3 − 2 I = 2 "
+
/8 < !& x2 + z2 + y = 2 x + 1 0 < . B< !
C!" '
M & '% " B<
/9 $% % ' I =
( xy + 2 y) dxdy *) > NO5= O( 0 , 0 ) , A( 1 , 1 ) , B( 2 , 0 ) D
+ ! I = 2 I = 1 " I = −1
6: $. df( −6 , 4 ) = !3 f( x, y) = s in ( 2 x + 3 y) 2 dx + 3 dy ! 3 dx + dy
+ " 2 dx − 3 dy √
6 < !&
4 − x2 − z2 + 3 − y = 0 0 < .
M2 < !
C!" ' B< "
B< & '% 1
6# f( x, y) = √
$. D x2 + y2
f * Ef
Df = IR2\{( 0 , 0 ) }; Ef = ( 0 , +∞)
+ !
Df = IR\{0 }; Ef = [0 , +∞) "
Df = IR2\{( 0 , 0 ) }; Ef = [0 , +∞)
6, $% I =
xdxdy *) D 2 . x2 + ( y − 2 ) 2 ≤ 1 , x ≥ 0 D 3 −1 2
+ ! I = I = " I = 3
6- z = z( x, y) 2 '2) . z3 − 4 xz + y2 − 4 = 0 $% z′y( 1 , −2 ) 3
z( 1 , −2 ) = 2 1 2 1 − !
+ " 2 3 2 1 1
6/ 01 2 2 3 % ' % ' +' dy
f ( x, y) dx √ 0 − y 0 1 1 x dx
f ( x, y) dy4 dx
f( x, y) dy
+ −1 x 0 0 1 1 0 1 1 1 ! dx
f ( x, y) dy " dx
f ( x, y) dy4 dx
f( x, y) dy −1 x −1 x 0 0
66 f( x, y) = y ln ( xy) $% f′′ xx −y !
+ " y x x x + y
67 f( x, y) =
$% df( 1 , 1 ) 2 x + y 2 dx − 1dy !
+
−1 dx + 1 dy "
−1 dx + 1 dy 3 3 9 9 3 3
68 f = f( u, v) = euv, u = u( x, y) = x3y, v = v( x, y) = x2 $. df
veuv( 3 x2 ydx + x3dy) + ueuv 2 xdx
veuvx3 dy + ueuv2 xdx !
veuv3 x2ydx + ueuv2 xdy "
+ √
69 < !& y + 4 x2 + z 2 + 2 = 0 0 < . B< !
M2 <
C!" ' "
B< & '% 6 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
7: $. ) 3= 3 z = x2 + xy − 1 O5 *)
A( 1 , 1 ) ; B( 2 , 2 ) ; C( 3 , 1 )
zmax = 1 1 , zmin = 7
+ !
zmax = 1 1 , zmin = −7 "
zmax = 1 1 , zmin = 1
7 ) 3 M * 3 m f( x, y) = 3 + 2 xy D = {( x, y) ∈ IR2 : x 2 + y 2 ≤ 1 }
M = 4 , m = 2 !
M = 4 , m = 0
+ "
M = 4 , m = 3
7# < !& x2 + z2 − y2 = 2 x + 2 z − 2 0 < .
C!" ' ! B<
B< # '% " B<
7, f( x, y) = 2 x2 − 3 xy + y3 $% d2f( 1 , 1 )
4 dx2 − 3 dxdy + 6 dy2
4 dx2 − 6 dxdy + 6 dy2 !
+ "
2 dx2 + 6 dxdy + 6 dy 2
7- $% % ' I =
1 2 ydxdy *) > ) !) 2) x = y 2, x = y D 3 I = ! I = 1
+ " I = 4 2 0
7/ # !3 z = ( x + y2) ex/2 * 1 P ( −2 , 0 ) (
P + 1 "2
+ !
P 1 2 1 "
P 1 2
76 $% % ' I =
2 xdxdy *) > ) !) 2) y = 2 − x2, y = x 3 I = ! I = I = "
+ 2 0 2 1 0
77 $% I =
ydxdy *) D 2 . x2 + ( y − 1 ) 2 ≤ 1 , x ≤ 0 D 1 π π I = ! I = I = "
+ 2 3 2 2 y+1
78 01 2 2 3 % ' % ' +' dy
f ( x, y) dx −1 y−1 3 √ x+1 dx
f( x, y) dy −1 x−1 0 √ x+1 3 √ x+1 ! dx
f ( x, y) dy4 dx
f ( x, y) dy √ −1 − 0 √ dx
f ( x, y) dy4 dx
f ( x, y) dy −1 0 0 x−1 "
+ x
79 f( x, y) =
$. + 1 B f 3 3' , 1 + x + 2 y
x − x2 − 2 xy + x3 + 4 x2y + 4 xy2 + o( ρ3)
+ !
x − x2 − 2 xy + x3 + 2 xy2 + o( ρ3) "
x + x2 + 2 xy − 4 x2 y + 2 xy2 + o( ρ3)
8: $% % ' I =
3 dxdy *) > ) !) 2) y = x2, y = 4 x2, y = 4 ( x ≥ 0 ) D
+ ! I = 2 I = 8 " I = 6 7 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
8 ) 3 M * 3 m f( x, y)
= xy + x − y
D = {( x, y) ∈ IR2 : x ≥ 0 , y ≥ 0 , x + y ≤ 4 }
+ !
M = 5 , m = −4
M = 4 , m = −1 "
M = 4 , m = −4
8# )' f = f( u, v) = *) u = 2 x + 3 y, v = x2 + 2 y $. df( x, y)
( 2 f′ + 2 xf′ ) dx + ( 3 f′ + 2 f′ dx + 2 f ′ u v u v ) dy 2 f ′u v dy !
( 2 + 2 x) dx + 3 dy "
+
8, < !& x2 − z2 + y2 = 2 x + 2 z 0 < . B< !
B< '"
B< # '% " B<
8- f( x, y) = ln ( x2 + y2) $. D * f Ef
Df = IR2\{( 0 , 0 ) }; Ef = [0 , +∞)
Df = IR2; Ef = [1 , +∞) !
+ "
Df = IR2\{( 0 , 0 ) }; Ef = IR 2 x 8/ − y f ( x, y) =
$% df( 1 , 1 ) x + y 1 dx − 2dy ! 3dx − 3dy
+ "
−3 dx + 1 dy 3 3 4 4 2 2
86 < !& x2 + y2 + 2 x − 4 y − 2 = 0 0 < . B< !
C!" '
B< "
B< ' √
87 < !& x + 1 − y2 − z2 − 2 = 0 0 < .
C!" ' ! B<
M2 < "
B< & '%
88 f( x, y) =
+
D = {( x, y) ∈ IR2|x = 0 } !
D = IR2\{( 0 , 0 ) } " D = IR2
89 z = z( x, y) 1 2) 2 '2) . z − x = y c o s ( z − x) $.
I = dz( π, 0 ) ; !3 z( π, 0 ) = π 4 4 2 √ √ √
I = dx − 2 dy !
I = dx + 2dy
I = −dx + 2 dy "
+ 2 2 2
9: f( x, y) = x3 − 3 xy + 2 y2 $% d2f( 2 , 1 )
1 2 dx2 − 6 dxdy + 4 dy2
1 2 dx 2 − 3 dxdy + 4 dy2 !
2 dx2 − 6 dxdy + 4 dy2 "
+
9 f( x, y) = a r c t a n ( x) $% f ′′ ( 1 , 1 ) −1 −2 2
9# # !3 z = ( x2 − 2 y2) ex−y * 1 P ( 0 , 0 ) (
z + 2 P
P + 1 "2 !
+ "
P 1 2 1
9, 2 2 " f( x, y) = x2 + y2 − 3 2 ln ( xy)
@ 1 2 1 ( 4 , 4 ) * 1 2 ( −4 , −4 ) !
5 +
@ 1 2 1 ( −4 , −4 ) * 1 2 ( 4 , 4 ) "
@ 1 2 1 ( 4 , 4 ) * ( −4 , −4 ) 8 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
9- $. * ' dz # !3 z = s in x + c o s y + xy
dz = ( c o s x − y) dx + ( x − s in y) dy
dz = ( c o s x − y) dx + ( x + s in y) dy !
5 + "
dz = ( c o s x + y) dx + ( x − s in y) dy x √
9/ $. + 1 B f( x, y) =
3 3' #= < ρ = x2 + y 2 x + y + 2 x x2 xy x x2 xy − − + 0 ( ρ2) − − + 0 ( ρ 2) 2 4 4 2 2 4 x x2 xy ! + − + 0 ( ρ2) "
5 + 2 4 4
96 $. 2 f( x, y) = x + 2 y *) +& x2 + y2 = 5 (
f 2 1 ( 1 , 2 )
f 2 ( −1 , −2 ) !
f 2 ( 1 , 2 ) "
5 +
97 < !& x2 + y2 = 2 x + 2 y + 1 0 < .
C!" ' !
5 + B< " B<
98 3 f( x, y) = a r c t g ( x) $% A = f ′′ + f′′ y xx yy A = 1 ! A = 0 A = 2 xy "
5 +
99 3 z = x2y + cos( xy) + y 0( 2
z′y = 2 xy + s in ( xy) + 1
5 + ! z′ = x2 y − xy) + 1 x
:: $. I =
dxdy !3 '( D ) !) y = ; y = 2 x; xy = 2 ' x ≥ 0 D 2
5 + ! I = 2 I = ln 2 " I = 2 ln 2
: $. * ' 3' # # !3 z = xey
d2z = ey dxdy + xeydy2
d2z = ey dx2 + eydxdy + xe ydy2 !
5 + "
d2 z = 2 eydxdy + xey dy2
:# $. ) 3 H$LMJ * 3 H$MMJ f( x, y) = 1 + x + 2 y
x ≥ 0 , y ≥ 0 , x + y ≤ 1
$LM 3 = $MM 2
5 + !
$LM 3 = $MM 1 "
$LM 2 = $MM 1
$. xf′x + y x + y 0 ! 1 −1 "
5 + y
:, f( x, y) = a r c t g
$% df( 1 , 1 ) x dx dy dx dy dx dy − + !
5 + + " − − 2 2 2 4 2 2
:- $. 3' & z′ # !3 2 x
z = ln( x + y + 1 ) ( 0 , 1 ) 2 −1
5 + ! z′ x = 1 z′x = " z ′ 3 x = 3 9 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
:/ $% % '
xdxdy *) D ) !) x ≥ 0 ; y ≤ 2 − x2; y ≥ x D 1 2 5 5 !
5 + " 5 1 2
:6 $. df( −2 , 4 ) = !3 f( x, y) = s in ( 4 x + 2 y) 4 dx + 2 dy !
+ 3 dx + 2 dy " 4 dx − 2 dy
:7 $. 2 f( x, y) = 2 − x − 2 y *) +& ϕ( x, y) = x2 + y2 = 5 0< 0$ 1
2 1; 00 1 2
# 0$ ( 1 , 2 ) * ( −1 , −2 )
00 ( 1 , 2 ) ; 0$ ( −1 , −2 ) !
0$ ( 1 , 2 ) ; 00( −1 , −2 ) "
5 +
:8 $% I = 1 0 ydxdy= D 2) ) !) y = x2 * y = 1 D I = 6 ! I = 4 I = 8 " I = 3
:9 $. f ′ *)
2 ) ; u( x, y) = y2 x
f ( u, v) = u ln ( v
+ 3 x; v( x, y) = xy ′ 2 u
5 +
fx = 3 ln ( v2) + y v 2 u 2 u !
f ′ = 3 ln ( v2 y x ) + " f ′ v
x = −4 ln ( v) + v
: < !& x + y2 + z2 + 2 y = 3 0 < . B< ! D'"
C!" ' " B<
f( x
@ 2 ( 0 , 0 )
@ 2 1 ( 0 , 0 ) !
@ f( x, y) + 2 "
5 + 1
# f( x, y) =
$. + 1 B f 3 3' # 2 + x + 2 y 1 x y x2 xy y2 − − + + + + R
5 + 2 4 2 8 2 2 2 1 x y x2 xy y2 1 x y x2 xy y2 ! − + − + − + R + + − − + + R 2 4 2 8 2 2 2 " 2 4 2 8 2 2 2
, @ f( x, y) = x3 − 3 xy − y3
@ & 1 2
& 1 2 1= & 1 2 !
5 + "
@ & 1 2 1
- < !& x2 = 2 x + y + 1 0 < .
M & '% !
B<
B< '! "
C!" '
/ $% I =
|y − x2|dxdy; *) OHP=:J; 5H=:J; H=J; >HP=J OABC I = 11 ! I = 8 I = 11 " I = 1 15 5 30 5
6 $. d2z( 1 , 2 ) z = y ln x
d2z = −dx2 + 2 dxdy + 2 dy2
d2z = −2 dx 2+ dxdy !
d2z = −2 dx2 + 2 dxdy "
d2 z = −2 dx2 + 2 dxdy + dy2 1 0 CuuDuongThanCong.com
https://fb.com/tailieudientucntt √
7 < !& z = 2 + 1 − x2 − y 2 0 < . B< !
B< & '%
C!" ' "
M2 <
8 $% % '
2 xdxdy *) D NO5 *) O( 0 , 0 ) ; A( 1 , 1 ) ; B( 2 , 0 ) D −1 ! 2 : " 1
9 $. 2 2 " f( x, y) = e4y−x−y
@ 2 ( 1 , 2 )
+ !
@ 2 ( 0 , 2 ) "
@ 2 1 ( 0 , 2 )
#: f( x, y) = x ln ( xy) $. f′x( 1 , e) 1 !
5 + e " 2 8 ey
# f( x, y) =
$. + 1 B f 3 3' # 2 + x
+
−4 + 2 x − 4 y + x2 − 2 xy + 2 y2 + o( ρ2) !
4 − 2 x + 4 y + x2 − 2 xy + 2 y2 + o( ρ2) "
4 + 2 x + 4 y + x2 + 2 xy + 2 y 2 + o( ρ2)
## z = z( x, y) 1 2 '2) . z3 − 2 xz − x2 + 4 yz = 0 $% z′y ( 0 , −1 ) =
!3 z( 0 , −1 ) = 2 1 ! 1 −1 "
5 + 2 2 x + 1 √
#, f( x, y) =
$. + 1 B f 3 3' # & ρ = x 2 + y2 1 x + − − + o( ρ2) + − − + + o( ρ 2) 2 4 4 8 2 4 4 8 8 1 x y x2 y2 1 x y x 2 y 2 ! + + − + + o( ρ2) " − − − − + o( ρ2) 2 2 4 8 8 2 4 4 8 8
#- $. ) 3 A = f= 3 B = f f( x, y) = 2 x2 + 3 y2 − 4 x − 5
> x2 + y2 ≤ 1 6
A = 4 3 ; B = −1 1 !
A = 4 7 ; B = −7
A = 4 7 ; B = −1 1 "
A = 4 3 ; B = −7
#/ 0 3' z′′ !3 xx
z = xey + y2 + y s in x
ey − y s in x !
ey + y c o s x −y s in x " y s in x
#6 $. ) 3 M= 3 m f( x, y) = x2y2 |x| ≤ 1 , |y| ≤ 1 m = −1 ; "
m = 1 ; M = 2
#7 ? ' 3' z = y ln x 2 x 1 x d2z = dxdy + dy2
d 2z = dxdy + dy2 y y2 y y 2 1 y 2 y ! d2z = dxdy − dx2 "
d2 z = dxdy − dx2 x x2 x x2 √
#8 $% I = e−x−ydxdy= D 2) ) !) x = 4 − y2 * Dπ π π π I = e−4 ! I = ( 1 − e−4)
I = ( 2 + e −4) " I = ( 2 − e−4) 2 2 2 2 1 1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 1 1 √
#9 5K 1 2 2 % % ' I = dy x3 + 1 dx 0 √ y √ √ √ √ 4 2 − 2 2 2 − 2 4 2 + 2 2 2 + 2 I = ! I = I = " I = 9 9 9 9
,: 3 m f( x, y) = x2 − 2 y 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 1 m = − ! m = 1 m = −2 " m = −1 2 √
, f( x, y) = 2 x2 + 4 y2 + 5 (
( 0 , 0 ) @NQM ' 1 )
2 ( 0 , 0 ) !
f 2 ( 0 , 0 ) "
f 2 1 ( 0 , 0 )
,# $% I = 2 ydxdy= D 2) ) !) y = x2 + 1 * y = 2 D6 4 3 2 6 4 3 2 I = ! I = I = " I = 5 1 5 1 5 5
,, $. f ′ x( 1 , −1 )
*) f( u, v) = u2 t g v; u( x, y) = x2y; v( x, y) = x + y
f′x( 1 , −1 ) = 2 !
f ′x( 1 , −1 ) = 1
f ′x( 1 , −1 ) = 0 "
f ′x( 1 , −1 ) = −1 √ 1 1−x
,- I2 " & 2 % % ' I = dx
ex +y dy 0 0 π π π π I = ( e " I = ( e − 1 ) 8 4
,/ $. D *
e , ( x, y) = ( 0 , 0 ) f Ef f ( x, y) = 1 ,
( x, y) = ( 0 , 0 ) D
f = IR 2; Ef = ( 1 , +∞}
Df = IR2 \ {( 0 , 0 ) }; Ef = [1 , +∞} !
Df = IR2; Ef = ( 0 , 1 ] "
Df = IR2 ; Ef = [1 , +∞} √
,6 f( x, y) = 3 + x2 + y3 $. A = f ′ ( 0 , 0 ) x A = 1 ! A = 3
A " A = 0 8 2
,7 5K 1 2 2 % % ' I = dy ex dx 0 √ y e16 e8 − 1 I = " I = 4 4 4 4
,8 ? ' 3' & z = a r c t g ( y − x) dy − dx −dy − dx dx − dy dy + dx dz = ! dz = dz = " dz = 1 + ( x − y) 2 1 + ( x − y) 2 1 + ( x − y) 2 1 + ( x − y) 2 ∂z ∂z
,9 z = f( x − y) $. A = + ∂x ∂y
+ ! A = 1 A = 3 " A = −1
-: f( x, y) = xe3x+4y $% df( 1 , 0 )
4 e3( dx + 2 dy) !
5 +
4 e3( dx + dy) " 8 e3 1 2 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
- $. 2 2 " z = x2 − 2 xy + 2 y2 − 2 x + 2 y + 4 P ( 1 , 0 ) (
5 +
P 1 2 1 !
P + 1 "2 "
P 1 2
-# f( x, y) = ( x + y) exy $% df( 1 , 1 )
5 + !
3 e( dx + dy) 6 e "
2 e( dx + dy)
-, f( x, y) = e4y−x −y 1 P ( 1 , 2 ) (
P + 1 "2
@ 2 P !
+ "
@ 2 1 P
-- < !& x2 + z 2 + 2 x = 0 0 < .
B< & '%
M2 < !
C!" ' " B<
-/ f( x, y) = 3 y/x $% df( 1 , 1 )
3 ln 3 ( −dx + dy) !
3 ln 3 ( 2 dx − dy)
+ "
3 ln 3 ( −dx + 2 dy) √
-6 < !&
4 − x2 − y2 + 2 = z 0 < .
C!" '
M2 < !
B< & '% " B<
-7 $% I =
2 dxdy *) D 2 . ( x − 1 ) 2 + y2 ≤ 1 , y ≥ 0 D π π I = " I = − 2 2
-8 f( x, y) = e−x/y $% df( 1 , 1 )
e−1( −dx + dy) !
+
e−1( −dx − 2 dy) "
e−1( 2 dx + dy) -9
f( x, y) dxdy *) D ) !) x2 + y2 ≤ 4 ; x ≤ 0 ; y ≥ 0 $. & ϕ * r D
π/2 ≤ ϕ ≤ π; 0 ≤ r ≤ 2
5 + !
π/2 ≤ ϕ ≤ π; 0 ≤ r ≤ 4 "
0 ≤ ϕ ≤ π; 0 ≤ r ≤ 2 x + 2 y
/: $. df( 1 , 1 ) = !3 f( x, y) = 2 x − y 0 !
−3 dx + 5 dy
5 + "
−5 dx + 5 dy √
/ < !& B<
C!" ' !
B< & '% "
M2 <
/# f( x, y) = x ln ( xy) $% f′′ yy x !
+ 0 " −x y y 1
/, $% √
dxdy *) D ) !) x2 + y2 ≤ 1 ; y ≥ 0 , x ≥ 0 D x2 + y2 π π
5 + ! " π 2 4 1 3 CuuDuongThanCong.com
https://fb.com/tailieudientucntt /-
f( x, y) dxdy *) D ) !) x2 + y2 ≤ 2 y; y ≤ −x $. & ϕ * r D
5 +
3 π/4 ≤ ϕ ≤ π; 0 ≤ r ≤ 2 s in ϕ !
π/4 ≤ ϕ ≤ 3 π/4 ; 0 ≤ r ≤ 2 s in ϕ "
π/4 ≤ ϕ ≤ π; 0 ≤ r ≤ 2 s in ϕ
// 2 z = 6 − 5 x − 4 y *) +& x2 − y2 = 9 P ( 5 , −4 ) (
5 +
P 1 2 1 !
P + 1 2 "
P 1 2
/6 f( x, y) = 6 s in y ex $. + 1 B f 3 3' ,
1 + 2 y + 3 xy + 3 x2y − xy2 + y 3 + o( ρ3)
+ !
6 y + 6 xy + 3 x2y − y3 + o( ρ3) "
3 y − 6 xy + 3 x2y − xy2 + o( ρ3)
/7 $. + 1 $ 3 3' # f( x, y) = x ln y & M0( 1 , 1 )
( y − 1 ) + ( x − 1 ) ( y − 1 ) − 1 ( y − 1 ) 2 + R 2 2( x, y) !
( y − 1 ) + ( x − 1 ) ( y − 1 ) − 1 ( y − 1 ) 2 − 1( x − 1 ) ( y − 1 ) 2 + R 2 2 2( x, y)
( y − 1 ) + ( x − 1 ) ( y − 1 ) − 1( y − 1 ) 2 + R 2! 2( x, y) "
1 + ( x − 1 ) + ( y − 1 ) + ( x − 1 ) ( y − 1 ) − 1 ( y − 1 ) 2 + R 2 2 ( x, y)
/8 !3 f( x, y) = xexy + y c o s x $. * ) * l= f′l ( −1 , 2 )
) 3 l = ( − 4 √ , 5 √ ) l = ( 5 √ , − 4 √ ) 41 41 41 41 !
l = ( −4 ,
/9 z = z( x, y) 2 '2) . z3 − 4 xz + y2 − 4 = 0 $% z′ , z′ x y
M0( 1 , −2 , 2 )
z′ = 1 , z′ = 1 = 0 , z′ x y z′ 2 x y = −1 ! z′ = 1 , z′ = 0 , z ′ x 2 y = 1 " z′x y = 1
6: $. f ′= !3
2 s in v, u = x2 + y2, v = y x
f ( u, v) = u x
f′ = 4 xu s in v
= xu s in v + yu x
− yu c o s v f′ c o s v x x x !
f ′ = 4 xu s in v + yu x c o s v "
5 + x y−x 6 $.
, x2 + y 2 = 0 f ′ x+2y y( 0 , 0 )
3 f( x, y) = 0 , x2 + y 2 = 0 1
+ x 2 ! −1 " 0
6# $. 3' z′′ ( 0 ,π xy
) z = c o s ( xy − c o s y) 2
z′′ ( 0 , π ) = ( 0 , π xy −π z′′ ) = 0 2 2 xy 2 !
z′′ ( 0 , π) = π ( 0 , π xy " z′′ ) = 1 2 2 xy 2
6, $. * ' dz # !3 z = x √x+y
dz = y( x2 + y2) − 2 ( ydx − xdy)
dz = y( x + y2) − ( y2 dx − xdy) !
dz = ( x2 + y2) − ( ydx − xdy) "
5 + 1 4 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
6- $. * ' 3' # # !3 z = exy M0( 1 , 1 )
d2z( 1 , 1 ) = e2( 4 dx2 + 6 dxdy + dy2)
d2z( 1 , 1 ) = e2( 4 dx2 + 6 dxdy + 4 dy2) !
d2z( 1 , 1 ) = e2( 4 dx2 + 3 dxdy + dy2) "
d2 z( 1 , 1 ) = e2( 4 dx2 + 6 dxdy + 4 dy2)
6/ $. 2 z = xy *) +& x + y − 1 = 0 . (
z 2 M ( 1 , 1)
z + 2 2 2 !
z 2 1 M ( 1 , 1) "
5 + 2 2
66 # !3 z = 3 x − 2 y + 1 = D ) !) y = x − 1 , y = −x + 3 , x = 1
(
) 3 z 5
3 z 4 !
) 3 z 7 "
3 z −2
67 # !3 z = x3 −y3 +5 = D = [0 , 1 ]×[1 , 2 ] (
3 z −3
3 z −2 !
) 3 z 4 "
) 3 z 6
68 # !3 z = x2 + y2 + xy − 1 2 x − 3 y (
z 2 1 M( 7 , −2 )
z + 1 "2 !
z 2 M ( 7 , −2 ) "
z + 2
69 R & % '
f( x, y) dxdy D
D = {( x, y) | ( x − 1 ) 2 + ( y − 2 ) 2 ≤ 4 , y ≤ 1 } √ 1+ 3 I = dx
f( x, y) dy I = dx
f ( x, y) dy √ √ √ 1− 3 2 0 − 4−(x−1) 1− 3 √ 1+ 3 1 1 1 ! I = dx
f ( x, y) dy " I = dx
f( x, y) dy √ √ √ 1− 3 2+ 4−(x−1) −1 2− 4−(x−1) 1 0
7: % ' I = dy
f ( x, y) dx $ 1 2 2 3 % ' √ 0 − 2y−y 0 1 0 1 I = dx
f ( x, y) dy I = dx
f ( x, y) dy √ √ −1 1 1 x −1 1+ 1 x 1 ! I = dx
f ( x, y) dy " I = dx
f( x, y) dy 0 √ 1− 1−x −1 0 1 5 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 1 y
7 $ 1 2 2 3 % ' I =
dy f ( x, y) dx 0 y 1 x 1 1 I = dx
f ( x, y) dy I = dx
f ( x, y) dy 0 √ x 0 0 √ 1 x ! I = dx
f ( x, y) dy "
5 + 0 x
7# 0< ST
f ( x, y) dxdy= > A A( 0 , 1 ) , B( 0 , 2 ) , C( 1 , 1 ) ( D
1 2−x 2 2−y I = dx
f( x, y) dy = dy
f( x, y) dx 0 1 1 0 1 2−x 2 2−y ! I = dy
f ( x, y) dx = dx
f( x, y) dy 0 0 1 0 1 1 2 2−y I = dy
f ( x, y) dx = dx
f( x, y) dy 0 2−x 1 0 1 2−x 2 0 " I = dx
f ( x, y) dy = dy
f ( x, y) dx 0 1 1 2 y 2
7, $ 1 2 2 3 % ' I =
dy f ( x, y) dx 0 0 1 2 1 2 I = dx
f( x, y) dy I = dx
f ( x, y) dy 0 2x 0 0 1 2x 2 2 ! I = dx
f ( x, y) dy " I = dx
f ( x, y) dy 0 2 0 0 √
7- $% "& % '( ) !) 2 x ≤ x2 + y2 ≤ 6 x * y ≤ x 3 ; y ≥ 0 8 π √ 8 π 4 π √ + 2 3 ! + 2 3 "
+ 3 3 3 1 6 CuuDuongThanCong.com
https://fb.com/tailieudientucntt