Một số ký hiệu cơ bản môn Công nghệ thông tin | Đại học Hoa Sen
Một số ký hiệu cơ bản môn Công nghệ thông tin | Đại học Hoa Sen được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem
Môn: Công nghệ thông tin (asf-1243)
Trường: Đại học Hoa Sen
Thông tin:
Tác giả:
Preview text:
Inter-Item Correlation Matrix b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b1 1.000 .769 .575 .554 .653 .525 .574 .237 .352 .130 .242 .421 .352 .516 .485 .275 .196 .200 b2 .769 1.000 .678 .507 .639 .389 .526 .269 .294 .024 .250 .342 .229 .417 .401 .221 .131 .132 b3 .575 .678 1.000 .327 .541 .328 .504 .166 .285 .114 .227 .251 .117 .324 .313 .016 -.017 .093 b4 .554 .507 .327 1.000 .734 .564 .360 .385 .164 .151 .341 .331 .555 .328 .270 .250 .305 .153 b5 .653 .639 .541 .734 1.000 .644 .612 .319 .233 .127 .317 .311 .407 .422 .342 .201 .247 .129 b6 .525 .389 .328 .564 .644 1.000 .540 .163 .178 .162 .211 .301 .347 .253 .307 .182 .290 .013 b7 .574 .526 .504 .360 .612 .540 1.000 .113 .318 .053 .206 .309 .106 .368 .408 .078 .168 .170 b8 .237 .269 .166 .385 .319 .163 .113 1.000 .359 .390 .541 .380 .499 .361 .364 .194 .195 .164 b9 .352 .294 .285 .164 .233 .178 .318 .359 1.000 .334 .342 .579 .185 .506 .441 .021 .080 .395 b10 .130 .024 .114 .151 .127 .162 .053 .390 .334 1.000 .560 .304 .250 .215 .288 .102 .278 .187 b11 .242 .250 .227 .341 .317 .211 .206 .541 .342 .560 1.000 .416 .335 .336 .359 .244 .250 .189 b12 .421 .342 .251 .331 .311 .301 .309 .380 .579 .304 .416 1.000 .474 .618 .557 .179 .236 .432 b13 .352 .229 .117 .555 .407 .347 .106 .499 .185 .250 .335 .474 1.000 .475 .484 .417 .391 .278 b14 .516 .417 .324 .328 .422 .253 .368 .361 .506 .215 .336 .618 .475 1.000 .722 .382 .324 .489 b15 .485 .401 .313 .270 .342 .307 .408 .364 .441 .288 .359 .557 .484 .722 1.000 .317 .300 .438 b16 .275 .221 .016 .250 .201 .182 .078 .194 .021 .102 .244 .179 .417 .382 .317 1.000 .571 .243 b17 .196 .131 -.017 .305 .247 .290 .168 .195 .080 .278 .250 .236 .391 .324 .300 .571 1.000 .390 b18 .200 .132 .093 .153 .129 .013 .170 .164 .395 .187 .189 .432 .278 .489 .438 .243 .390 1.000 Item-Total Statistics Scale Corrected Squared Cronbach's Scale Mean if Variance if Item-Total Multiple Alpha if Item Item Deleted Item Deleted Correlation Correlation Deleted b1 61.45 107.102 .699 .719 .883 b2 61.55 108.448 .613 .731 .886 b3 61.67 110.541 .473 .549 .890 b4 61.45 109.121 .612 .675 .886 b5 61.57 107.871 .681 .754 .884 b6 61.63 110.791 .525 .571 .889 b7 61.90 109.277 .530 .576 .888 b8 61.37 111.385 .490 .478 .890 b9 61.92 109.301 .490 .500 .890 b10 61.68 113.944 .351 .445 .894 b11 61.34 110.643 .521 .512 .889 b12 61.45 110.349 .633 .579 .886 b13 61.25 110.920 .565 .611 .887 b14 61.51 109.381 .694 .681 .884 b15 61.49 109.440 .666 .632 .884 b16 61.28 114.621 .364 .473 .893 b17 61.55 113.141 .410 .498 .892 b18 62.27 112.340 .387 .419 .894 KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling .443 Adequacy. Bartlett's Test of Approx. Chi-Square 11.600 Sphericity df 3 Sig. .009
Total Variance Explained Extraction Sums of Squared Initial Eigenvalues Loadings Compone % of Cumulative % of Cumulative nt Total Variance % Total Variance % 1 1.289 42.978 42.978 1.289 42.978 42.978 2 1.059 35.311 78.289 1.059 35.311 78.289 3 .651 21.711 100.000
Extraction Method: Principal Component Analysis. KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling .849 Adequacy. Bartlett's Test of Approx. Chi-Square 979.635 Sphericity df 153 Sig. <.001
Total Variance Explained Extraction Sums of Squared Initial Eigenvalues Loadings Compone % of Cumulative % of Cumulative nt Total Variance % Total Variance % 1 6.753 37.518 37.518 6.753 37.518 37.518 2 2.313 12.852 50.370 2.313 12.852 50.370 3 1.608 8.935 59.306 1.608 8.935 59.306 4 1.381 7.671 66.976 1.381 7.671 66.976 5 .906 5.035 72.012 6 .836 4.642 76.654 7 .638 3.543 80.197 8 .521 2.892 83.090 9 .506 2.813 85.903 10 .436 2.423 88.326 11 .373 2.072 90.398 12 .344 1.911 92.310 13 .312 1.732 94.042 14 .280 1.556 95.598 15 .260 1.445 97.044 16 .208 1.156 98.200 17 .180 .998 99.198 18 .144 .802 100.000
Extraction Method: Principal Component Analysis. Correlations a1 a2 a3 a1 Pearson 1 .162 -.068 Correlation Sig. (2-tailed) .104 .496 N 102 102 102 a2 Pearson .162 1 .271** Correlation Sig. (2-tailed) .104 .006 N 102 102 102 a3 Pearson -.068 .271** 1 Correlation Sig. (2-tailed) .496 .006 N 102 102 102
**. Correlation is significant at the 0.01 level (2-tailed). Correlations b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b1 Pearson 1 .769** .575** .554** .653** .525** .574** .237* .352** .130 .242* .421** .352** .516** .485** .275* Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 .016 <.001 .192 .014 <.001 <.001 <.001 <.001 .005 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b2 Pearson .769** 1 .678** .507** .639** .389** .526** .269** .294** .024 .250* .342** .229* .417** .401** .221 Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 .006 .003 .813 .011 <.001 .021 <.001 <.001 .026 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b3 Pearson .575** .678** 1 .327** .541** .328** .504** .166 .285** .114 .227* .251* .117 .324** .313** .016 Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 .095 .004 .254 .022 .011 .243 <.001 .001 .873 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b4 Pearson .554** .507** .327** 1 .734** .564** .360** .385** .164 .151 .341** .331** .555** .328** .270** .250 Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 <.001 .100 .129 <.001 <.001 <.001 <.001 .006 .011 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b5 Pearson .653** .639** .541** .734** 1 .644** .612** .319** .233* .127 .317** .311** .407** .422** .342** .201 Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 .001 .018 .204 .001 .001 <.001 <.001 <.001 .043 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b6 Pearson .525** .389** .328** .564** .644** 1 .540** .163 .178 .162 .211* .301** .347** .253* .307** .182 Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 .102 .073 .103 .033 .002 <.001 .010 .002 .067 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b7 Pearson .574** .526** .504** .360** .612** .540** 1 .113 .318** .053 .206* .309** .106 .368** .408** .078 Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001 .257 .001 .600 .038 .002 .289 <.001 <.001 .434 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b8 Pearson .237* .269** .166 .385** .319** .163 .113 1 .359** .390** .541** .380** .499** .361** .364** .194 Correlation Sig. (2-tailed) .016 .006 .095 <.001 .001 .102 .257 <.001 <.001 <.001 <.001 <.001 <.001 <.001 .051 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b9 Pearson .352** .294** .285** .164 .233* .178 .318** .359** 1 .334** .342** .579** .185 .506** .441** .021 Correlation Sig. (2-tailed) <.001 .003 .004 .100 .018 .073 .001 <.001 <.001 <.001 <.001 .062 <.001 <.001 .834 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b10 Pearson .130 .024 .114 .151 .127 .162 .053 .390** .334** 1 .560** .304** .250* .215* .288** .102 Correlation Sig. (2-tailed) .192 .813 .254 .129 .204 .103 .600 <.001 <.001 <.001 .002 .011 .030 .003 .306 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b11 Pearson .242* .250* .227* .341** .317** .211* .206* .541** .342** .560** 1 .416** .335** .336** .359** .244 Correlation Sig. (2-tailed) .014 .011 .022 <.001 .001 .033 .038 <.001 <.001 <.001 <.001 <.001 <.001 <.001 .014 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b12 Pearson .421** .342** .251* .331** .311** .301** .309** .380** .579** .304** .416** 1 .474** .618** .557** .179 Correlation Sig. (2-tailed) <.001 <.001 .011 <.001 .001 .002 .002 <.001 <.001 .002 <.001 <.001 <.001 <.001 .071 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b13 Pearson .352** .229* .117 .555** .407** .347** .106 .499** .185 .250* .335** .474** 1 .475** .484** .417* Correlation Sig. (2-tailed) <.001 .021 .243 <.001 <.001 <.001 .289 <.001 .062 .011 <.001 <.001 <.001 <.001 <.001 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b14 Pearson .516** .417** .324** .328** .422** .253* .368** .361** .506** .215* .336** .618** .475** 1 .722** .382* Correlation Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 .010 <.001 <.001 <.001 .030 <.001 <.001 <.001 <.001 <.001 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b15 Pearson .485** .401** .313** .270** .342** .307** .408** .364** .441** .288** .359** .557** .484** .722** 1 .317* Correlation Sig. (2-tailed) <.001 <.001 .001 .006 <.001 .002 <.001 <.001 <.001 .003 <.001 <.001 <.001 <.001 .001 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b16 Pearson .275** .221* .016 .250* .201* .182 .078 .194 .021 .102 .244* .179 .417** .382** .317** 1 Correlation Sig. (2-tailed) .005 .026 .873 .011 .043 .067 .434 .051 .834 .306 .014 .071 <.001 <.001 .001 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b17 Pearson .196* .131 -.017 .305** .247* .290** .168 .195* .080 .278** .250* .236* .391** .324** .300** .571* Correlation Sig. (2-tailed) .049 .190 .868 .002 .012 .003 .092 .050 .426 .005 .011 .017 <.001 <.001 .002 <.001 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 b18 Pearson .200* .132 .093 .153 .129 .013 .170 .164 .395** .187 .189 .432** .278** .489** .438** .243 Correlation Sig. (2-tailed) .044 .187 .352 .125 .197 .896 .087 .099 <.001 .060 .056 <.001 .005 <.001 <.001 .014 N 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed). Model Summary Adjusted R Std. Error of Model R R Square Square the Estimate 1 1.000a 1.000 1.000 .00000
a. Predictors: (Constant), a3, a1, a2 ANOVAa Sum of Mean Model Squares df Square F Sig. 1 Regression 20.806 3 6.935 . .b Residual .000 98 .000 Total 20.806 101
a. Dependent Variable: VAR00003
b. Predictors: (Constant), a3, a1, a2 Coefficientsa Standardize Unstandardized d Collinearity Coefficients Coefficients Statistics Toleranc Model B Std. Error Beta t Sig. e VIF 1 (Constan -2.111E-10 .000 . . t) a1 .333 .000 .518 . . .960 1.041 a2 .333 .000 .401 . . .894 1.119 a3 .333 .000 .640 . . .914 1.095
a. Dependent Variable: VAR00003 Model Summary Adjusted R Std. Error of Model R R Square Square the Estimate 1 1.000a 1.000 1.000 .00000
a. Predictors: (Constant), b18, b6, b8
, b16, b3, b10, b9, b15, b4, b7, b11, b17, b12, b13, b1, b14, b2, b5 ANOVAa Sum of Mean Model Squares df Square F Sig. 1 Regression 38.371 18 2.132 . .b Residual .000 83 .000 Total 38.371 101
a. Dependent Variable: VAR00004
b. Predictors: (Constant), b18, b6, b8
, b16, b3, b10, b9, b15, b4, b7, b11, b17, b12, b13, b1, b14, b2, b5 Coefficientsa Unstandardized Standardized Collinearity Coefficients Coefficients Statistics Toleranc Model B Std. Error Beta t Sig. e VIF 1 (Constan 1.948E-10 .000 .022 .982 t) b1 .056 .000 .093 22559490.5 <.001 .281 3.553 58 b2 .056 .000 .095 22662272.1 <.001 .269 3.716 62 b3 .056 .000 .102 31366202.9 <.001 .451 2.215 70 b4 .056 .000 .091 23803853.8 <.001 .325 3.073 20 b5 .056 .000 .091 20529112.1 <.001 .246 4.070 65 b6 .056 .000 .092 27546350.0 <.001 .429 2.331 81 b7 .056 .000 .102 30385598.9 <.001 .424 2.356 12 b8 .056 .000 .093 30632145.0 <.001 .522 1.917 71 b9 .056 .000 .108 35112273.2 <.001 .500 1.999 13 b10 .056 .000 .096 32851444.9 <.001 .555 1.802 78 b11 .056 .000 .094 29903406.9 <.001 .488 2.049 75 b12 .056 .000 .081 24029762.8 <.001 .421 2.374 10 b13 .056 .000 .085 24382080.6 <.001 .389 2.571 58 b14 .056 .000 .080 20729853.9 <.001 .319 3.134 36 b15 .056 .000 .083 22967465.2 <.001 .368 2.720 13 b16 .056 .000 .087 28920092.7 <.001 .527 1.897 45 b17 .056 .000 .092 29845676.1 <.001 .502 1.991 00 b18 .056 .000 .104 36140492.0 <.001 .581 1.720 93
a. Dependent Variable: VAR00004