Final Exam - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Final Exam - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Môn:

Calculus 1 (MA001IU) 42 tài liệu

Thông tin:
1 trang 7 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Final Exam - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Final Exam - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

119 60 lượt tải Tải xuống
INTERNATIONAL UNIVERSITY-VNUHCM
FINAL EXAMINATION
Semester 1, Academic Year 2021-2022
Duration: 90 minutes (online)
SUBJECT: Calculus 2
Department of Mathematics Lecturer
Prof. Pham Huu Anh Ngoc Assoc.Prof. Mai Duc Thanh
Instructions:
You have to write by hands your solutions, and then scan it into a single PDF
file and submit it to Blackboard.
Your full name, student ID and your signature must be given on top of the
first page of your solution draft.
You are given an additional time of 10 minutes for submission.
Each question carries 20 marks.
Question 1.
Let f(x, y) = ln(9 x
2
y) + .
y
(a) Find and sketch the domain of f (x, y).
(b) Find the directional derivative of the function f(x, y) at the point (1 1) in the direction,
of the vector .v =< 3, 4 >
Question 2. Find the local maximum and minimum values and saddles point(s) of the function
f
(x, y) = x
3
24xy .+ 8y
3
Question 3. (a) Evaluate the double integral
I
=
ZZ
D
y
x
dA, D = {(x, y .) | 1 x 2, 0 y 2x
2
}
(b) Estimate the volume of the solid that lies below the surface
z = ln(x
2
+ y
2
+ 1) and above
the rectangle R = [0, 4] × [0, 2] by using a Riemann sum with m = 4 = 2 and the sample, n
point to be the upper right corner of each square.
Question 4.
Given a force field F(x, y) =
xy
10
i +
y
5
j.
(a) Sketch the vector field F(x, y).
(b) Find the work done by the force field F(x, y) in moving a particle along the parabola
y
= 2x
3
from the point (0, 0) to the point (1, 2).
Question 5.
Given the vector field F(x, y, z) = zj + ( .y z
2
)k
(a) Find curl F and div F
(b) Evaluate the surface integral
RR
S
F ·dS, where S is the part of the sphere x
2
+ y
2
+ z
2
= 1
in the first octant with orientation toward the origin.
———END OF QUESTIONS———
1
| 1/1

Preview text:

INTERNATIONAL UNIVERSITY-VNUHCM FINAL EXAMINATION
Semester 1, Academic Year 2021-2022 Duration: 90 minutes (online) SUBJECT: Calculus 2 Department of Mathematics Lecturer Prof. Pham Huu Anh Ngoc Assoc.Prof. Mai Duc Thanh Instructions:
• You have to write by hands your solutions, and then scan it into a single PDF
file and submit it to Blackboard.
• Your full name, student ID and your signature must be given on top of the
first page of your solution draft.
• You are given an additional time of 10 minutes for submission.
• Each question carries 20 marks. √
Question 1. Let f (x, y) = ln(9 − x2 − y) + y.
(a) Find and sketch the domain of f (x, y).
(b) Find the directional derivative of the function f (x, y) at the point (1, 1) in the direction
of the vector v =< 3, 4 >.
Question 2. Find the local maximum and minimum values and saddles point(s) of the function f (x, y) = x3 − 24xy + 8y3.
Question 3. (a) Evaluate the double integral ZZ y I = dA,
D = {(x, y) | 1 ≤ x ≤ 2, 0 ≤ y ≤ 2x2}. D x
(b) Estimate the volume of the solid that lies below the surface z = ln(x2 + y2 + 1) and above
the rectangle R = [0, 4] × [0, 2] by using a Riemann sum with m = 4, n = 2 and the sample
point to be the upper right corner of each square. xy y
Question 4. Given a force field F(x, y) = i + j. 10 5
(a) Sketch the vector field F(x, y).
(b) Find the work done by the force field F(x, y) in moving a particle along the parabola
y = 2x3 from the point (0, 0) to the point (1, 2).
Question 5. Given the vector field F(x, y, z) = −zj + (y − z2)k. (a) Find curl F and div F RR
(b) Evaluate the surface integral
F · dS, where S is the part of the sphere x2 + y2 + z2 = 1 S
in the first octant with orientation toward the origin.
———END OF QUESTIONS——— 1