Bài tập ôn tập Toán Kinh Tế - Toán Kinh Tế | Đại học Tôn Đức Thắng

Let ||.||_1 and ||.||_2 be norms on a vector space X. We define ||x|| = max{||x||_1, ||x||_2} x in X. Prove that ||.|| is also a norm on X..||x|| = max{||x||_1, ||x||_2} >=0||x|| = 0. Tài liệu được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Môn:
Trường:

Đại học Tôn Đức Thắng 3.5 K tài liệu

Thông tin:
18 trang 4 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Bài tập ôn tập Toán Kinh Tế - Toán Kinh Tế | Đại học Tôn Đức Thắng

Let ||.||_1 and ||.||_2 be norms on a vector space X. We define ||x|| = max{||x||_1, ||x||_2} x in X. Prove that ||.|| is also a norm on X..||x|| = max{||x||_1, ||x||_2} >=0||x|| = 0. Tài liệu được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

37 19 lượt tải Tải xuống
Norm
Prove that ||.||_2 in R^2 is norm
R^2: ||u|| = sqrt(x^2 + y^2) với u = (x, y)
R^3: ||u|| = sqrt(x^2+y^2+z^2) với u =(x, y, z)
(i) ||u||>= 0 and ||u|| = 0?
||u|| = sqrt(x^2 + y^2) >= 0
||u|| = 0 => sqrt(x^2 + y^2) = 0
X^2 +y^2 =0
X=0; y =0
u=(0,0)
(ii) ||au|| = |a|.||u||
||au|| = sqrt(a^2(x^2 + y^2))
=|a| sqrt(x^2 + y^2) = |a|.||u||
(iii) ||x+y|| <= ||x|| + ||y||
||u1 + u2|| <=||u1|| + ||u2||
||u1|| = sqrt(x1^2 + y1^2)
||u2|| = sqrt(x2^2 + y2^2)
||u1 + u2|| = sqrt((x1+x2)^2 +(y1 + y2)^2)
Prove that ||u1 + u2|| <= ||u1|| + ||u2||
sqrt((x1+x2)^2 +(y1 + y2)^2) <= sqrt(x1^2 + y1^2) +
sqrt(x2^2 + y2^2)
(x1 + x2)^2 + (y1 + y2)^2 <= x1^2 + y1^2 + x2^2 +
y2^2 + 2 sqrt((x1^2+y1^2)(x2^2 + y2^2))
(x1y2 – x2y1)^2 >=0
Thus the conclusion following
2. E, F: normed space. T is linear
||x||_1 = ||x||_E + 2||Tx||_F
Is ||.||_1 is a norm on E
(i) ||x||_1 = 0
||x||_E = 0
x = 0
||x||_1 >= 0
||x||_E + 2||Tx||_F >=0
(ii) ||ax||_1 = ||ax||_E + 2||aTx||_F
= |a|.||x||_E + 2|a|.||Tx||_F
=|a|.(||x||_E + 2||Tx||_F) = |a|.||x||_1
(iii) ||x+y||_1 <= ||x||_1 + ||y||_1
||x+y||_1 = ||x + y||_E + 2||T(x+y)||_F
||x||_1 = ||x||_E + 2||Tx||_F
||y||_1 = ||y||_E + 2||Ty||_F
||T(x+y)||_F = ||T(x)||_F + ||T(y)||_F
||x+y||_1 = ||x + y||_E + 2||T(x+y)||_F <= ||x||_E + 2||Tx||_F
+ ||y||_E + 2||Ty||_F = ||x||_1 + ||y||_1
Let X = R^3 be the vector space of all ordered pairs x =
(x1, x2, x3), y = (y1, y2, y3),… of real numbers. We
define ||x|| = |x_1| + |x_2| + |x_3| for any x in X. Prove that
(X,||.||) is a normed space
(i) We have: |x_1| + |x_2| + |x_3| >= 0
||x|| >= 0
||x|| = 0 => |x_1| + |x_2| + |x_3|=0
x_1 = x_2 = x_3 = 0
(ii) ||ax|| =|ax_1| + |ax_2| + |ax_3|
=|a|.|x_1| + |a|.|x_2| + |a|.|x_3|
= |a|.(|x_1| + |x_2| + |x_3|) = |a|.||x||
(iii) ||x+y|| <= ||x|| + ||y||
We have:
||x+y|| = |x_1 + y_1| + |x_2 + y_2| + |x_3 + y_3|
||x|| = |x_1| + |x_2| + |x_3|
||y|| = |y_1| + |y_2| + |y_3|
|x + y| <= |x| + |y|
||x+y|| = |x_1 + y_1| + |x_2 + y_2| + |x_3 + y_3|
<= |x_1| + |y_1| + |x_2| + |y_2|+ |x_3| + |y_3|
<= |x| +|y|
Let (X, ||.||) be a normed space. Prove | ||x|| - ||y|| | <= ||x-y||
for any x, y in X
For any x, y in X
We have: | ||x|| - ||y|| | = ||x|| - ||y|| or ||y|| - ||x||
||x|| - ||y|| <= ||x – y|| ( triangle inequality)
||y|| - ||x|| <= ||y – x|| = ||x – y||
So, | ||x|| - ||y|| | <= ||x-y||
0 = ||a_1x_1 + a_2x_2|| <= ||a_1x_1|| + ||a_2x_2||
= |a_1|.||x_1|| + |a_2|.||x_2||
= |a_1| + 2|a_2|
We have:
0 = ||a_1x_1 + a_2x_2|| >= | |a_1| - 2|a_2| |
|a_1| + 2|a_2| >= | |a_1| - 2|a_2| |
|a_1| + 2|a_2| >= |a_1| - 2|a_2|
or |a_1| + 2|a_2| >= -|a_1| + 2|a_2|
2|a_2| >= - 2|a_2|
or |a_1| >= -|a_1|
a_1 = 2 a_2
Linear
F(x) = tp (2t.x(t)) dt
F(ax+y) = tp(2t.(ax+y)(t))dt
= tp(2t.a.(x)(t) +2ty(t))dt
= a.tp(2tx(t))dt + tp(2ty(t))dt
= aF(x) + F(y)
F(x) = tp((5-7t)x(t))dt
F(ax + y) = tp((5-7t)(ax + y)(t))dt
= tp((5-7t)ax(t) + (5-7t)y(t))dt
= a.tp((5-7t)x(t))dt + tp((5-7t)y(t))dt
=aF(x) + F(y)
Let T: (R^2, ||.||_2) -> (R^2, ||.||_inf) be defined by
T(x,y) = (x+3y, 2x+5y)
Show that T is a linear operator
T(ax1 + x2, ay1 + y2)
= (ax1 + x2 + 3(ay1 + y2), 2(ax1 + x2) + 5(ay1 + y2))
= ((ax1 + 3ay1) + (x2 + 3y2), (2ax1 + 5ay1) + (2x2
+5y2))
(x+y, z+t) = (x, z) + (y,t)
= (ax1 + 3ay1, 2ax1 + 5ay1) + (x2 + 3y2, 2x2 +5y2)
= a(x1 + 3y1, 2x1 + 5y1) + (x2 + 3y2, 2x2 +5y2)
= aT(x1, y1) + T(x2, y2)
T is linear
.Linear
f(ax+y) = tp(2t (ax+y)t)dt
= tp(2tax(t) + 2ty(t))dt
= a.tp(2tx(t))dt + tp(2ty(t))dt
=a f(x) + f(y)
.Bounded
|f(x)| = ||tp(0->1) ( 2tx(t))dt||
<= tp(0->1) ||2tx(t)||dt
<= tp(0->1) |2t|dt max|x(t)|
<= t^2 (0->1) . max|x(t)|
<=1. Max|x(t)| = 1.||x(t)||
f is bounded by 1
.Linear
f(ax+y) = tp((5-7t)(ax+y)(t))dt
= tp(a(5-7t)x(t) + (5-7t)y(t)) dt
= a.tp((5-7t)x(t))dt + tp((5-7t)y(t))dt
=af(x) + f(y)
f(x) is linear
.Bounded
|f(x)| = ||tp(0->1) (5-7t)x(t) dt||
<= tp(0 ->1) ||(5-7t)x(t)||dt
<= tp(0 ->1) |5-7t|dt . max|x(t)|
<= (5t -7/2 t^2)(0->1) .max|x(t)|
<= 3/2 .max|x(t)| = 3/2||x(t)||
f(x) is bounded by 3/2
f(x) = a1x1 + a2x2 + a3x3
.Linear
f(ax+y) = <a, ax+y>
= <a, ax> + <a, y>
=a<a, x> + <a, y>
=af(x) + f(y)
f is linear
.Bounded
|f(x)| = |<a, x>| = |a1x1 + a2x2 + a3x3|
<= ||a||.||x||
f is bounded by a
Let T: (R^2, ||.||_2) -> (R^2, ||.||_inf) be defined by
T(x,y) = (x+3y, 2x+5y)
Show that T is a bounded linear operator
.Linear
T(ax1 + x2, ay1 + y2)
= (ax1 + x2 + 3(ay1 + y2), 2(ax1 + x2) + 5(ay1 + y2))
= ((ax1 + 3ay1) + (x2 + 3y2), (2ax1 + 5ay1) + (2x2
+5y2))
(x+y, z+t) = (x, z) + (y,t)
= (ax1 + 3ay1, 2ax1 + 5ay1) + (x2 + 3y2, 2x2 +5y2)
= a(x1 + 3y1, 2x1 + 5y1) + (x2 + 3y2, 2x2 +5y2)
= aT(x1, y1) + T(x2, y2)
T is linear
.Bounded
||T(x, y)||_inf = ||(x+3y, 2x+5y)||_inf
=max{|x+3y|, |2x+5y|}
<= max{|x| + 3|y|, 2|x| + 5|y|} = 2|x| + 5|y|
<= 2 sqrt(x^2 + y^2) + 5 sqrt(x^2 + y^2)
<= 7 sqrt(x^2 + y^2) = 7||(x,y)||_2
T is bounded
T: X -> Y be a bounded linear operator
||T|| != 0
For any x in X and ||x||_X < 1, we have:
||x||_X < 1
||T||.||x||_X < ||T||
||T||.||x||_X > ||T(x)||_X < ||T||
||T^(-1)(x)||_Y < ||T||
||T(x)||_Y < ||T||
Let T: [0,1] -> R be the functional defined T(f) = f(0) for
all f in C[0,1]
a. Prove that T is linear
Choose f(x) = ax+y, for all x,y in X and a in R
T(ax+y) = ax(0) + y(0) = a.0 + 0 = aT(x) +T(y)
T is linear
b. If C[0,1] is equipped with the sup-norm
||f||_inf = sup |f(x)|, x in [0,1]
(Chỉ chứng minh bounded )
|T(f)| = |f(0)| <= C||f|| = C.sup|f(x)|
Choose C =1
T is bounded by 1
T_b(f) = <f, b>, f in G*
. Linear
T_b(af+y) = <af+y, b>
= <af, b> + <y, b> = a<f, b> + <y, b>
= aT_b(f) + T_b(y)
T_b(f) is linear
. Bounded
Sup||T_b(f)|| = sup |<f,b>| < inf , b in B
Since f(B) is bounded
Exist c >0 such that
|<f, b>| = ||T_b(f)|| <= c.||f||, for all f in G*, b in B
||b|| = sup<f,b> <= sup c = c
B is bounded
Assume that d is a metric on X and satisfies d(x+z, y+z) =
d(x,y) for all x, y, z in X. Then ||x|| = d(x,0) defines a
norm on X. Moreover, we have ||x-y|| = d(x,y) for every
x,y in X
. ||x||=d(x,0) >= 0
x >= 0
||x-y|| = d(x-y,0) = 0 => x=y
.||ax|| = d(ax, a0) = |a|.d(x,0) = |a|.||x||
. ||x+y|| = d(x+y, 0) = d(x+y-y, 0-y) = d(x, -y)
<= d(x,0) + d(0,-y)
<= d(x,0) + d(y, y-y)
<= d(x,0) + d(y,0)
<=||x|| + ||y||
||x|| = d(x,0) is norm
||x-y|| = d(x-y,0) = d(x-y+y, y) = d(x,y) every x,y in x
Let ||.||_1 and ||.||_2 be norms on a vector space X. We
define ||x|| = max{||x||_1, ||x||_2} x in X. Prove that ||.|| is
also a norm on X.
.||x|| = max{||x||_1, ||x||_2} >=0
||x|| = 0
max{||x||_1, ||x||_2} = 0
||x||_1 = 0
x = 0
.||ax|| = max{||ax||_1, ||ax||_2} = max{|a|.||x||_1, |a|.||x||_2}
= |a|. max{||x||_1, ||x||_2} = |a|.||x||
.||x+y|| = max{||x+y||_1, ||x+y||_2}
Case 1:
||x+y|| = ||x+y||_1<=||x||_1 +||y||_1
<= max{||x||_1,||x||_2} + max{||y||_1,||y||_2}(1)
Case 2:
||x+y|| = ||x+y||_2 <=||x||_2 +||y||_2
<= max{||x||_1,||x||_2} + max{||y||_1,||y||_2}(2)
From (1) and (2):
||x+y||
<= max{||x||_1,||x||_2} + max{||y||_1,||y||_2} =||x||+||y||
||x|| = max{||x||_1, ||x||_2} is norm
| 1/18

Preview text:

Norm
Prove that ||.||_2 in R^2 is norm
R^2: ||u|| = sqrt(x^2 + y^2) với u = (x, y)
R^3: ||u|| = sqrt(x^2+y^2+z^2) với u =(x, y, z) (i) ||u||>= 0 and ||u|| = 0?
||u|| = sqrt(x^2 + y^2) >= 0
||u|| = 0 => sqrt(x^2 + y^2) = 0  X^2 +y^2 =0  X=0; y =0  u=(0,0) (ii) ||au|| = |a|.||u|| ||au|| = sqrt(a^2(x^2 + y^2))
=|a| sqrt(x^2 + y^2) = |a|.||u|| (iii) ||x+y|| <= ||x|| + ||y||
||u1 + u2|| <=||u1|| + ||u2|| ||u1|| = sqrt(x1^2 + y1^2) ||u2|| = sqrt(x2^2 + y2^2)
||u1 + u2|| = sqrt((x1+x2)^2 +(y1 + y2)^2)
Prove that ||u1 + u2|| <= ||u1|| + ||u2||
 sqrt((x1+x2)^2 +(y1 + y2)^2) <= sqrt(x1^2 + y1^2) + sqrt(x2^2 + y2^2)
 (x1 + x2)^2 + (y1 + y2)^2 <= x1^2 + y1^2 + x2^2 +
y2^2 + 2 sqrt((x1^2+y1^2)(x2^2 + y2^2))  (x1y2 – x2y1)^2 >=0 Thus the conclusion following
2. E, F: normed space. T is linear ||x||_1 = ||x||_E + 2||Tx||_F Is ||.||_1 is a norm on E (i) ||x||_1 = 0  ||x||_E = 0  x = 0 ||x||_1 >= 0 ||x||_E + 2||Tx||_F >=0 (ii)
||ax||_1 = ||ax||_E + 2||aTx||_F = |a|.||x||_E + 2|a|.||Tx||_F
=|a|.(||x||_E + 2||Tx||_F) = |a|.||x||_1 (iii)
||x+y||_1 <= ||x||_1 + ||y||_1
||x+y||_1 = ||x + y||_E + 2||T(x+y)||_F ||x||_1 = ||x||_E + 2||Tx||_F ||y||_1 = ||y||_E + 2||Ty||_F
||T(x+y)||_F = ||T(x)||_F + ||T(y)||_F
||x+y||_1 = ||x + y||_E + 2||T(x+y)||_F <= ||x||_E + 2||Tx||_F
+ ||y||_E + 2||Ty||_F = ||x||_1 + ||y||_1
Let X = R^3 be the vector space of all ordered pairs x =
(x1, x2, x3), y = (y1, y2, y3),… of real numbers. We
define ||x|| = |x_1| + |x_2| + |x_3| for any x in X. Prove that (X,||.||) is a normed space (i)
We have: |x_1| + |x_2| + |x_3| >= 0  ||x|| >= 0
||x|| = 0 => |x_1| + |x_2| + |x_3|=0  x_1 = x_2 = x_3 = 0 (ii)
||ax|| =|ax_1| + |ax_2| + |ax_3|
=|a|.|x_1| + |a|.|x_2| + |a|.|x_3|
= |a|.(|x_1| + |x_2| + |x_3|) = |a|.||x|| (iii) ||x+y|| <= ||x|| + ||y|| We have:
||x+y|| = |x_1 + y_1| + |x_2 + y_2| + |x_3 + y_3| ||x|| = |x_1| + |x_2| + |x_3| ||y|| = |y_1| + |y_2| + |y_3| |x + y| <= |x| + |y|
||x+y|| = |x_1 + y_1| + |x_2 + y_2| + |x_3 + y_3|
<= |x_1| + |y_1| + |x_2| + |y_2|+ |x_3| + |y_3| <= |x| +|y|
Let (X, ||.||) be a normed space. Prove | ||x|| - ||y|| | <= ||x-y|| for any x, y in X For any x, y in X
We have: | ||x|| - ||y|| | = ||x|| - ||y|| or ||y|| - ||x||
||x|| - ||y|| <= ||x – y|| ( triangle inequality)
||y|| - ||x|| <= ||y – x|| = ||x – y||
So, | ||x|| - ||y|| | <= ||x-y||
0 = ||a_1x_1 + a_2x_2|| <= ||a_1x_1|| + ||a_2x_2||
= |a_1|.||x_1|| + |a_2|.||x_2|| = |a_1| + 2|a_2| We have:
0 = ||a_1x_1 + a_2x_2|| >= | |a_1| - 2|a_2| |
 |a_1| + 2|a_2| >= | |a_1| - 2|a_2| |
 |a_1| + 2|a_2| >= |a_1| - 2|a_2|
or |a_1| + 2|a_2| >= -|a_1| + 2|a_2|  2|a_2| >= - 2|a_2| or |a_1| >= -|a_1|  a_1 = 2 a_2 Linear F(x) = tp (2t.x(t)) dt F(ax+y) = tp(2t.(ax+y)(t))dt = tp(2t.a.(x)(t) +2ty(t))dt
= a.tp(2tx(t))dt + tp(2ty(t))dt = aF(x) + F(y) F(x) = tp((5-7t)x(t))dt
F(ax + y) = tp((5-7t)(ax + y)(t))dt
= tp((5-7t)ax(t) + (5-7t)y(t))dt
= a.tp((5-7t)x(t))dt + tp((5-7t)y(t))dt =aF(x) + F(y)
Let T: (R^2, ||.||_2) -> (R^2, ||.||_inf) be defined by T(x,y) = (x+3y, 2x+5y)
Show that T is a linear operator T(ax1 + x2, ay1 + y2)
= (ax1 + x2 + 3(ay1 + y2), 2(ax1 + x2) + 5(ay1 + y2))
= ((ax1 + 3ay1) + (x2 + 3y2), (2ax1 + 5ay1) + (2x2 +5y2)) (x+y, z+t) = (x, z) + (y,t)
= (ax1 + 3ay1, 2ax1 + 5ay1) + (x2 + 3y2, 2x2 +5y2)
= a(x1 + 3y1, 2x1 + 5y1) + (x2 + 3y2, 2x2 +5y2) = aT(x1, y1) + T(x2, y2)  T is linear .Linear f(ax+y) = tp(2t (ax+y)t)dt = tp(2tax(t) + 2ty(t))dt
= a.tp(2tx(t))dt + tp(2ty(t))dt =a f(x) + f(y) .Bounded
|f(x)| = ||tp(0->1) ( 2tx(t))dt|| <= tp(0->1) ||2tx(t)||dt
<= tp(0->1) |2t|dt max|x(t)|
<= t^2 (0->1) . max|x(t)| <=1. Max|x(t)| = 1.||x(t)||  f is bounded by 1 .Linear
f(ax+y) = tp((5-7t)(ax+y)(t))dt
= tp(a(5-7t)x(t) + (5-7t)y(t)) dt
= a.tp((5-7t)x(t))dt + tp((5-7t)y(t))dt =af(x) + f(y)  f(x) is linear .Bounded
|f(x)| = ||tp(0->1) (5-7t)x(t) dt||
<= tp(0 ->1) ||(5-7t)x(t)||dt
<= tp(0 ->1) |5-7t|dt . max|x(t)|
<= (5t -7/2 t^2)(0->1) .max|x(t)|
<= 3/2 .max|x(t)| = 3/2||x(t)||  f(x) is bounded by 3/2 f(x) = a1x1 + a2x2 + a3x3 .Linear f(ax+y) = = + =a + =af(x) + f(y)  f is linear .Bounded
|f(x)| = || = |a1x1 + a2x2 + a3x3| <= ||a||.||x||  f is bounded by a
Let T: (R^2, ||.||_2) -> (R^2, ||.||_inf) be defined by T(x,y) = (x+3y, 2x+5y)
Show that T is a bounded linear operator .Linear T(ax1 + x2, ay1 + y2)
= (ax1 + x2 + 3(ay1 + y2), 2(ax1 + x2) + 5(ay1 + y2))
= ((ax1 + 3ay1) + (x2 + 3y2), (2ax1 + 5ay1) + (2x2 +5y2)) (x+y, z+t) = (x, z) + (y,t)
= (ax1 + 3ay1, 2ax1 + 5ay1) + (x2 + 3y2, 2x2 +5y2)
= a(x1 + 3y1, 2x1 + 5y1) + (x2 + 3y2, 2x2 +5y2) = aT(x1, y1) + T(x2, y2)  T is linear .Bounded
||T(x, y)||_inf = ||(x+3y, 2x+5y)||_inf =max{|x+3y|, |2x+5y|}
<= max{|x| + 3|y|, 2|x| + 5|y|} = 2|x| + 5|y|
<= 2 sqrt(x^2 + y^2) + 5 sqrt(x^2 + y^2)
<= 7 sqrt(x^2 + y^2) = 7||(x,y)||_2  T is bounded
T: X -> Y be a bounded linear operator ||T|| != 0
For any x in X and ||x||_X < 1, we have: ||x||_X < 1 ||T||.||x||_X < ||T||
||T||.||x||_X > ||T(x)||_X < ||T||  ||T^(-1)(x)||_Y < ||T||  ||T(x)||_Y < ||T||
Let T: [0,1] -> R be the functional defined T(f) = f(0) for all f in C[0,1] a. Prove that T is linear
Choose f(x) = ax+y, for all x,y in X and a in R
T(ax+y) = ax(0) + y(0) = a.0 + 0 = aT(x) +T(y)  T is linear
b. If C[0,1] is equipped with the sup-norm
||f||_inf = sup |f(x)|, x in [0,1] (Chỉ chứng minh bounded )
|T(f)| = |f(0)| <= C||f|| = C.sup|f(x)| Choose C =1  T is bounded by 1 T_b(f) = , f in G* . Linear T_b(af+y) = = + = a + = aT_b(f) + T_b(y)  T_b(f) is linear . Bounded
Sup||T_b(f)|| = sup || < inf , b in B Since f(B) is bounded  Exist c >0 such that
|| = ||T_b(f)|| <= c.||f||, for all f in G*, b in B
 ||b|| = sup <= sup c = c  B is bounded
Assume that d is a metric on X and satisfies d(x+z, y+z) =
d(x,y) for all x, y, z in X. Then ||x|| = d(x,0) defines a
norm on X. Moreover, we have ||x-y|| = d(x,y) for every x,y in X . ||x||=d(x,0) >= 0  x >= 0
||x-y|| = d(x-y,0) = 0 => x=y
.||ax|| = d(ax, a0) = |a|.d(x,0) = |a|.||x||
. ||x+y|| = d(x+y, 0) = d(x+y-y, 0-y) = d(x, -y) <= d(x,0) + d(0,-y) <= d(x,0) + d(y, y-y) <= d(x,0) + d(y,0) <=||x|| + ||y||  ||x|| = d(x,0) is norm
||x-y|| = d(x-y,0) = d(x-y+y, y) = d(x,y) every x,y in x
Let ||.||_1 and ||.||_2 be norms on a vector space X. We
define ||x|| = max{||x||_1, ||x||_2} x in X. Prove that ||.|| is also a norm on X.
.||x|| = max{||x||_1, ||x||_2} >=0 ||x|| = 0  max{||x||_1, ||x||_2} = 0  ||x||_1 = 0  x = 0
.||ax|| = max{||ax||_1, ||ax||_2} = max{|a|.||x||_1, |a|.||x||_2}
= |a|. max{||x||_1, ||x||_2} = |a|.||x||
.||x+y|| = max{||x+y||_1, ||x+y||_2} Case 1:
||x+y|| = ||x+y||_1<=||x||_1 +||y||_1
<= max{||x||_1,||x||_2} + max{||y||_1,||y||_2}(1) Case 2:
||x+y|| = ||x+y||_2 <=||x||_2 +||y||_2
<= max{||x||_1,||x||_2} + max{||y||_1,||y||_2}(2) From (1) and (2): ||x+y||
<= max{||x||_1,||x||_2} + max{||y||_1,||y||_2} =||x||+||y||
 ||x|| = max{||x||_1, ||x||_2} is norm