Đề học kỳ 2 Toán 11 năm 2022 – 2023 trường THPT Lương Thế Vinh – Quảng Nam

Giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2022 – 2023 trường THPT Lương Thế Vinh, tỉnh Quảng Nam; đề thi hình thức 50% trắc nghiệm + 50% tự luận, thời gian làm bài 60 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết mã đề 101 – 103 – 105 – 107 – 102 – 104 – 106 – 108.

Trang 1/2 - Mã đề thi 101
ĐỀ CHÍNH THỨC
Họ tên thí sinh:.................................................. Số báo danh: .............................Lớp: …..
A/ TRẮC NGHIỆM: (5.0 điểm)
Câu 1: Một chất điểm chuyển động theo phương trình
32
1
6
3
S t t
, trong đó
0t
,
t
được
tính bằng giây
s
S
tính bằng mét
m
. Vận tốc của chất điểm tại thời điểm
2t
(giây) bằng
A.
22 /ms
. B.
. C.
20 /ms
. D.
6/ms
.
Câu 2: Cho
'
2
cos2 tan3 sin2
cos 3
b
x x a x
x
. Tính
S a b
A.
5.
B.
1.
C.
1.
D.
5.
Câu 3: Mệnh đề nào sau đây SAI ?
A. Hình chóp t giác đu có hình chiếu vuông góc ca đnh trên mặt đáy trùng vi tâm của đáy.
B. Hình chóp t giác đu có tt c các cnh bng nhau.
C. Hình chóp t giác đu có các cnh bên bng nhau.
D. Hình chóp t giác đu có đáy là hình vuông.
Câu 4: Đạo hàm của hàm số
21
1
x
y
x
bằng
A.
2
3
.
1x
B.
3
.
1x
C.
3
.
1x
D.
2
3
.
1x
Câu 5: Đạo hàm của hàm số
2
sinyx
A.
sin2 .x
B.
cos2 .x
C.
sin2 .x
D.
cos2 .x
Câu 6: Cho hình lăng trụ đứng
. ' ' 'ABC A B C
đáy tam giác đều cạnh
a
cạnh bên bằng
3a
. Góc giữa hai đường thẳng
'BC
'AA
bằng
A.
0
45
. B.
0
30
. C.
0
90
. D.
0
60
.
Câu 7: Phát biểu nào sai?
A.
limn
k

k
. B.
limq 0
n
.
C.
CC lim
(
C
:hằng số ). D.
1
lim 0
n
.
Câu 8: Tiếp tuyến của đồ thị m số
4
2f x x x a
(với
a
hằng số) tại điểm hoành độ
bằng
1
có hệ số góc là:
A.
6.k 
B.
2.ka
C.
3.k
D.
6.ka
Câu 9:
51
lim
2
x
x
x

có giá trị bằng
SỞ GD&ĐT QUẢNG NAM
TRƯỜNG THPT LƯƠNG THẾ VINH
(Đề gồm có 02 trang)
KIỂM TRA HỌC KỲ II NĂM HỌC 2022-2023
Môn: TOÁN Lớp 11
Thời gian: 60 phút (không kể thời gian giao đề)
MÃ ĐỀ 101
Trang 2/2 - Mã đề thi 101
A.
1
2
. B.
3
2
. C.
5
. D.
5
.
Câu 10: Hàm số nào sau đây liên tục trên R ?
A.
tanyx
. B.
1yx
. C.
2x
y
x
D.
2
1yx
Câu 11: Cho hàm số
3
21
()
4
x
fx
xx
. Mệnh đề nào sau đây là đúng ?
A. Hàm số f(x) liên tục tại x = 0. B. Hàm số f(x) liên tục tại x = .
C. Hàm số f(x) liên tục tại x = -2. D. Hàm số f(x) liên tục tại x = 2.
Câu 12: Cho hình chóp
.S ABCD
đáy
ABCD
hình vuông
( ).SA ABCD
Mệnh đề nào
dưới đây đúng ?
A.
( ).BC SAC
B.
( ).BC SCD
C.
( ).BC SAB
D.
( ).BC SAD
Câu 13: Cho hình chóp
.S ABC
đáy
ABC
tam giác vuông tại
A
,
SA ABC
. Vẽ đường
cao
AH
của tam giác
ABC
. Mệnh đề nào dưới đây SAI ?
A.
( ) .SAB ABC
B.
( ) .SAB SAC
C.
( ) .SAB SBC
D.
( ) .SBC SAH
Câu 14: Khẳng định nào sau đây SAI ?
A.
1
( )' , 0.
2
xx
x
B.
2
11
; 0.x
xx



C.
1*
' ; .
nn
x nx n N

D.
' 0.C
(với
C
là hằng số)
Câu 15: Đạo hàm của hàm số
10
2
2023yx
A.
9
2
' 20 2023y x x
B.
9
2
' 10 2023yx
C.
9
2
' 10 2023y x x
D.
9
2
' 20 2023yx
B/ TỰ LUẬN: (5,0 điểm)
Bài 1 (1,0 điểm). Tính giới hạn :
32
2
lim( 5 3)
x
xx


.
Bài 2 (2,0 điểm).
a) Tính đạo hàm của hàm số
23
cos 1yx
.
b) Cho hàm số
2
()
3
x
y f x
x

có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C)
biết tiếp tuyến cắt trục hoành, trục tung lần lượt tại các điểm A, B sao cho tam giác OAB cân tại
O.
Bài 3 ( 2,0 điểm). Cho hình chóp S.ABCD đáy ABCD hình vuông cạnh 2a,
()SA ABCD
15SA a
, M là trung điểm cạnh BC.
a) Chứng minh rằng
.SBC SAB
b) Xác định và tính góc giữa đường thẳng SM và mặt phẳng
ABCD
.
----------- HẾT ----------
Trang 1/2 - Mã đề thi 102
ĐỀ CHÍNH THỨC
Họ và tên thí sinh:.................................................. Số báo danh: .............................Lớp: …..
A/ TRẮC NGHIỆM: (5.0 điểm)
Câu 1: Mệnh đề nào sau đây SAI ?
A. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh trên mặt đáy trùng với tâm của đáy.
B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau.
C. Hình chóp tứ giác đều có các cạnh bên bằng nhau.
D. Hình chóp tứ giác đều có đáy là hình vuông.
Câu 2: Khẳng định nào sau đây SAI ?
A.
2
11
; 0.x
xx



B.
1*
' ; .
nn
x nx n N

C.
' 0.C
(với
C
là hằng số) D.
1
( )' , 0.
2
xx
x
Câu 3: Cho hình chóp
.S ABC
đáy
ABC
tam giác vuông tại
A
,
SA ABC
. Vẽ đường cao
AH
của tam giác
ABC
. Mệnh đề nào dưới đây SAI ?
A.
( ) .SAB ABC
B.
( ) .SAB SAC
C.
( ) .SAB SBC
D.
( ) .SBC SAH
Câu 4: Cho
'
2
cos2 tan3 sin2
cos 3
b
x x a x
x
. Tính
S a b
A.
1.
B.
5.
C.
1.
D.
5.
Câu 5: Một chất điểm chuyển động theo phương trình
32
1
6
3
S t t
, trong đó
0t
,
t
được tính
bằng giây
s
S
tính bằng mét
m
. Vận tốc của chất điểm tại thời điểm
2t
(giây) bằng
A.
22 /ms
. B.
20 /ms
. C.
. D.
6/ms
.
Câu 6:
51
lim
2
x
x
x

có giá trị bằng
A.
1
2
. B.
3
2
. C.
5
. D. -
5
.
Câu 7: Phát biểu nào sai?
A.
CC lim
(
C
:hằng số ). B.
1
lim 0
n
.
C.
limn
k

k
. D.
limq 0
n
.
Câu 8: Đạo hàm của hàm số
21
1
x
y
x
bằng
SỞ GD&ĐT QUẢNG NAM
TRƯỜNG THPT LƯƠNG THẾ VINH
(Đề gồm có 02 trang)
KIỂM TRA HỌC KỲ II NĂM HỌC 2022-2023
Môn: TOÁN Lớp 11
Thời gian: 60 phút (không kể thời gian giao đề)
ĐỀ 102
Trang 2/2 - Mã đề thi 102
A.
2
3
.
1x
B.
3
.
1x
C.
2
3
.
1x
D.
3
.
1x
Câu 9: Đạo hàm của hàm số
2
sinyx
A.
sin2 .x
B.
cos2 .x
C.
sin2 .x
D.
cos2 .x
Câu 10: Cho hình lăng trụ đứng
. ' ' 'ABC A B C
đáy tam giác đều cạnh
a
cạnh bên bằng
3a
. Góc giữa hai đường thẳng
'BC
'AA
bằng
A.
0
60
. B.
0
90
. C.
0
30
. D.
0
45
.
Câu 11: Cho hình chóp
.S ABCD
có đáy
ABCD
hình vuông và
( ).SA ABCD
Mệnh đề nào dưới
đây đúng ?
A.
( ).BC SAC
B.
( ).BC SCD
C.
( ).BC SAB
D.
( ).BC SAD
Câu 12: Tiếp tuyến của đồ thị m số
4
2f x x x a
(với
a
hằng số) tại điểm hoành độ
bằng
1
có hệ số góc là:
A.
3.k
B.
6.ka
C.
2.ka
D.
6.k 
Câu 13: Đạo hàm của hàm số
10
2
2023yx
A.
9
2
' 20 2023y x x
B.
9
2
' 10 2023yx
C.
9
2
' 10 2023y x x
D.
9
2
' 20 2023yx
Câu 14: Hàm số nào sau đây liên tục trên R ?
A.
tanyx
. B.
1yx
. C.
2x
y
x
D.
2
1yx
Câu 15: Cho hàm số
3
21
()
4
x
fx
xx
. Mệnh đề nào sau đây là đúng ?
A. Hàm số f(x) liên tục tại x = 0. B. Hàm số f(x) liên tục tại x = .
C. Hàm số f(x) liên tục tại x = -2. D. Hàm số f(x) liên tục tại x = 2.
B/ TỰ LUẬN: (5,0 điểm)
Bài 1 (1,0 điểm). Tính giới hạn :
2
3
lim( 2 3 5)
x
xx
.
Bài 2 (2,0 điểm).
a) Tính đạo hàm của hàm số
24
sin 3yx
.
b) Cho hàm số
3
()
2
x
y f x
x

đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C)
biết tiếp tuyến cắt trục hoành, trục tung lần lượt tại các điểm A, B sao cho tam giác OAB cân tại O.
Bài 3 ( 2,0 điểm). Cho hình chóp S.ABCD đáy ABCD hình vuông cạnh a,
()SA ABCD
15
6
a
SA
, N là trung điểm cạnh CD.
a) Chứng minh rằng
.SCD SAD
b) Xác định và tính góc giữa đường thẳng SN và mặt phẳng
ABCD
.
----------- HẾT ----------
Trang 1/5
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NAM
ĐÁP ÁN KIỂM TRA HỌC KỲ II
MÔN TOÁN 11 M HỌC 2022-2023
Thời gian làm bài: 60 phút (Không kể thời gian phát đề)
DE 101
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
C
B
B
D
A
B
B
A
D
D
B
C
C
B
A
DE 102
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
B
A
C
C
B
D
D
C
C
C
C
D
A
D
B
DE 103
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
C
D
D
C
D
C
A
B
B
C
A
A
B
D
A
DE 104
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
A
C
B
B
B
A
B
A
D
A
D
B
D
C
B
DE 105
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
B
B
A
D
C
C
D
B
A
C
A
C
C
A
A
DE 106
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
B
A
B
A
A
D
C
A
A
A
C
B
B
D
C
DE 107
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
D
C
C
A
B
C
A
A
B
A
D
D
D
A
A
DE 108
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ.A
A
A
A
D
A
B
D
D
B
B
A
C
C
C
C
B. Phần tự luận: (5,0 điểm)
Gồm các mã đề 101; 103; 105; 107.
Câu
Nội dung
Điểm
1(1,0
điểm)
32
2
lim( 5 3)
x
xx


=
32
( 2) 5( 2) 3
0,5
=
25
0,5
Trang 2/5
2(2,0
điểm)
a)
1,0
32
cos 1yx
2 2 2
' 3cos 1 .(cos 1 )'y x x
0,25
2 2 2 2
3cos 1 .sin 1 .( 1 )'x x x
0,25
2
2 2 2
2
(1 )'
3cos 1 .sin 1 .
21
x
xx
x
0,25
2 2 2
2
3
cos 1 .sin 1
1
x
xx
x
0,25
b)
1,0
2
()
3
x
y f x
x

(C)

0
00
0
2
; ,( 3)
3
x
M x x
x




là tim ca tip tuyn d.

/
2
1
( 3)
y
x

d

/
0
2
0
1
()
( 3)
k y x
x

0,25
Do
d

,A

B

OAB
cân ti O
nên
2
0
1
11
( 3)
k
x
0
0
2
4
x
x


0,25

00
20xy
( 2;0).M

d

2yx
0,25

00
4 2 ( 4;2).x y M

d

6yx
0,25
Vy tip tuyn cn tìm là:
2yx
;
6yx
Câu 3 (2,0 điểm). Cho hình chóp S.ABCD   ABCD     a
.
()SA ABCD
15SA a
, M BC.
a) 
.SBC SAB
SM 
ABCD
.
HV
(Hình vẽ phục vụ câu a, đúng được 0,25 điểm)
Trang 3/5
0,25
M
D
C
B
A
S
0,25
a
0,75
Chứng minh rằng
.SBC SAB
+
BC SA
BC AB
Suy ra
BC SAB
0,25
0,25
+
BC SBC
suy ra
SBC SAB
0,25
b
1,0
+AM SM trên (ABCD)
0,25
+SM (ABCD) góc
SMA
0,25
+
5AM a
+
tan 3
SA
SMA
AM

+ GSM 
ABCD

0
60
0,25
0,25
Gồm các mã đề 102; 104; 106; 108.
Câu
Nội dung
Điểm
1(1,0
điểm)
2
3
lim( 2 3 5)
x
xx
=
2
2.(3) 3.3 5
0,5
=
4
0,5
2(2,0
điểm)
a)
1,0
42
sin 3yx
3 2 2
' 4sin 3 .(sin 3 )'y x x
0,25
3 2 2 2
4sin 3 .cos 3 .( 3 )'x x x
0,25
2
3 2 2
2
(3 )'
4sin 3 .cos 3 .
23
x
xx
x
0,25
Trang 4/5
3 2 2
2
4
sin 3 .cos 3
3
x
xx
x
0,25
b)
1,0
3
()
2
x
y f x
x

(C)

0
00
0
3
; ,( 2)
2
x
M x x
x




là tim ca tip tuyn d.

/
2
1
( 2)
y
x


d

/
0
2
0
1
()
( 2)
k y x
x
0,25
Do
d

,A

B

OAB
cân ti O
nên
2
0
1
11
( 2)
k
x
0
0
1
3
x
x


0,25

00
12xy
( 1;2).M

d

1yx
0,25

00
3 0 ( 3;0).x y M

d

3yx
0,25
Vy tip tuyn cn tìm là:
1yx
;
3yx
Câu 3 (2,0 điểm). Cho hình chóp S.ABCD   ABCD     a
.
()SA ABCD
15
6
a
SA
, N CD.
a) 
.SCD SAD
b) SN 
ABCD
.
HV
0,25
(Hình vẽ phục vụ câu a, đúng được 0,25 điểm)
0,25
Trang 5/5
N
D
C
B
A
S
a
0,75
Chứng minh rằng
.SCD SAD
+
CD SA
CD AD
Suy ra
CD SAD
0,25
0,25
+
CD SCD
suy ra
SCD SAD
0,25
b
1,0
+AN SN trên (ABCD)
0,25
+SN (ABCD) là góc
SNA
0,25
+
5
2
AN a
+
3
tan
3
SA
SNA
AN

+ GSN ng
ABCD

0
30
0,25
0,25
Ghi chú: - 
----------------------------------------------------------------
| 1/9

Preview text:

SỞ GD&ĐT QUẢNG NAM
KIỂM TRA HỌC KỲ II NĂM HỌC 2022-2023
TRƯỜNG THPT LƯƠNG THẾ VINH
Môn: TOÁN – Lớp 11
Thời gian: 60 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC MÃ ĐỀ 101
(Đề gồm có 02 trang)
Họ và tên thí sinh:.................................................. Số báo danh: .............................Lớp: …..
A/ TRẮC NGHIỆM: (5.0 điểm) 1
Câu 1: Một chất điểm chuyển động theo phương trình 3 2
S   t  6t , trong đó t  0 , t được 3
tính bằng giây s và S tính bằng mét m . Vận tốc của chất điểm tại thời điểm t  2(giây) bằng
A. 22 m / s .
B. 10 m / s .
C. 20 m / s .
D. 6 m / s . b
Câu 2: Cho cos 2x  tan 3x'  a sin 2x
. Tính S a b 2 cos 3x A. 5. B. 1. C. 1.  D. 5. 
Câu 3: Mệnh đề nào sau đây SAI ?
A. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh trên mặt đáy trùng với tâm của đáy.
B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau.
C. Hình chóp tứ giác đều có các cạnh bên bằng nhau.
D. Hình chóp tứ giác đều có đáy là hình vuông. x
Câu 4: Đạo hàm của hàm số 2 1 y  bằng x 1 3 3 3 3  A.B. . C. . D. . x   . 2 1 x 1 x 1 x  2 1
Câu 5: Đạo hàm của hàm số 2
y  sin x A. sin 2 . x B. cos 2 . x C. sin 2 . x D. cos 2 . x
Câu 6: Cho hình lăng trụ đứng AB .
C A' B 'C ' có đáy là tam giác đều cạnh a và cạnh bên bằng
a 3 . Góc giữa hai đường thẳng B 'C AA' bằng A. 0 45 . B. 0 30 . C. 0 90 . D. 0 60 .
Câu 7: Phát biểu nào sai?
A. limnk   k   .
B. lim qn  0 . 1
C. lim C C ( C :hằng số ). D. lim  0 . n
Câu 8: Tiếp tuyến của đồ thị hàm số f x 4
x  2x a (với a là hằng số) tại điểm có hoành độ bằng 1  có hệ số góc là: A. k  6.  B. k  2   . a C. k  3. D. k  6  . a 5x 1 Câu 9: lim x 2  có giá trị bằng x
Trang 1/2 - Mã đề thi 101 1 3 A.  . B. . C. 5 . D. 5  . 2 2
Câu 10: Hàm số nào sau đây liên tục trên R ? x  2
A. y  tan x . B. y x 1 . C. y D. 2 y x 1 x 2x 1
Câu 11: Cho hàm số f (x) 
. Mệnh đề nào sau đây là đúng ? 3 x  4x
A. Hàm số f(x) liên tục tại x = 0.
B. Hàm số f(x) liên tục tại x = .
C. Hàm số f(x) liên tục tại x = -2.
D. Hàm số f(x) liên tục tại x = 2.
Câu 12: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA  (ABC ) D . Mệnh đề nào dưới đây đúng ?
A. BC  (SAC).
B. BC  (SC ) D .
C. BC  (SA ) B .
D. BC  (SA ) D .
Câu 13: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , SA   ABC . Vẽ đường
cao AH của tam giác ABC . Mệnh đề nào dưới đây SAI ?
A. (SAB)   ABC.
B. (SAB)  SAC.
C. (SAB)  SBC.
D. (SBC)  SAH .
Câu 14: Khẳng định nào sau đây SAI ?  1  1  1 A. ( x) '  , x   0. B.  ; x   0.   2 x 2  x x C. n x n 1  * '  nx ; n N .
D. C'  0. (với C là hằng số)
Câu 15: Đạo hàm của hàm số y  x  10 2 2023 là A. y x x  9 2 ' 20 2023 B. y  x  9 2 ' 10 2023 C. y x x  9 2 ' 10 2023 D. y  x  9 2 ' 20 2023
B/ TỰ LUẬN: (5,0 điểm)

Bài 1 (1,0 điểm). Tính giới hạn : 3 2
lim (x  5x  3) . x 2 
Bài 2 (2,0 điểm). 3
a) Tính đạo hàm của hàm số 2 y  cos 1 x . x  2
b) Cho hàm số y f (x)  x  có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) 3
biết tiếp tuyến cắt trục hoành, trục tung lần lượt tại các điểm A, B sao cho tam giác OAB cân tại O.
Bài 3 ( 2,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA  (ABC )
D SA a 15 , M là trung điểm cạnh BC.
a) Chứng minh rằng SBC  SAB.
b) Xác định và tính góc giữa đường thẳng SM và mặt phẳng  ABCD . ----------- HẾT ----------
Trang 2/2 - Mã đề thi 101 SỞ GD&ĐT QUẢNG NAM
KIỂM TRA HỌC KỲ II NĂM HỌC 2022-2023
TRƯỜNG THPT LƯƠNG THẾ VINH
Môn: TOÁN – Lớp 11
Thời gian: 60 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC MÃ ĐỀ 102
(Đề gồm có 02 trang)
Họ và tên thí sinh:.................................................. Số báo danh: .............................Lớp: …..
A/ TRẮC NGHIỆM: (5.0 điểm)
Câu 1:
Mệnh đề nào sau đây SAI ?
A. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh trên mặt đáy trùng với tâm của đáy.
B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau.
C.
Hình chóp tứ giác đều có các cạnh bên bằng nhau.
D.
Hình chóp tứ giác đều có đáy là hình vuông.
Câu 2: Khẳng định nào sau đây SAI ?   1  1 A.  ; x   0.   B. n x n 1  * '  nx ; n N . 2  x x 1
C. C'  0. (với C là hằng số) D. ( x) '  , x   0. 2 x
Câu 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , SA   ABC . Vẽ đường cao
AH của tam giác ABC . Mệnh đề nào dưới đây SAI ?
A. (SAB)   ABC.
B. (SAB)  SAC.
C. (SAB)  SBC.
D. (SBC)  SAH . b
Câu 4: Cho cos 2x  tan 3x'  a sin 2x
. Tính S a b 2 cos 3x A. 1.  B. 5.  C. 1. D. 5. 1
Câu 5: Một chất điểm chuyển động theo phương trình 3 2
S   t  6t , trong đó t  0 , t được tính 3
bằng giây s và S tính bằng mét m . Vận tốc của chất điểm tại thời điểm t  2(giây) bằng
A. 22 m / s .
B. 20 m / s .
C. 10 m / s .
D. 6 m / s . 5x 1 Câu 6: lim x 2  có giá trị bằng x 1 3 A.  . B. . C. 5 . D. - 5 . 2 2
Câu 7: Phát biểu nào sai? 1
A. lim C C ( C :hằng số ). B. lim  0 . n
C. limnk   k   .
D. lim qn  0 . x
Câu 8: Đạo hàm của hàm số 2 1 y  bằng x 1
Trang 1/2 - Mã đề thi 102 3 3 3  3 A.B. . C. . D. . x   . 2 1 x 1 x  2 1 x 1
Câu 9: Đạo hàm của hàm số 2
y  sin x A. sin 2 . x B. cos 2 . x C. sin 2 . x D. cos 2 . x
Câu 10: Cho hình lăng trụ đứng AB .
C A' B 'C ' có đáy là tam giác đều cạnh a và cạnh bên bằng
a 3 . Góc giữa hai đường thẳng B 'C AA' bằng A. 0 60 . B. 0 90 . C. 0 30 . D. 0 45 .
Câu 11: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA  (ABC )
D . Mệnh đề nào dưới đây đúng ?
A. BC  (SAC).
B. BC  (SC ) D .
C. BC  (SA ) B .
D. BC  (SA ) D .
Câu 12: Tiếp tuyến của đồ thị hàm số f x 4
x  2x a (với a là hằng số) tại điểm có hoành độ bằng 1  có hệ số góc là: A. k  3. B. k  6  . a C. k  2   . a D. k  6. 
Câu 13: Đạo hàm của hàm số y  x  10 2 2023 là A. y x x  9 2 ' 20 2023 B. y  x  9 2 ' 10 2023 C. y x x  9 2 ' 10 2023 D. y  x  9 2 ' 20 2023
Câu 14: Hàm số nào sau đây liên tục trên R ? x  2
A. y  tan x . B. y x 1 . C. y D. 2 y x 1 x 2x 1
Câu 15: Cho hàm số f (x) 
. Mệnh đề nào sau đây là đúng ? 3 x  4x
A. Hàm số f(x) liên tục tại x = 0.
B. Hàm số f(x) liên tục tại x = .
C. Hàm số f(x) liên tục tại x = -2.
D. Hàm số f(x) liên tục tại x = 2.
B/ TỰ LUẬN: (5,0 điểm)
Bài 1 (1,0 điểm). Tính giới hạn : 2 lim( 2
x  3x  5) . x 3 
Bài 2 (2,0 điểm). 4
a) Tính đạo hàm của hàm số 2 y  sin 3  x . x  3
b) Cho hàm số y f (x)  x  có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) 2
biết tiếp tuyến cắt trục hoành, trục tung lần lượt tại các điểm A, B sao cho tam giác OAB cân tại O.
Bài 3 ( 2,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA  ( ABC ) D a 15 và SA
, N là trung điểm cạnh CD. 6
a) Chứng minh rằng SCD  SAD.
b) Xác định và tính góc giữa đường thẳng SN và mặt phẳng  ABCD . ----------- HẾT ----------
Trang 2/2 - Mã đề thi 102
SỞ GIÁO DỤC VÀ ĐÀO TẠO
ĐÁP ÁN KIỂM TRA HỌC KỲ II QUẢNG NAM
MÔN TOÁN 11 – NĂM HỌC 2022-2023
Thời gian làm bài: 60 phút (Không kể thời gian phát đề) DE 101 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A C B B D A B B A D D B C C B A DE 102 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A B A C C B D D C C C C D A D B DE 103 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A C D D C D C A B B C A A B D A DE 104 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A A C B B B A B A D A D B D C B DE 105 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A B B A D C C D B A C A C C A A DE 106 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A B A B A A D C A A A C B B D C DE 107 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A D C C A B C A A B A D D D A A DE 108 Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ.A A A A D A B D D B B A C C C C
B. Phần tự luận: (5,0 điểm)
Gồm các mã đề 101; 103; 105; 107.
Câu Nội dung Điểm 1(1,0 3 2
lim (x  5x  3) = 3 2 ( 2  ) 5( 2  )  3 điểm) x 2  0,5 = 25  0,5 Trang 1/5 3 2 y  cos 1 x 2(2,0 a) điểm) 2 2 2
1,0 y '  3cos
1 x .(cos 1 x ) ' 0,25 2 2 2 2  3
 cos 1 x .sin 1 x .( 1 x )' 0,25 2 (1 x ) ' 2 2 2  3
 cos 1 x .sin 1 x . 2 2 1 x 0,25 3  x 2 2 2  cos
1 x .sin 1 x 2 1 x 0,25 b) x  2   1,0 y f (x) x  (C) 3    x 2 0 M x ; ,(x  3
 ) là tiếp đ ểm của tiếp tuyến d. 0 0 x  3  0  1 0,25 / y  2 (x  3) 1 Kh đ d h /
k y (x )  0 2 (x  3) 0 Do d h h ,
A B OAB cân t i O 1 x  2  0,25 nên k  1    1  0   2 (x  3) x  4   0 0 x  2
  y  0  M( 2
 ;0). Kh đ ếp ế d ph h 0 0 y x  2 0,25 x  4
  y  2  M ( 4
 ;2). Kh đ ếp ế d ph h 0 0 y x  6 0,25
Vậy tiếp tuyến cần tìm là: y x  2 ; y x  6
Câu 3 (2,0 điểm). Cho hình chóp S.ABCD đ ABCD h h ô h 2a . SA  ( ABC )
D SA a 15 , M đ ể h BC.
a) Chứ h ằ SBC  SAB.
b) X đị h í h ữ đ ờ hẳ SM ặ phẳ  ABCD .
(Hình vẽ phục vụ câu a, đúng được 0,25 điểm) HV Trang 2/5 0,25 S 0,25 B A M D C
Chứng minh rằng SBC  SAB. a BC SA 0,75 +  BC AB 0,25
Suy ra BC  SAB0,25
+ BC  SBC suy ra SBC  SAB0,25
+AM h h h ế ủ SM trên (ABCD) 0,25 b
+X đ h đ ợ ữ SM (ABCD) là góc SMA 0,25 1,0 + AM a 5 SA + tan SMA   3 AM 0,25
+ G ữ đ ờ hẳ SM ặ phẳ  ABCD bằ 0 60 0,25
Gồm các mã đề 102; 104; 106; 108.
Câu Nội dung Điểm 1(1,0 2 lim( 2
x  3x  5) = 2 2  .(3)  3.3 5 điểm) x 3  0,5 = 4  0,5 4 2 y  sin 3  x 2(2,0 a) điểm) 3 2 2
1,0 y '  4sin
3  x .(sin 3  x ) ' 0,25 3 2 2 2
 4sin 3 x .cos 3 x .( 3 x )' 0,25 2 (3  x ) ' 3 2 2
 4sin 3 x .cos 3 x . 2 2 3  x 0,25 Trang 3/5 4x 3 2 2  sin
3  x .cos 3  x 2 3  x 0,25 b) x  3   1,0 y f (x) x  (C) 2    x 3 0 M x ; ,(x  2
 ) là tiếp đ ểm của tiếp tuyến d. 0 0 x  2  0  1 0,25 / y   2 (x  2) 1 Kh đ d h /
k y (x )   0 2 (x  2) 0 Do d h h ,
A B OAB cân t i O 1 x  1  0,25 nên k  1     1  0   2 (x  2) x  3   0 0 x  1
  y  2  M( 1
 ;2). Kh đ ếp ế d ph h 0 0 y  x 1 0,25 x  3
  y  0  M( 3
 ;0). Kh đ ếp ế d ph h 0 0
y  x  3 0,25
Vậy tiếp tuyến cần tìm là: y  x 1; y  x  3
Câu 3 (2,0 điểm). Cho hình chóp S.ABCD đ ABCD h h ô h a a 15 . SA  ( ABC ) D SA
, N đ ể h CD. 6
a) Chứ h ằ SCD  SAD.
b) X đị h í h ữ đ ờ hẳ SN ặ phẳ  ABCD .
(Hình vẽ phục vụ câu a, đúng được 0,25 điểm) HV 0,25 0,25 Trang 4/5 S A D N B C
Chứng minh rằng SCD  SAD. a CD   SA 0,75 +  CD   AD 0,25
Suy ra CD  SAD0,25
+ CD  SCD suy ra SCD  SAD0,25
+AN h h h ế ủ SN trên (ABCD) 0,25 b
+X đ h đ ợ ữ SN (ABCD) là góc SNA 0,25 1,0 5 + AN a 2 SA 3 + tan SNA   0,25 AN 3 0,25
+ G ữ đ ờ hẳ SN ặ phẳng  ABCD bằ 0 30
Ghi chú: - H h ả h kh đú h đ ợ đ ể đ ủ â đ .
--------------------------------Hế -------------------------------- Trang 5/5
Document Outline

  • A_A_101
  • A_A_102
  • DAP AN CAC MA- TU LUAN