
























Preview text:
ĐỀ 10
ĐỀ ÔN THI TỐT NGHIỆP THPT NĂM 2022
BÁM SÁT ĐỀ MINH HỌA MÔN TOÁN Thời gian: 90 phút
Câu 1. Cho số phức z = 2 + i . Tính z .
A. z = 5
B. z = 5
C. z = 2 D. z = 3
Câu 2. Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) có phương trình 2 2 2
x + y + z + 4x − 2 y − 4 = 0
.Tính bán kính R của (S). A. 1. B. 9 . C. 2 . D. 3 .
Câu 3. Điểm nào dưới đây thuộc đồ thị của hàm số 3
y = −x + 2x +1
A. Điểm M (0; − ) 1 . B. Điểm N ( 1 − ; 4 − ) .
C. Điểm P (1; 2) . D. Điểm Q ( 1 − ;4) .
Câu 4. Cho mặt cầu có diện tích bằng 2
16 a . Khi đó, bán kính mặt cầu bằng a 2 A. 2 2a B. 2a C. 2a D. 2
Câu 5. Trong các khẳng định sau, khẳng định nào sai? 2 x e x 2
A. 2x d = 2x x ln 2 + C . B. e dx = + C . 2 1 1 C. cos 2 d x x = sin 2x + C . D.
dx = ln x +1 + C ( x − ) 1 . 2 x +1
Câu 6. Cho hàm f ( x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng A. 3 . B. −5 . C. 0 . D. 2 .
Câu 7. Tập nghiệm của bất phương trình log x −1 1 là 0,5 ( ) 3 3 3 3 A. − ; − . B. 1; . C. ;+ . D. 1; . 2 2 2 2
Câu 8. Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và chiều cao 4a . Tính thể tích của hình chóp đã cho. 3 2a 3 3 4a 3 3 a 3 3 a 3 A. V = . B. V = . C. V = . D. V = . 3 3 3 4 Trang 1 −
Câu 9. Tập xác định của hàm số y = ( x − ) 4 2 4 là A. . B. ( 2 − ;2) . C. \ 2 . D. \ 4 .
Câu 10. Giải phương trình log (x −1) = 3. 4
A. x = 65
B. x = 80
C. x = 82 D. x = 63 1 3 3 Câu 11. Cho f (x) dx = 1 − ; f (x) dx = 5 . Tính f (x) dx 0 0 1 A. 1. B. 4. C. 6. D. 5.
Câu 12. Cho số phức z = 3
− + 2i , số phức (1−i) z bằng A. 1 − −5i B. 5 − i . C. 1− 5i . D. 5 − + i .
Câu 13. Trong không gian Oxyz , cho mặt phẳng (P) : 4x + 3y + z −1 = 0 . Véctơ nào sau đây là một véctơ pháp
tuyến của (P) A. n = − − 4 (3;1; ) 1 . B. n = 3 (4;3 ) ;1 . C. n = − 2 (4; 1; ) 1 . D. 1 n = (4;3; ) 1 .
Câu 14. Trong không gian Oxyz cho a = (2;3;2) và b = (1;1;− )
1 . Vectơ a − b có tọa độ là A. (3;4; ) 1 . B. ( 1 − ;− 2;3). C. (3;5; ) 1 . D. (1;2;3) .
Câu 15. Tìm tọa độ điểm M là điểm biểu diễn số phức z biết z thỏa mãn phương trình (1+ i) z = 3 − 5i . A. M ( 1 − ;4) . B. M ( 1 − ;− 4). C. M (1; 4) .
D. M (1; − 4) .
Câu 16. Cho hàm số y = f ( x) có báng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là: A. 2. B. 3. C. 4. D. 1.
Câu 17. Với a là hai số thực dương tùy ý, log ( 3 a bằng 2 ) 3 1 A. log a . B. log a .
C. 3 + log a . D. 3log a . 2 2 2 3 2 2
Câu 18. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? Trang 2 A. 4 2
y = x + 2x . B. 3
y = −x − 3x . C. 3
y = x − 3x . D. 4 2
y = −x + 2x . x −1 y +1 z − 2
Câu 19. Trong không gian Oxyz , điểm nào dưới đây thuộc đường thẳng = = ? 2 1 − 3 A. Q( 2 − ;1;− ) 3 . B. P(2; 1 − ; ) 3 . C. M ( 1 − ;1; 2 − ) . D. N (1; 1 − ;2) .
Câu 20. Với k và n là hai số nguyên dương (k n) , công thức nào sao đây đúng? n k n n k ! k ! k ! k ! A. A = A = A = . D. A = n k !(n − . B. k )! n (k − . C. n)! n n k ! (n − . k )!
Câu 21. Diện tích đáy của khối lăng trụ có thể tích V và có chiều cao h là 3V 3h V h A. B = . B. B = . C. B = . D. B = . h V h V Câu 22. Cho ( ) lo 81 g 2.3 x f x = + 3 . Tính f ( ) 1 − A. f ( ) 1 1 = . B. f ( ) 1 1 = . C. f ( ) 1 = 1. D. f ( ) 1 = 1. 2 2
Câu 23. Cho hàm số y = f ( x) có bảng biến thiên như sau:
Hàm số y = f (x) nghịch biến trên khoảng nào dưới đây? (0;+) (− ; 2 − ) (0;2) ( 2 − ;0) A. B. C. D.
Câu 24. Cho hình trụ có diện tích xung quanh S
và độ dài đường sinh 3l . Bán kính đáy r của hình trụ đã cho xq
được tính theo công thức nào sau đây? 6S S S 2 l xq xq xq A. r = = = = . B. r . C. r . D. r . l 2 l 6 l Sxq Trang 3 Câu 25. Cho f ( ) x , g( ) x là các hàm số liên tục trên đoạn 2;6 và thỏa mãn 3 6 6
f (x)dx = 3; f (x)dx = 7; g(x)dx = 5
. Hãy tìm mệnh đề KHÔNG đúng. 2 3 3 6 3
A. [3g(x) − f (x)]dx = 8
B. [3 f (x) − 4]dx = 5 3 2 6 ln e 6 ln e C.
[2f (x) −1]dx = 16 D.
[4 f (x) − 2g(x)]dx = 16 2 3
Câu 26. Cho cấp số cộng (u có số hạng đầu u = 2 và u = 5 . Giá trị của u bằng n ) 2 3 5 A. 12 . B. 15 . C. 11. D. 25 . −x e
Câu 27. Họ nguyên hàm của hàm số x y = e 2 + là 2 cos x x 1 x 1 A. 2 x
e + tan x + C B. 2 x
e − tan x + C C. 2e − + C D. 2e + + C cos x cos x
Câu 28. Cho hàm số y = f ( x) có đồ thị như hình vẽ. y 4 2 -2 O x -1 1 2
Hàm số đã cho đạt cực đại tại A. x = 4 . B. x = 0 . C. x = 1 − . D. x = 1 .
Câu 29. Cho hàm số y = f ( x) liên tục trên đoạn 1 − ;
1 và có đồ thị như hình vẽ.
Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn 1 − ;
1 . Giá trị của M − m bằng A. 0 . B. 1. C. 2 . D. 3 .
Câu 30. Cho hàm số y = f ( x) 3
= x +3x . Hỏi khẳng định nào sau đây là khẳng định đúng ? Trang 4
A. Hàm số f ( x) đồng biến trên .
B. Hàm số f ( x) nghịch biến trên ( 1 − ;0) .
C. Hàm số f ( x) nghịch biến trên ( ;0 − ).
D. Hàm số f ( x) không đổi trên .
Câu 31. Cho log b = 2 và log c = 3 . Tính P = ( 2 3 log b c . a ) a a
A. P = 13
B. P = 31
C. P = 30
D. P = 108
Câu 32. Cho hình hộp chữ nhật AB D
C .A' B 'C ' D ' có AB = a , D
A = 2 2a , AA' = 3a . Góc giữa đường
thẳng A'C và mặt phẳng ( D ABC ) bằng A. 45 . B. 90 . C. 60 . D. 30 . 2 2 2 Câu 33. Cho
f (x)dx = 2 và
g(x)dx = 1 −
, khi đó x + 2 f (x) +3g(x)dx bằng 1 − 1 − 1 − 5 7 17 11 A. B. C. D. 2 2 2 2
Câu 34. Trong không gian Oxyz , mặt phẳng đi qua hai điểm A(0;1;0), B(2;0; )
1 và vuông góc với mặt phẳng
(P): x− y −5 = 0 có phương trình là
A. x + y − z +1 = 0.
B. x − 2y − 6z − 2 = 0 .
C. x − 2y − 6z + 2 = 0.
D. x + y − z −1 = 0 .
Câu 35. Số phức z thỏa mãn: z − (2 + 3i) z = 1− 9i là A. 2 + i . B. 2 − − i . C. 3 − − i . D. 2 − i
Câu 36. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và ; D AB = AD = 2 ; a DC = a .
Điểm I là trung điểm đoạn ,
AD hai mặt phẳng (SIB) và (SIC) cùng vuông góc với mặt phẳng ( ABCD) . Mặt
phẳng (SBC) tạo với mặt phẳng ( ABCD) một góc 60. Tính khoảng cách từ D đến (SBC) theo a . a 15 9a 15 2a 15 9a 15 A. . B. . C. . D. . 5 10 5 20
Câu 37. Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9 . Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3
chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5 . 8 7 2 3 A. . B. . C. . D. . 15 15 5 5
Câu 38. Trong không gian với hệ tọa độ Oxyz , cho (P): 2x − 5y + z −1 = 0 và A(1; 2; − ) 1 . Đường thẳng
qua A và vuông góc với ( P) có phương trình là x = 2 + t x = 3+ 2t x = 1+ 2t x = 3− 2t
A. y = −5 + 2t . B. y = 3 − − 5t .
C. y = 2 − 5t . D. y = 3 − + 5t . z = 1− t z = 1+ t z = 1+ t z = t − +
Câu 39. Có bao nhiêu số nguyên x ( 2
− 022;2022) thỏa mãn ( 2x 1 3
−7.3x + 2) log 2x −1 −2 0 ? 3 ( ) A. 2022 . B. 2021. C. 2018 . D. 2017 . Trang 5 Câu 40. Cho hàm số
f ( x) = x( x − )
1 ( x − 2)( x − )
3 ( x − 4)( x −5)( x − 6)( x − 7) . Hỏi đồ thị hàm số
y = f ( x) cắt trục hoành tại tất cả bao nhiêu điểm phân biệt? A. 1. B. 6 . C. 0 . D. 7 . 1
Câu 41. Cho hàm số y = f ( x) biết f ( ) 1 0 = và ( ) 2 = x f x
xe với mọi x
. Khi đó xf (x)dx bằng 2 0 e +1 e −1 e −1 e +1 A. . B. . C. . D. . 4 4 2 2
Câu 42. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S trên đáy là 2
điểm H trên cạnh AC sao cho AH =
AC ; mặt phẳng (SBC) tạo với đáy một góc 60o . Thể tích khối chóp 3 S.ABC là? 3 a 3 3 a 3 3 a 3 3 a 3 A. B. C. D. 12 48 36 24
Câu 43. Tìm số thực
m = a − b 20 (a, b là các số nguyên khác 0) để phương trình 2
2z + 2(m −1)z + (2m +1) = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn z + z = 10 . Tìm a. 1 2 A.1 B. 2 C. 3 D.4
Câu 44. Cho số phức z thỏa mãn
(1+i) z +1−3i = 3 2 . Giá trị lớn nhất của biểu thức
P = z + 2 + i + 6 z − 2 − 3i bằng A. 5 6 . B. 15 (1+ 6 ) . C. 6 5 . D. 10 + 3 15 . Câu 45. Cho hàm số 4 2
y = ax + bx + c có đồ thị (C) , biết rằng (C) đi qua điểm A( 1
− ;0), tiếp tuyến d tại A
của (C ) cắt (C ) tại hai điểm có hoành độ lần lượt là 0 và 2 và diện tích hình phẳng giới hạn bởi d , đồ thị (C ) 28
và hai đường thẳng x = 0 ; x = 2 có diện tích bằng
(phần tô màu trong hình vẽ). 5
Diện tích hình phẳng giới hạn bởi (C ) và hai đường thẳng x = 1
− ; x = 0 có diện tích bằng 2 1 2 1 A. . B. . C. . D. . 5 4 9 5 Trang 6
Câu 46. Trong không gian Oxyz , cho các điểm A(1;2;0), B(2;0;2),C (2; 1
− ;3),D(1;1;3) . Đường
thẳng đi qua C và vuông góc với mặt phẳng ( ABD) có phương trình là x = 2 − + 4t x = 4 + 2t x = 2 − − 4t x = 2 + 4t A. y = 4 − + 3t .
B. y = 3 − t . C. y = 2 − − 3t . D. y = 1 − + 3t . z = 2 + t z = 1+ 3t z = 2 − t z = 3 − t
Câu 47. Cho hình nón tròn xoay có chiều cao bằng 2a , bán kính đáy bằng 3a . Một thiết diện đi qua đỉnh của 3a
hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng
. Diện tích của thiết diện đó bằng 2 2 2a 3 2 2 2 12a 24a 3 A. . B. 12a 3 . C. . D. . 7 7 7 Câu 48. Có
bao nhiêu cặp số nguyên dương ( ;
x y) thỏa mãn điều kiện x 2020 và
3(9y + 2y) x + log (x + )3 1 − 2 ? 3 A. 4 . B. 2 . C. 3772 . D. 3774 .
Câu 49. Trong không gian với hệ tọa độ Oxyz , gọi điểm M ( ; a ;
b c) (với a , b , c là các phân số tối giản) thuộc mặt cầu (S) 2 2 2
: x + y + z − 2x − 4y − 4z − 7 = 0 sao cho biểu thức T = 2a + 3b + 6c đạt giá trị lớn nhất. Khi đó
giá trị biểu thức P = 2a − b + c bằng 12 51 A. . B. 8 . C. 6 . D. . 7 7
Câu 50. Cho hàm số y = f (x) có đạo hàm f ( ¢ x) 2 = x ( 2 x - x + )( 2 3
2 x - x), với mọi x Î ¡ . Có bao nhiêu
giá trị nguyên dương của tham số m để hàm số y = f ( 2
x −16x + 2m) có 5 điểm cực trị? A. 30 . B. 31. C. 32 . D. 33 .
LỜI GIẢI CHI TIẾT
Câu 1. Cho số phức z = 2 + i . Tính z .
A. z = 5
B. z = 5
C. z = 2 D. z = 3 Lời giải Chọn A Ta có 2 z = 2 +1 = 5 .
Câu 2. Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) có phương trình 2 2 2
x + y + z + 4x − 2 y − 4 = 0
.Tính bán kính R của (S). A. 1. B. 9 . C. 2 . D. 3 . Lời giải ChọnD. Trang 7
Giả sử phương trình mặt cầu 2 2 2 2 2 2
(S) : x + y + z − 2ax − 2by − 2cz + d = 0 (a + b + c − d 0) Ta có: a = 2
− ,b =1,c = 0,d = 4 − Bán kính 2 2 2
R = a + b + c − d = 3.
Câu 3. Điểm nào dưới đây thuộc đồ thị của hàm số 3
y = −x + 2x +1
A. Điểm M (0; − ) 1 . B. Điểm N ( 1 − ; 4 − ) .
C. Điểm P (1; 2) . D. Điểm Q ( 1 − ;4) . Lời giải Chọn C
Câu 4. Cho mặt cầu có diện tích bằng 2
16 a . Khi đó, bán kính mặt cầu bằng a 2 A. 2 2a B. 2a C. 2a D. 2 Lời giải Chọn C Ta có: 2 2
S = 4 R =16 a R = 2a
Câu 5. Trong các khẳng định sau, khẳng định nào sai? 2 x e x 2
A. 2x d = 2x x ln 2 + C . B. e dx = + C . 2 1 1 C. cos 2 d x x = sin 2x + C . D.
dx = ln x +1 + C ( x − ) 1 . 2 x +1 Lời giải Chọn A 2x x Ta có: 2 dx = + C . ln 2
Câu 6. Cho hàm f ( x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng A. 3 . B. −5 . C. 0 . D. 2 . Lời giải Chọn B.
Từ BBT ta có hàm số đạt giá trị cực tiểu f (3) = 5 − tại x = 3
Câu 7. Tập nghiệm của bất phương trình log x −1 1 là 0,5 ( ) Trang 8 3 3 3 3 A. − ; − . B. 1; . C. ;+ . D. 1; . 2 2 2 2 Lời giải Bất phương trình 3
0 x −1 0,5 1 x . 2 3
Vậy tập nghiệm bất phương trình đã cho là: S= 1; . 2
Câu 8. Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và chiều cao 4a . Tính thể tích của hình chóp đã cho. 3 2a 3 3 4a 3 3 a 3 3 a 3 A. V = . B. V = . C. V = . D. V = . 3 3 3 4 Lời giải Chọn C 2 a 3
Do đáy là tam giác đều nên S = . ABC 4 2 3 1 1 a 3 a 3 Mà V = S .h = . .4a = . 3 ABC 3 4 3 −
Câu 9. Tập xác định của hàm số y = ( x − ) 4 2 4 là A. . B. ( 2 − ;2) . C. \ 2 . D. \ 4 . Lời giải Chọn C
Câu 10. Giải phương trình log (x −1) = 3. 4
A. x = 65
B. x = 80
C. x = 82 D. x = 63 Lời giải Chọn A
ĐK: x −1 0 x 1
Phương trình log x −1 = 3 3
x −1 = 4 x = 65 . 4 ( ) 1 3 3 Câu 11. Cho f (x) dx = 1 − ; f (x) dx = 5 . Tính f (x) dx 0 0 1 A. 1. B. 4. C. 6. D. 5. Lời giải 3 1 3 3 3 1 Ta có f (x) dx = f (x) dx + f (x) dx f (x) dx = f (x) dx − f (x) dx = 5+ 1= 6 0 0 1 1 0 0 3 Vậy f (x) dx = 6 1
Câu 12. Cho số phức z = 3
− + 2i , số phức (1−i) z bằng Trang 9 A. 1 − −5i B. 5 − i . C. 1− 5i . D. 5 − + i . Lời giải Chọn D. Vì z = 3
− − 2i nên ta có (1−i) z = (1−i)( 3 − − 2i) = 5 − + i
Câu 13. Trong không gian Oxyz , cho mặt phẳng (P) : 4x + 3y + z −1 = 0 . Véctơ nào sau đây là một véctơ pháp
tuyến của (P) A. n = − − 4 (3;1; ) 1 . B. n = 3 (4;3 ) ;1 . C. n = − 2 (4; 1; ) 1 . D. 1 n = (4;3; ) 1 . Lời giải Chọn B
(P):4x +3y + z −1= 0. Véctơ n = 3 (4;3 )
;1 là một véctơ pháp tuyến của ( P) .
Câu 14. Trong không gian Oxyz cho a = (2;3;2) và b = (1;1;− )
1 . Vectơ a − b có tọa độ là A. (3;4; ) 1 . B. ( 1 − ;− 2;3). C. (3;5; ) 1 . D. (1;2;3) . Lời giải
Ta có: a − b = (2 −1;3 −1;2 + ) 1 = (1;2;3) .
Câu 15. Tìm tọa độ điểm M là điểm biểu diễn số phức z biết z thỏa mãn phương trình (1+ i) z = 3 − 5i . A. M ( 1 − ;4) . B. M ( 1 − ;− 4). C. M (1; 4) .
D. M (1; − 4) . Lời giải − i
Ta có (1+ i) z = 3 − 3 5 5i z =
z = − − i . 1+ 1 4 i Suy ra z = 1
− + 4i . Vậy M ( 1 − ;4) .
Câu 16. Cho hàm số y = f ( x) có báng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là: A. 2. B. 3. C. 4. D. 1. Lời giải Chọn B
Nhìn bảng biến thiên ta thấy x=0 hàm số không xác định nên x=0 là TCĐ của đồ thị hàm số
lim f ( x) = 3 y = 3 là TCN của đồ thị hàm số x→+ Trang 10
lim f ( x) =1 y =1là TCN của đồ thị hàm số x→−
Vậy hàm số có 3 tiệm cận
Câu 17. Với a là hai số thực dương tùy ý, log ( 3 a bằng 2 ) 3 1 A. log a . B. log a .
C. 3 + log a .
D. 3log a . 2 2 2 3 2 2 Lời giải Chọn D Ta có: log ( 3 a = 3log . a 2 ) 2
Câu 18. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? A. 4 2
y = x + 2x . B. 3
y = −x − 3x . C. 3
y = x − 3x . D. 4 2
y = −x + 2x . Lời giải Chọn C
Đây là đồ thị của hàm số bậc ba với hệ số a 0 nên chọn C. x −1 y +1 z − 2
Câu 19. Trong không gian Oxyz , điểm nào dưới đây thuộc đường thẳng = = ? 2 1 − 3 A. Q( 2 − ;1;− ) 3 . B. P(2; 1 − ; ) 3 . C. M ( 1 − ;1; 2 − ) . D. N (1; 1 − ;2) . Lời giải 1−1 1 − +1 2 − 2 Xét điểm N (1; 1 − ;2) ta có = = nên điểm N (1; 1 − ; 2
− ) thuộc đường thẳng đã cho. 2 1 − 3
Câu 20. Với k và n là hai số nguyên dương (k n) , công thức nào sao đây đúng? n k n n k ! k ! k ! k ! A. A = A = A = . D. A = n k !(n − . B. k )! n (k − . C. n)! n n k ! (n − . k )! Lời giải Chọn D n k ! A = n (n − k )!
Câu 21. Diện tích đáy của khối lăng trụ có thể tích V và có chiều cao h là Trang 11 3V 3h V h A. B = . B. B = . C. B = . D. B = . h V h V Lời giải Chọn C V
Diện tích đáy của khối lăng trụ có thể tích V =
và có chiều cao h là: B . h Câu 22. Cho ( ) lo 81 g 2.3 x f x = + 3 . Tính f ( ) 1 − A. f ( ) 1 1 = . B. f ( ) 1 1 = . C. f ( ) 1 = 1. D. f ( ) 1 = 1. 2 2 Lời giải Chọn A TXĐ: D = (0;+) . x 1 f ( x) log x log 81 = 2.3 .ln 3.(log x 81 = 2.3 .ln 3. 81 ) x ln 81 f ( ) 1 0 1 = 1 2.3 .ln 3. = 1 2.1.ln 3. = . ln 81 4 ln 3 2
Câu 23. Cho hàm số y = f ( x) có bảng biến thiên như sau:
Hàm số y = f (x)nghịch biến trên khoảng nào dưới đây? (0;+) (− ; 2 − ) (0;2) ( 2 − ;0) A. B. C. D. Lời giải Chọn D
Câu 24. Cho hình trụ có diện tích xung quanh S
và độ dài đường sinh 3l . Bán kính đáy r của hình trụ đã cho xq
được tính theo công thức nào sau đây? 6S S S 2 l xq xq xq A. r = = = = . B. r . C. r . D. r . l 2 l 6 l Sxq Lời giải Chọn C S Bán kính đáy r xq
của hình trụ là: r = . 6 l Trang 12 Câu 25. Cho f ( ) x , g( ) x là các hàm số liên tục trên đoạn 2;6 và thỏa mãn 3 6 6
f (x)dx = 3; f (x)dx = 7; g(x)dx = 5
. Hãy tìm mệnh đề KHÔNG đúng. 2 3 3 6 3
A. [3g(x) − f (x)]dx = 8
B. [3 f (x) − 4]dx = 5 3 2 6 ln e 6 ln e C.
[2f (x) −1]dx = 16 D.
[4 f (x) − 2g(x)]dx = 16 2 3
Câu 26. Cho cấp số cộng (u có số hạng đầu u = 2 và u = 5 . Giá trị của u bằng n ) 2 3 5 A. 12 . B. 15 . C. 11. D. 25 . Lời giải Chọn C
Ta có: d = u − u = 5 − 2 = 3 u = u + d = 5 + 3 = 8 u = u + d = 11. 3 2 4 3 5 4 −x e
Câu 27. Họ nguyên hàm của hàm số x y = e 2 + là 2 cos x x 1 x 1 A. 2 x
e + tan x + C B. 2 x
e − tan x + C C. 2e − + C D. 2e + + C cos x cos x Lời giải −x e x x 1
Ta có: y = e 2 + = 2e + 2 2 cos x cos x x 1 = 2 + = 2 x ydx e dx
e + tan x + C . 2 cos x
Câu 28. Cho hàm số y = f ( x) có đồ thị như hình vẽ. y 4 2 -2 O x -1 1 2
Hàm số đã cho đạt cực đại tại A. x = 4 . B. x = 0 . C. x = 1 − . D. x = 1 . Lời giải Chọn C
Câu 29. Cho hàm số y = f ( x) liên tục trên đoạn 1 − ;
1 và có đồ thị như hình vẽ. Trang 13
Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn 1 − ;
1 . Giá trị của M − m bằng A. 0 . B. 1. C. 2 . D. 3 . Lời giải
Từ đồ thị ta thấy M =1, m = 0 nên M − m = 1.
Câu 30. Cho hàm số y = f ( x) 3
= x +3x . Hỏi khẳng định nào sau đây là khẳng định đúng ?
A. Hàm số f ( x) đồng biến trên .
B. Hàm số f ( x) nghịch biến trên ( 1 − ;0) .
C. Hàm số f ( x) nghịch biến trên ( ;0 − ).
D. Hàm số f ( x) không đổi trên . Lời giải Chọn đáp án A. Ta có: 3
y = f (x) = x + 3x . Tập xác định: D = . 2
f '(x) = 3x + 3 0 x .
Suy ra hàm số đồng biến trên .
Câu 31. Cho log b = 2 và log c = 3 . Tính P = ( 2 3 log b c . a ) a a
A. P = 13
B. P = 31
C. P = 30
D. P = 108 Lời giải Chọn A Ta có: ( 2 3 log
b c ) = 2log b + 3log c = 2.2 + 3.3 =13 . a a a
Câu 32. Cho hình hộp chữ nhật AB D
C .A' B 'C ' D ' có AB = a , D
A = 2 2a , AA' = 3a . Góc giữa đường
thẳng A'C và mặt phẳng ( D ABC ) bằng A. 45 . B. 90 . C. 60 . D. 30 . Lời giải Chọn D Trang 14
Ta thấy: hình chiếu của A'C xuống ( D
ABC ) là AC do đó ( A'C;( ABCD)) = ( A'C; AC ) = A'CA . Ta có: 2 2 AC = AB + AD = 3a .
Xét tam giác A'CA vuông tại C ta có:
(A CA) A'A 3a 3 tan ' = = = AC 3a 3 A'CA 30 = . 2 2 2 Câu 33. Cho
f (x)dx = 2 và
g(x)dx = 1 −
, khi đó x + 2 f (x) +3g(x)dx bằng 1 − 1 − 1 − 5 7 17 11 A. B. C. D. 2 2 2 2 Lời giải Chọn A 2 2 2 2 3 5
Ta có x + 2 f (x) + 3g(x)dx = xdx + 2
f (x)dx + 3 g(x)dx = + 4 − 3 = 2 2 1 − 1 − 1 − 1 −
Câu 34. Trong không gian Oxyz , mặt phẳng đi qua hai điểm A(0;1;0), B(2;0; )
1 và vuông góc với mặt phẳng
(P): x− y −5 = 0 có phương trình là
A. x + y − z +1 = 0 .
B. x − 2y − 6z − 2 = 0 .
C. x − 2y − 6z + 2 = 0.
D. x + y − z −1 = 0 .
Câu 35. Số phức z thỏa mãn: z − (2 + 3i) z = 1− 9i là A. 2 + i . B. 2 − − i . C. 3 − − i . D. 2 − i Lời giải Gọi
z = a + bi với 2
a,b ; i = 1 −
z = a −bi
z − (2 + 3i) z = 1− 9i a + bi − (2 + 3i)(a − bi) = 1− 9i
a +bi −(2a −2bi +3ai +3b) =1−9i − − = = a 3b 1 a 2 a − −3b +( 3
− a +3b)i =1−9i
z = 2 − i 3 − a + 3b = 9 − b = −1
Vậy chọn đáp án D. Trang 15
Câu 36. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và ; D AB = AD = 2 ; a DC = a .
Điểm I là trung điểm đoạn ,
AD hai mặt phẳng (SIB) và (SIC) cùng vuông góc với mặt phẳng ( ABCD) . Mặt
phẳng (SBC) tạo với mặt phẳng ( ABCD) một góc 60. Tính khoảng cách từ D đến (SBC) theo a . a 15 9a 15 2a 15 9a 15 A. . B. . C. . D. . 5 10 5 20 Lời giải Chọn A
Theo đề ta có SI ⊥ ( ABCD).
Gọi K là hình chiếu vuông góc của I trên BC .
Suy ra: Góc giữa hai mặt phẳng ((SBC),( ABCD)) = SKI = 60
Gọi E là trung điểm của ,
AB M = IK D . E
Do BCDE là hình bình hành nên DE // (SBC) d ( ,
D (SBC)) = d (DE,(SBC)) = d (M,(SBC))
Gọi H là hình chiếu vuông góc của M trên SK . Suy ra d (M,(SCD)) = MH 1 1 1 Dễ thấy: IM = AU = KN = MK 2 2 2 1 5
IN = IM + MK + KN =
MK + MK + MK = MK 2 2 2 2 2a 5 Suy ra: 2 2 MK = IN = ID + DN = . 5 5 5 a 15
Trong tam giác MHK, ta có: MH = MK.sin 60 = 5
Câu 37. Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9 . Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3
chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5 . 8 7 2 3 A. . B. . C. . D. . 15 15 5 5 Lời giải Chọn A Trang 16
Số phần tử của không gian mẫu là n() 3 = C =120 . 10
Gọi A là biến cố ‘‘ 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5 ’’.
Để biến cố A xảy ra thì trong 3 thẻ lấy được phải có thẻ mang chữ số 0 hoặc chữ số 5 . Ta đi tìm số phần tử của
biến cố A , tức là 3 thẻ lấy ra không có thẻmang chữ số 0 và cũng không có thẻ mang chữ số 5 . Ta có n(A) 3
= C n( A) 3 3 = C −C = 64 . 8 10 8 n A 64 8
Vậy xác suất cần tìm là P( A) ( ) = = = . n() 120 15
Câu 38. Trong không gian với hệ tọa độ Oxyz , cho (P): 2x − 5y + z −1 = 0 và A(1; 2; − ) 1 . Đường thẳng
qua A và vuông góc với ( P) có phương trình là x = 2 + t x = 3+ 2t x = 1+ 2t x = 3− 2t
A. y = −5 + 2t . B. y = 3 − − 5t .
C. y = 2 − 5t . D. y = 3 − + 5t . z = 1− t z = 1+ t z = 1+ t z = t − Lời giải Chọn D
Mặt phẳng (P) có một vectơ pháp tuyến là n = (2; 5 − ; ) 1 .
Đường thẳng vuông góc với (P) nên có một vectơ chỉ phương là u = −n = ( 2 − ;5;− ) 1 . x = 1− 2t
đi qua A nên có phương trình y = 2 + 5t . z = −1−t Cho t = 1
− ta được điểm B(3; 3 − ;0). x = 3− 2t
Vì thế có phương trình y = 3 − + 5t . z = t − +
Câu 39. Có bao nhiêu số nguyên x ( 2
− 022;2022) thỏa mãn ( 2x 1 3
−7.3x + 2) log 2x −1 −2 0 ? 3 ( ) A. 2022 . B. 2021. C. 2018 . D. 2017 . Lời giải Chọn D 2x −1 0 9 Điều kiện x
log 2x −1 − 2 0 2 3 ( ) Ta có ( 2x 1
3 + − 7.3x + 2) log 2x −1 − 2 0 3 ( ) 2 x 1 3 + − 7.3x + 2 0 ( ) 1 log 2x −1 − 2 = 0 2 3 ( ) ( ) Trang 17 Giải ( ) + 1 : 2x 1 3 −7.3x + 2 0 ( x)2 3. 3 7.3x − + 2 0. 1 t 0 0 t Đặt
3x = t 0 ta được 3 . 2 3
t − 7t + 2 0 t 2 x 1 0 3 − x 1 0 3 3 x 1 − Suy ra 3 . x log 2 3 3 3 x log 2 3x 2 3
Vậy bất phương trình có tập nghiệm là (−;− 1 log 2;+ . 3 ) 9 9
Kết hợp điều kiện x ; + 2 2 9
Giải (2) : log 2x −1 − 2 = 0 x = (thỏa điều kiện) 3 ( ) 2
Do x là số nguyên , x ( 2
− 022;2022) x =5;6;...;202 1
Vậy có 2017 giá trị x cần tìm Câu 40. Cho hàm số
f ( x) = x( x − )
1 ( x − 2)( x − )
3 ( x − 4)( x −5)( x − 6)( x − 7) . Hỏi đồ thị hàm số
y = f ( x) cắt trục hoành tại tất cả bao nhiêu điểm phân biệt? A. 1. B. 6 . C. 0 . D. 7 . Lời giải Chọn D
Ta có f ( x) = 0 có các nghiệm: 0;1;2;3;4;5;6;7 .
Áp dụng định lý Lagrange lần lượt trên các đoạn: 0; 1 ;1; 2 ;2; 3 ;3; 4 ;4; 5 ;5; 6 ;6;7. f 1 − f 0
Chẳng hạn xét trên đoạn 0;
1 thì tồn tại x sao cho: f ( x =
f (x = f 1 − f 0 = 0. Suy 1 ) ( ) ( ) 1 ) ( ) ( ) 1 1− 0
ra x = x là một nghiệm của phương trình f ( x) = 0. 1
Làm tương tự vậy các khoảng còn lại ta suy ra f (x) = 0 có 7 nghiệm phân biệt hay đồ thị hàm số y = f ( x) cắt
trục hoành tại 7 điểm phân biệt. 1
Câu 41. Cho hàm số y = f ( x) biết f ( ) 1 0 = và ( ) 2 = x f x
xe với mọi x
. Khi đó xf (x)dx bằng 2 0 e +1 e −1 e −1 e +1 A. . B. . C. . D. . 4 4 2 2 Lời giải Chọn B 2 2 2 x 1 x 1 Ta có ( ) = ( ).d = . d = .d ( 2 ) = x f x f x x x e x e x e + C . 2 2 Trang 18 Mà ( ) = + = = ( ) 2 1 1 1 1 0 0 = x f C C f x e . 2 2 2 2 1 1 1 1 xf (x) e x x x − 2 2 1 1 dx = xe dx = e d ( 1 1 2 x ) 2 = e = . 2 4 4 4 0 0 0 0
Câu 42. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S trên đáy là 2
điểm H trên cạnh AC sao cho AH =
AC ; mặt phẳng (SBC) tạo với đáy một góc 60o . Thể tích khối chóp 3 S.ABC là? 3 a 3 3 a 3 3 a 3 3 a 3 A. B. C. D. 12 48 36 24 Lời giải
Gọi M là trung điểm của BC . CN CH 1 N CM : =
= HN//AM . Mà CM CA 3 ABC
đều nên AM ⊥ BC HN ⊥ BC BC ⊥ (SHN ) . Nên ( );( ) = ; = = 60o SBC ABC SN HN SNH . a 3 1 a 3 Do ABC đều nên AM = HN = AM = . 2 3 6 a 3 a S
HN vuông tại H có SH = HN.sin SNH = .sin 60o = . 6 4 2 3 1 1 a a 3 a 3 V = SH.S = . . = . S.ABC 3 ABC 3 4 4 48
Câu 43. Tìm số thực
m = a − b 20 (a, b là các số nguyên khác 0) để phương trình 2
2z + 2(m −1)z + (2m +1) = 0 có hai nghiệm phức phân biệt z z + z = 1, z2 thỏa mãn 10 . Tìm a. 1 2 A.1 B. 2 C. 3 D.4 Lời giải Trang 19 2
' = m −6m−1R
TH1: ' 0 hay m ( ;
− 3 − 10) (3 + 10;+) Khi đó 2 2
z + z = 10 z + z + 2 z z = 10 1 2 1 2 1 2 2m +1 0 2 (1− m) =10 m =1+ 10 (loai) 2
(1− m) − (2m +1) + 2m +1 =10 2m +1 0 m = 3− 20 2
m −6m−11= 0
TH2: ' 0 hay m (3 − 10;3 + 10) 2 2 1− m + i (
− m − 6m −1)
1− m − i −(m − 6m −1)
Khi đó: z + z = 10 + = 10 1 2 2 2 Hay 2 2
(1− m) + (−m + 6m +1) = 10 m = 2
Vậy m = 2 hoặc m = 3 − 20
Câu 44. Cho số phức z thỏa mãn
(1+i) z +1−3i = 3 2 . Giá trị lớn nhất của biểu thức
P = z + 2 + i + 6 z − 2 − 3i bằng A. 5 6 . B. 15 (1+ 6 ) . C. 6 5 . D. 10 + 3 15 . Lời giải Chọn C Cách 1 ( − i
1+ i) z +1− 3i = 1 3 3 2 1+ i z +
= 3 2 z − (1+ 2i) = 3 ( ) 1 . 1+ i Gọi OM = ( ;
x y) , OI = (1; 2) là vec-tơ biểu diễn cho các số phức z = x + iy , w =1+ 2i . Từ ( )
1 có OM − OI = 3 MI = 3. 2 3
Suy ra M thuộc đường tròn (C ) tâm I (1; 2) bán kính R = 3 , (C ) : ( x − ) 1 + ( y − 2) = 9 Gọi OA = ( 2 − ;− )
1 , OB = (2;3) lần lượt là vec-tơ biểu diễn cho số phức a = 2
− −i , b = 2 +3i . Trang 20 Có IA = ( 3 − ;− 3) , IB = (1 ) ;1 . Suy ra IA = 3
− IB IA+3IB = 0 .
Lúc đó P = MA + 6MB = MA + 2. 3MB ( 2 2 3 MA + 3MB ) . 2 2 2 2
Có MA + 3MB = (IA − IM ) + 3(IB − IM ) 2 2 2
= 4IM + IA +3IB . Có 2 IM = 9 , 2 IA =18 , 2 IB = 2 , nên 2 2 MA + 3MB = 60 . Suy ra P 3.60 = 6 5 . MA 3MB Có P = 6 5 = . 1 2
Vậy giá trị lớn nhất của P là P = 6 5 . Cách 2. Giả sử M ( ;
x y) là điểm biểu diễn của số phức z khi đó
( +i) z + − i =
x − y + + (x + y − ) 2 2 1 1 3 3 2 1
3 i = 3 2 x + y − 2x − 4 y − 4 = 0
(x − )2 + ( y − )2 1 2
= 9 . Do đó M thuộc đường tròn tâm I (1;2), bán kính R = 3. a = x −1 Đặt Ta có 2 2
a + b = 9 . Gọi A = ( 2 − ;− ) 1 , B = (2; ) 3 b = y − 2
P = z + + i +
z − − i = MA +
MB = ( x + )2 + ( y + )2 +
(x− )2 +(y − )2 2 6 2 3 6 2 1 6 2 3
= (a + )2 +(b + )2 +
(a − )2 +(b− )2 3 3 6 1
1 = 6(a + b) + 27 + 6 ( 2 − )(a +b)+11
= 6(a +b)+ 27 + 2 ( 6
− )(a +b)+33 (1+ 2)(27 +3 ) 3 = 6 5 . Câu 45. Cho hàm số 4 2
y = ax + bx + c có đồ thị (C) , biết rằng (C) đi qua điểm A( 1
− ;0), tiếp tuyến d tại A
của (C ) cắt (C ) tại hai điểm có hoành độ lần lượt là 0 và 2 và diện tích hình phẳng giới hạn bởi d , đồ thị (C ) 28
và hai đường thẳng x = 0 ; x = 2 có diện tích bằng
(phần tô màu trong hình vẽ). 5
Diện tích hình phẳng giới hạn bởi (C ) và hai đường thẳng x = 1
− ; x = 0 có diện tích bằng Trang 21 2 1 2 1 A. . B. . C. . D. . 5 4 9 5 Lời giải Ta có 3
y = 4ax + 2bx d : y = ( 4
− a − 2b)(x + ) 1 .
Phương trình hoành độ giao điểm của d và (C) là: (− a − b)(x + ) 4 2 4 2
1 = ax + bx + c ( ) 1 . Phương trình ( )
1 phải cho 2 nghiệm là x = 0 , x = 2 . − − = 4a 2b c 12
− a − 6b = 16a + 4b + c 4
− a − 2b − c = 0 (2) .
28a +10b + c = 0 (3) 2 28
Mặt khác, diện tích phần tô màu là = ( 4
− a − 2b)(x + ) 4 2
1 − ax − bx − c dx 5 0 28 = (− 112 32 28 a − b) 32 8 4 4 2 −
a − b − 2c a + b + 2c = − (4). 5 5 3 5 3 5
Giải hệ 3 phương trình (2) , (3) và (4) ta được a =1, b = 3 − , c = 2 . Khi đó, (C) 4 2
: y = x − 3x + 2 , d : y = 2( x + ) 1 . 0 0 1 Diện tích cần tìm là 4 2 S =
x − 3x + 2 − 2 (x + ) 1 dx = ( 4 2
x − 3x − 2x) dx = . 5 1 − 1 −
Câu 46. Trong không gian Oxyz , cho các điểm A(1;2;0), B(2;0;2),C (2; 1
− ;3),D(1;1;3) . Đường
thẳng đi qua C và vuông góc với mặt phẳng ( ABD) có phương trình là x = 2 − + 4t x = 4 + 2t x = 2 − − 4t x = 2 + 4t A. y = 4 − + 3t .
B. y = 3 − t . C. y = 2 − − 3t . D. y = 1 − + 3t . z = 2 + t z = 1+ 3t z = 2 − t z = 3 − t Lời giải Chọn A AB = (1; 2 − ;2) AD = (0; 1 − ;3) AB AD = ( 4 − ; 3 − ;− ) 1
Đường thẳng qua C (2; 1
− ;3) và vuông góc với mặt phẳng ( ABD) có phương trình x = 2 − 4t y = 1 − − 3t z = 3− t Trang 22 Điểm E ( 2 − ; 4
− ;2) thuộc đường thẳng trên, suy ra đường thẳng cần tìm trùng với đường thẳng có phương trình x = 2 − + 4t y = 4 − + 3t z = 2+t
Chọn đáp án đúng là đáp án C
Câu 47. Cho hình nón tròn xoay có chiều cao bằng 2a , bán kính đáy bằng 3a . Một thiết diện đi qua đỉnh của
hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3a . Diện tích của thiết diện đó bằng 2 2 2a 3 2 2 2 12a 24a 3 A. . B. 12a 3 . C. . D. . 7 7 7 Lời giải Chọn D
Xét hình nón đỉnh S có chiều cao SO = 2a , bán kính đáy OA = 3a .
Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S .
+ Gọi I là trung điểm của đoạn thẳng AB . Trong tam giác SOI , kẻ OH ⊥ SI , H SI . AB ⊥ OI +
AB ⊥ (SOI ) AB ⊥ OH . AB ⊥ SO OH ⊥ SI +
OH ⊥ (SAB) ( ( )) 3 , = = a d O SAB OH . OH ⊥ AB 2 1 1 1 4 1 7 6
Xét tam giác SOI vuông tại O , ta có = − = − = = a OI . 2 2 2 OI OH SO 2 2 2 9a 4a 36a 7 2 36a 8a 2 2 2
SI = SO + OI = 4a + = . 7 7 2 36a 3 3a
Xét tam giác AOI vuông tại I , 2 2 2 AI =
AO − OI = 9a − = 7 7 Trang 23 6 3a AB = 2AI = . 7 2 1 1 8a 6 3a 24a 3
Vậy diện tích của thiết diện là: S = .SI.AB = . . = . S AB 2 2 7 7 7 Câu 48. Có
bao nhiêu cặp số nguyên dương ( ;
x y) thỏa mãn điều kiện x 2020 và
3(9y + 2y) x + log (x + )3 1 − 2 ? 3 A. 4 .
B. 2 . C. 3772 . D. 3774 . Lời giải: Chọn D 3
Ta có 3(9y + 2 ) + log +1 − 2 3.9y y x x
+ 6y x +3log x +1 − 2 3 ( ) 3 ( ) 2 y 1 3 + +3(2y + ) 1 ( x + ) 1 + 3log x +1 . (*) 3 ( ) Xét hàm số ( ) = 3t f t
+3t có ( ) = 3t f t .ln 3 + 3 0, t .
Suy ra hàm số ( ) = 3t f t
+3t đồng biến trên . Do đó ( ) * f (2y ) 1 f (log (x ) 1 ) 2y 1 log ( x ) 2 y 1 1 3 + + + + + −1 x . 3 3 − y+ log 2021 1 Vì x 2020 nên 2 1 3 3 −1 2020 y 2,9 . 2
Với giả thiết y nguyên dương suy ra y 1; 2 .
Với y =1 có 26 x 2020 suy ra có 1995 cặp số ( ; x y) thỏa mãn .
Với y = 2 có 242 x 2020 suy ra có 1779 cặp số ( ; x y) thỏa mãn .
Vậy có tất cả 3774 cặp số ( ;
x y) thỏa mãn đề bài.
Câu 49. Trong không gian với hệ tọa độ Oxyz , gọi điểm M ( ; a ;
b c) (với a , b , c là các phân số tối giản) thuộc mặt cầu (S) 2 2 2
: x + y + z − 2x − 4y − 4z − 7 = 0 sao cho biểu thức T = 2a + 3b + 6c đạt giá trị lớn nhất. Khi đó
giá trị biểu thức P = 2a − b + c bằng 12 51 A. . B. 8 . C. 6 . D. . 7 7 Lời giải Chọn C
x + y + z − x − y − z − =
(x − )2 + ( y − )2 + (z − )2 2 2 2 2 4 4 7 0 1 2 2 = 16 .
M (a b c) (S ) (a − )2 + (b − )2 + (c − )2 ; ; 1 2 2 =16 . 2 2 2 Ta có:
(a − )+ (b− )+ (c − ) ( 2 2 2 2 1 3 2 6 2 2 + 3 + 6 ). ( a − )
1 + (b − 2) + (c − 2) .
2a + 3b + 6c − 20 28 2a + 3b + 6c − 20 28 2a + 3b + 6c 48. Trang 24 15 a =
2a + 3b + 6c = 48 7
2a + 3b + 6c = 48
a −1 b − 2 26 Dấu " = " xảy ra khi: =
3a − 2b = 1 − b = 2 3 7 3a − c = 1
a −1 c − 2 38 = c = 2 6 7 15 26 38
Vậy P = 2a − b + c = 2. − + = 6 . 7 7 7
Câu 50. Cho hàm số y = f (x) có đạo hàm f ( ¢ x) 2 = x ( 2 x - x + )( 2 3
2 x - x), với mọi x Î ¡ . Có bao nhiêu
giá trị nguyên dương của tham số m để hàm số y = f ( 2
x −16x + 2m) có 5 điểm cực trị? A. 30 . B. 31. C. 32 . D. 33 . Lời giải Chọn B
Ta có: y¢= f ( 2 ¢ x - 16x + 2 )
m (2x - 16). x é = 8 ê 2 x é = 8 x
ê - 16x + 2m = 1 (1) ê ê Cho y¢= 0 Û Û ê ê . f ê ( 2
¢ x - 16x + 2m) 2 = 0 x
ê - 16x + 2m = 0 (2) ë ê 2 x
ê - 16x + 2m = 2 (3) ë
Do các nghiệm của (1) đều là nghiệm bội bậc chẵn còn (2) và (3) không thể có nghiệm trùng nhau nên hàm số đã
cho có 5 điểm cực trị khi (2) và (3) có 2 nghiệm phân biệt khác 8 . ' ìï D > 0 ï ì 2 ï ï 64- 2m > 0 ï ï ï ' ï D > 0 ï ï 64- 2m + 2 > 0 3 í ï Û í
Û m < 32 mà m nguyên dương nên m có 31 giá trị. 2
ïï 8 - 16.8+ m ¹ 0 ï - 64+ m ¹ 0 ï ï ï ïï 2 ï 8 - 16.8+ m ¹ 2 ï ï - + ¹ î 64 m 2 î Trang 25