-
Thông tin
-
Quiz
Final sample - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Final sample - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Calculus 1 (MA001IU) 42 tài liệu
Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 696 tài liệu
Final sample - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Final sample - Calculus 1 | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Môn: Calculus 1 (MA001IU) 42 tài liệu
Trường: Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 696 tài liệu
Thông tin:
Tác giả:



Tài liệu khác của Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh
Preview text:
INTERNATIONAL UNIVERSITY – VIETNAM NATIONAL UNIVERSITY – HCMC
CALCULUS 1 – FINAL EXAMINATION – SAMPLE QUESTION PAPER
This paper shows SAMPLE exam questions. In actual exams, Part 1 will contain 20 multiple choice
questions (total 60 points), Part 2 will contain three or four questions (total 40 points).
INSTRUCTIONS: Each student is allowed one double-sided sheet of reference material (size A4 or sim-
ilar) marked with their name and ID. A calculator is allowed only for Part 2. All other documents and
electronic devices are forbidden.
PART 1: 20 MULTIPLE CHOICE QUESTIONS – 60 Minutes – 60 points – NO CALCULATOR
Indicate your choice of answer (A, B, C or D) by filling in the correct oval on the attached answer sheet.
If you select more than one answer, no marks will be awarded.
1. Let f (x) = x6 − 10x4. The inflection point(s) of the graph of f is (are): (A) (0, 0) (C) (0, 0) and (1, −9) √ √
(B) (−2, −96) and (2, −96)
(D) (−2 15/3, 12) and (2 15/3, 12) 2. The limit lim x ln 1 + 1 is x→ x ∞ (A) 0 (B) −1 (C) 1 (D) e
3. On a certain day in Ho Chi Minh city, the temperature T (in ◦C) could be modeled by the function:
T (t) = 0.0004t4 − 0.12t2 + 33, −12 ≤ t ≤ 12, where t is the time in hours and t = 0 at noon. What
is the maximum temperature during the day? (A) 35◦C (B) 24◦C (C) 32◦C (D) 33◦C Z 0 p dA 4. Let A (x) = 1 + t3dt. The derivative is x2 dx √ √ √ √ (A) −2x 1 + x3 (B) −x 1 + x6 (C) −2x 1 + x6 (D) − 1 + x6 π
5. The area under the graph of y = sin x over the interval [0, ] is 3 √ 1 1 (A) (B) 1 3 (C) 1 (D) − 2 − 2 2 Z 0 6. The value of te3t dt is −∞ 1 1 (A) (B) 0 (C) ∞ (D) − 9 9
7. Which integral represents the volume of the solid generated when the region under the curve y = sin x
on [0, π] is rotated about the x-axis? (A) R π R π R π R π π sin x dx (B) 2π sin x dx (C) 2π x sin x dx (D) π 0 0 0 0 sin2 x d x
CALCULUS 1 – FINAL EXAMINATION – SAMPLE QUESTION PAPER Student’s name: Student’s mark Student ID:
PART 2: FULL WRITTEN ANSWERS – 40 minutes – 40 points – CALCULATORS ALLOWED
You must explain your answer in detail. No credit will be given for the answer alone.
1. (10 points) The start of the rainy season causes a rapid increase in the mosquito population. In a
certain village, the mosquito population growth rate r (in mosquitos per week) is modelled by the
function r(t) = 600 + 120e0.8t where t is time in weeks. If the initial population is 1000 mosquitos,
find the population after 3 weeks.
2. (10 points) Find the area of the region enclosed by the curves y = x2 − 2x and y = x + 4.
Solutions – Cal 1 Final Exam Sample Paper Part 1 1. B 2. C 3. D 4. C 5. A 6. D 7. D Part 2
1. Let P be the mosquito population at time t. By the net change theorem, with r = dP, we have dt Z 3 P(3) = P(0)+
600+120e0.8tdt = 1000+ [600t +150e0.8t]30 ≈ 1000+1800 +1503 = 4303 (mosquitos) 0
2. The intersection points (x, y) of the two curves satisfy ( ( ( y = x2 − 2x x + 4 = x2 − 2x x = −1 or x = 4 ⇐⇒ ⇐⇒ y = x + 4 y = x + 4 y = x + 4.
Thus the two intersection points are (−1, 3) and (4, 8). The area of the region enclosed by the two curves is Z 4 Z 4 A = x + 4 − (x2 − 2x) dx = 3x + 4 − x2 dx −1 −1 4 3x2 x3 125 = + 4x − = . 2 3 6 −1