Final Exam 1516 - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Final Exam 1516 - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

INTERNATIONAL UNIVERSITY-VNUHCM
FINAL EXAMINATION
Semester 3, Academic Year 2015-2016
Duration: 120 minutes
SUBJECT:
Calculus 2
Chair of Department of Mathematics Lecturers:
Signature: Signature:
Full name: Assoc.Prof. Nguyen Dinh Full names: Assoc.Prof. Mai Duc Thanh
Each student is allowed a maximum of two double-sided sheets of reference
material (of size A4 or similar) and a scientific calculator. All other documents
and electronic devices are forbidden.
Each question carries 20 marks.
Question 1.
a) Find the first partial derivatives of the function f (x, y) = .e
4xy
2
b) Find the directional derivative
D
u
f(x, y) of the function f(x, y) = e
4xy
2
at the point
(1
, 2) in the direction of the vector u =< 1/
2 1, /
2 >.
Question 2. Find the local maximum and minimum values and saddles point(s) of the function
f
(x, y .) = e
x
(x
2
y
2
)
Question 3. a) Evaluate the double integral
I
=
ZZ
D
2 1
y dA, D = {(x, y) | 0 x , x .
2
y
x}
b) Find the volume of the solid under the surface z = 1 + 2xy and above the region in the
xy
-plane bounded by y = 1 x and y = 1 x
2
.
Question 4. a) Evaluate the triple integral
ZZZ
E
x dV, E = {(x, y, z) | 0 x 1, 0 y x, .0 z x + 2y}
b) Evaluate the line integral
Z
C
(2
x
2
y) dx + 2y dy
where
C is the arc of the curve y = x
2
from (0, 0) to (2, 4).
Question 5. Let a vector field F(x, y, z) = xyi + yj + zk be given.
a) Evaluate the line integral
R
C
F · dr, where C has the parametric equations =x = t, y
t
2
, z = e
t
, 0 t 1.
b) Evaluate the surface integral
RR
S
F · dS, where S is the part of the paraboloid =z
16
3x
2
3y
2
that lies above the rectangle 0 x 2, 0 y 1.
1
SOLUTIONS OF FINAL EXAM
Subject: CALCULUS 2
Question 1.
a) Find the first partial derivatives of the function f (x, y) = .e
4xy
2
f f
x
(x, y) = 4e
4xy
2
y
(x, y) = 2ye
4xy
2
.
b) Find the directional derivative of the function
f(x, y) = e
4xy
2
at the point (1 2) in the,
direction of the vector
u = (1/
2, 1/
2).
D
u
f f(x, y) = (x, y) · u =< 4, 4 > · < 1/
2, 1/
2 >= 4 2
Question 2. Find the local maximum and minimum values and saddles point(s) of the function
f
(x, y .) = e
x
(x
2
y
2
)
Partial derivatives
f
x
(x, y x, y) = e
x
(x
2
y
2
+ 2x) f
y
( ) = 2ye
x
Critical points:
f f
x
(x, y) = e
x
(x
2
y
2
+ 2x) = 0
y
(x, y) = 2ye
x
= 0
or
y = 0, x(x + 2) = 0
so that x = 0 or x = 2 and y = 0. So, there are two critical points (0, 0) and (2, 0).
Second partial derivatives:
f
xx
(x, y) = e
x
(x
2
y
2
+ 4x + 2), f , f
xy
(x, y) = 2ye
x
yy
(x, y .) = 2e
x
Consider
D
= f f f
xx
(x, y)
yy
(x, y) (
xy
(x, y .))
2
At M
1
(0, 0), it holds
D
= f f
xx
(0, 0)f
yy
(0, 0) (
xy
(0, 0))
2
= 2(2) 0 = 4 < 0,
so (0,0) is a saddle point.
At M
2
(2, 0) it holds
D
= f f
xx
(2, 0)f
yy
(2, 0) (
xy
(2, 0))
2
= e
4
(6)(2) 0 = 12e
4
> 0
and
f
xx
(2, 0) = 6e
4
< 0. So f(2, 0) = 4e
2
is a local maximum value.
Question 3. a)
Z
1
0
Z
x
x
2
2
y dy dx =
Z
1
0
y
2
y
=
x
y
=x
2
dx
=
Z
1
0
(
x x
4
)dx = (x
2
/2 x
5
/5)
1
0
= 1 5 = 3/ /2 1 /10.
2
b) The volume is given by
V
=
ZZ
D
(1 + 2
xy) dA, D = {(x, y)|0 x 1, 1 x y 1 x
2
},
Therefore
V
=
Z
1
0
Z
1x
2
1x
(1 + 2xy)dydx
=
Z
1
0
( )
y + xy
2
y
=1x
2
y
=1x
dx
=
Z
1
0
[1
x
2
+ x(1 (1 x
2
)
2
x) x(1 x)
2
]dx
=
Z
1
0
[1
x
2
+ x(1 (1 2x
2
+ x
4
) x) x(1 2x + x
2
)]
=
Z
1
0
( )
x
5
3x
3
+ x
2
+ x dx = (x
5
/5 3x
4
/4 + 3 +x
3
/ x
2
/2)
1
0
= 17/60 = 0.2833.
Question 4. a) Evaluate the triple integral
ZZZ
E
x dV, E = {(x, y, z) | 0 x 1, 0 y x, .0 z x + 2y}
ZZZ
E
xdV
=
Z
1
0
Z
x
0
Z
0
x+2y
xdzdydx
=
Z
1
0
Z
x
0
x
(x + 2y)dydx =
Z
1
0
Z
x
0
( )
x
2
+ 2xy dydx
=
Z
1
0
(
x
2
y + xy
2
)
x
0
dx =
Z
1
0
2
x
3
dx
=
x
4
/2
1
0
= 1 2/
b) Evaluate the line integral
Z
C
(2
x
2
y) dx + 2y dy
where
C is the arc of the curve y = x
2
from (0, 0) to (2, 4).
We have
y
0
= 2x, 0 x 2. Thus,
Z
C
(2
x
2
y) dx + 2y dy =
Z
2
0
[(2
x x
2
2
) + 2x
2
2x] dx
=
Z
2
0
(4 3)
x
3
+ x
2
) dx = (x
4
+ x
3
/
2
0
= 2
3
(2 + 1/3) = 56 3 = 18/ .67.
Question 5. Let a vector field F(x, y, z) = xyi + +yj zk be given.
a) Evaluate the line integral
R
C
F · dr, where C has the parametric equations =x = t, y
t
2
, z = e
t
, 0 t 1.
3
Vector equation of
C: r(t) =< t, t
2
, e
t
>, 0 t 1. We have r
0
(t) =< 1, 2t, e
t
>, and
F
(r(t)) =< t > .
3
, t , e
2 t
Thus
Z
C
F
· dr =
Z
1
0
F
(r r(t)) ·
0
(t)dt
=
Z
1
0
(
t
3
+ 2t
3
+ e
2t
)dt =
Z
1
0
(3
t
3
+ e
2t
)dt
= (3
t
4
/4 + e
2t
/2)
1
0
= 3/4 + e
2
/2 1/2 = e
2
/ /2 + 1 4 = 3.9445
b) Evaluate the surface integral
RR
S
F · dS, where S is the part of the paraboloid =z
16
3x
2
3y
2
that lies above the rectangle 0 x 2, 0 y 1.
Set F(x, y, z) =< P, Q, R >, where P = xy, Q = y, R = z, and S is given by z = g(x, y) =
16
3x
2
3y
2
. Applying the formula
ZZ
S
F
· dS =
ZZ
D
(P g
x
Qg
y
+ R) dA
=
ZZ
D
[
xy(6 6 3x) y( y) + (16 x
2
3y
2
)] dA
=
ZZ
D
(6
x
2
y + 3 + 16)y
2
3x
2
dA
=
Z
2
0
Z
1
0
(6
x
2
y + 3 + 16)y
2
3x
2
dydx
=
Z
2
0
(3
x
2
y
2
+ y
3
3x
2
y + 16y)
1
0
)dx
=
Z
2
0
(3
x
2
+ 1 + 16) 3x
2
dx =
Z
2
0
17dx = 34
4
| 1/4

Preview text:

INTERNATIONAL UNIVERSITY-VNUHCM FINAL EXAMINATION
Semester 3, Academic Year 2015-2016 Duration: 120 minutes SUBJECT: Calculus 2
Chair of Department of Mathematics Lecturers: Signature: Signature:
Full name: Assoc.Prof. Nguyen Dinh
Full names: Assoc.Prof. Mai Duc Thanh
• Each student is allowed a maximum of two double-sided sheets of reference
material (of size A4 or similar) and a scientific calculator. All other documents
and electronic devices are forbidden.
• Each question carries 20 marks.
Question 1. a) Find the first partial derivatives of the function f (x, y) = e4x−y2.
b) Find the directional derivative Duf (x, y) of the function f (x, y) = e4x−y2 at the point √ √
(1, 2) in the direction of the vector u =< 1/ 2, −1/ 2 >.
Question 2. Find the local maximum and minimum values and saddles point(s) of the function f (x, y) = ex(x2 − y2).
Question 3. a) Evaluate the double integral Z Z √ I = 2y dA,
D = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x}. D
b) Find the volume of the solid under the surface z = 1 + 2xy and above the region in the
xy-plane bounded by y = 1 − x and y = 1 − x2.
Question 4. a) Evaluate the triple integral Z Z Z x dV,
E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ x + 2y}. E b) Evaluate the line integral Z (2x2 − y) dx + 2y dy C
where C is the arc of the curve y = x2 from (0, 0) to (2, 4).
Question 5. Let a vector field F(x, y, z) = xyi + yj + zk be given.
a) Evaluate the line integral R F · dr, where C has the parametric equations x = t, y = C t2, z = et, 0 ≤ t ≤ 1.
b) Evaluate the surface integral RR F · dS, where S is the part of the paraboloid z = S
16 − 3x2 − 3y2 that lies above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. 1 SOLUTIONS OF FINAL EXAM Subject: CALCULUS 2
Question 1. a) Find the first partial derivatives of the function f (x, y) = e4x−y2. fx(x, y) = 4e4x−y2 fy(x, y) = −2ye4x−y2.
b) Find the directional derivative of the function f (x, y) = e4x−y2 at the point (1, 2) in the √ √
direction of the vector u = (1/ 2, −1/ 2). √ √ √
Duf (x, y) = ∇f(x, y) · u =< 4, −4 > · < 1/ 2, −1/ 2 >= 4 2
Question 2. Find the local maximum and minimum values and saddles point(s) of the function f (x, y) = ex(x2 − y2). Partial derivatives
fx(x, y) = ex(x2 − y2 + 2x) fy(x, y) = −2yex Critical points:
fx(x, y) = ex(x2 − y2 + 2x) = 0 fy(x, y) = −2yex = 0 or y = 0, x(x + 2) = 0
so that x = 0 or x = −2 and y = 0. So, there are two critical points (0, 0) and (−2, 0). Second partial derivatives:
fxx(x, y) = ex(x2 − y2 + 4x + 2), fxy(x, y) = −2yex, fyy(x, y) = −2ex. Consider
D = fxx(x, y)fyy(x, y) − (fxy(x, y))2. At M1(0, 0), it holds
D = fxx(0, 0)fyy(0, 0) − (fxy(0, 0))2 = 2(−2) − 0 = −4 < 0, so (0,0) is a saddle point. At M2(−2, 0) it holds
D = fxx(−2, 0)fyy(−2, 0) − (fxy(−2, 0))2 = e−4(−6)(−2) − 0 = 12e−4 > 0
and fxx(−2, 0) = −6e−4 < 0. So f(−2, 0) = 4e−2 is a local maximum value. Question 3. a) √ √ Z 1 Z x Z 1 y= x 2y dy dx = y2  dx  0 x2 0 y=x2 Z 1 1 =
(x − x4)dx = (x2/2 − x5/5) = 1/2 − 1/5 = 3/10.  0 0 2 b) The volume is given by Z Z V = (1 + 2xy) dA,
D = {(x, y)|0 ≤ x ≤ 1, 1 − x ≤ y ≤ 1 − x2}, D Therefore Z 1 Z 1−x2 V = (1 + 2xy)dydx 0 1−x Z 1 y=1−x2 = (y + xy2) dx  0 y=1−x Z 1 =
[1 − x2 + x(1 − x2)2 − (1 − x) − x(1 − x)2]dx 0 Z 1 =
[1 − x2 + x(1 − 2x2 + x4) − (1 − x) − x(1 − 2x + x2)] 0 Z 1 1 =
(x5 − 3x3 + x2 + x)dx = (x5/5 − 3x4/4 + x3/3 + x2/2) = 17/60 = 0.2833.  0 0
Question 4. a) Evaluate the triple integral Z Z Z x dV,
E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ x + 2y}. E Z Z Z Z 1 Z x Z xdV = 0x+2yxdzdydx E 0 0 Z 1 Z x Z 1 Z x = x(x + 2y)dydx = (x2 + 2xy)dydx 0 0 0 0 Z 1 Z 1  x = (x2y + xy2) dx = 2x3dx  0 0 0  1 = x4/2  = 1/2 0 b) Evaluate the line integral Z (2x2 − y) dx + 2y dy C
where C is the arc of the curve y = x2 from (0, 0) to (2, 4).
We have y0 = 2x, 0 ≤ x ≤ 2. Thus, Z Z 2 (2x2 − y) dx + 2y dy = [(2x2 − x2) + 2x22x] dx C 0 Z 2  2 =
(4x3 + x2) dx = (x4 + x3/3) = 23(2 + 1/3) = 56/3 = 18.67.  0 0
Question 5. Let a vector field F(x, y, z) = xyi + yj + zk be given.
a) Evaluate the line integral R F · dr, where C has the parametric equations x = t, y = C t2, z = et, 0 ≤ t ≤ 1. 3
Vector equation of C: r(t) =< t, t2, et >, 0 ≤ t ≤ 1. We have r0(t) =< 1, 2t, et >, and
F(r(t)) =< t3, t2, et > . Thus Z Z 1 F · dr = F(r(t)) · r0(t)dt C 0 Z 1 Z 1 = (t3 + 2t3 + e2t)dt = (3t3 + e2t)dt 0 0 1
= (3t4/4 + e2t/2) = 3/4 + e2/2 − 1/2 = e2/2 + 1/4 = 3.9445 0
b) Evaluate the surface integral RR F · dS, where S is the part of the paraboloid z = S
16 − 3x2 − 3y2 that lies above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1.
Set F(x, y, z) =< P, Q, R >, where P = xy, Q = y, R = z, and S is given by z = g(x, y) =
16 − 3x2 − 3y2. Applying the formula Z Z Z Z F · dS = (−P gx − Qgy + R) dA S D Z Z =
[−xy(−6x) − y(−6y) + (16 − 3x2 − 3y2)] dA D Z Z = (6x2y + 3y2 − 3x2 + 16) dA D Z 2 Z 1 = (6x2y + 3y2 − 3x2 + 16)dydx 0 0 Z 2 1 =
(3x2y2 + y3 − 3x2y + 16y) )dx  0 0 Z 2 Z 2 = (3x2 + 1 − 3x2 + 16)dx = 17dx = 34 0 0 4