Lecture 6-Acid-Base Titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Lecture 6-Acid-Base Titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Thông tin:
33 trang 7 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Lecture 6-Acid-Base Titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM

Lecture 6-Acid-Base Titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

38 19 lượt tải Tải xuống
Lecture 6
Acid-Base*Titrations
Instructor:-Nguyen-Thao Trang
Analytical Chemistry 1
Acid-base*titration
Write*balanced*chemical*equation*between*titrant*and*
analyte.
Calculate*composition*and*pH*after*each*addition*of*titrant.
Construct*a*graph*of*pH*versus*titrant*added.
2
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:
H
+
+**OH
-
**H
2
O
The equilibrium constant: K = 1/K
w
= 1/10 10
-14
=
14
Reaction goes to completion
At equivalence point (end point):
moles*of*titrant*=*moles*of*analyte
(V*titrant)(M*titrant)*=*(V*analyte)(M* analyte)
3
Volume,*L
Molar*concentration,**M*or*mol/L
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid
3 regions of titration curve exists:
Before the equivalence point: pH is determined by excess OH
-
in the
solution.
At the equivalence point: pH is determined by dissociation of water
(H
+
OH
-
).
After the equivalence point: pH is determined by excess H
+
in the
solution.
4
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
First*calculate*the*volume*of*HCl needed*to*reach*the*
equivalence*point
(V*titrant)(M* titrant)*=*(V*analyte)(M* analyte)
(V*
HCl
)(C*
HCl
)*=*(V*
NaOH
)(C*
NaOH
)*
(V*
HCl
)(0.100*M)*=*(50.00*mL)(0.100*M)
à Volume*HCl =*50.00*mL
5
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
Before*the*equivalence*point
Initial amount of analyte (NaOH) = 50.00 mL x 0.100 M = 5.00 mmol
After adding 1.00 mL of HCl:
mmol H
+
added = mmol OH
-
consumed
mmol H
+
= (1.00 mL)(0.100 M) = 0.100 mmol
à
mmol OH
-
remaining = 5.00 0. = 4.100 90 mmol
Total volume = 50.00 mL + 1.00 mL = 51.00 mL
[OH
-
] = 4.90 mmol/ .51 00 mL = 0. M0961
pOH = - log(0.0961) = 1.017 à pH = 14.000 - 1.017 = 12.983
6
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
Before*the*equivalence*point
Repeat calculations for all volumes added.
Increments can be large initially but must be reduced just before and
just after the equivalence point (around 50.00 mL in this case).
Sudden change in pH occurs near the equivalence point.
Greatest slope at the equivalence point.
7
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
At*the*equivalence*point
pH is determined by the dissociation of water:
H
2
O**↔**H
+
+**OH
-
x**********x
K
w
=*x
2
=*1.0*x*10
-14
à
x*=*1.0*x*10
-7
pH*=*7.00**(at*25*
o
C)
8
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
After*the*equivalence*point
Excess H
+
is present: After adding 51.00 mL of HCl
Excess HCl present = 51.00 00 50. = 1.00 mL
Excess H
+
= (1.00 mL)(0.100 M) = 0.100 mmol
Total volume of solution = +50.00 51.00 = 101.00 mL
[H
+
] = 0.100 mmol/ .101 00 mL = 9.90 x 10
-4
M
pH = -log(9.90 x 10
-4
) = 3.004
9
Titration*of*strong*base*with*strong*acid*
Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
10
pH
Volume*of*HCl*added*(mL)
7
50.00
Equivalence*point
(maximum*slope*or*point*of*inflection)
Titration*curve
𝑑
"
𝑝𝐻
𝑑𝑉
"
=0
Excess*OH Excess*H
- +
Titration*of*strong*acid*with*strong*base*
Consider*titration*of*a*strong*acid*with*a*strong*base:*50.00*
mL*of*0.100*M*HCl with*0.100*M*NaOH
11
Titration*curve
𝑑
"
𝑝𝐻
𝑑𝑉
"
=0
Excess*H Excess*OH
+ -
pH
Volume*of*NaOH*added*(mL)
7
50.00
Equivalence*point
(maximum*slope*or*point*
of*inflection)
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
Equilibrium*constant*=*1/K
b
=*1/*(K
w
/K
a
)*=*1.7*x*10
9*
à so*large,*can*
assume*the*reaction* goes*to*completion.
Determine* volume*of*the*base*at*equivalence* point:*
mmol
HC
2
H
3
O
2
*mmol OH
-
(V*NaOH)(0.100*M)*=*(50.00*mL)(0.0100*M)
à Volume*NaOH =*5.00*mL
12
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
Before*adding*the*base
pH is determined by equilibrium of weak acid:
HA***
↔***H
+
+*A
-
13
x]-[F
][x
K
2
a
=
x*=*4.1*x*10
-4
pH*=*3.39
x]-[0.0100
]
[x
2
=
F - x x x
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
Before*the*equivalence*point:
By adding OH
-
a buffer solution of HA and A :
-
is formed
After adding 0.100 mL OH
-
:
HA
+ OH
-
A
-
+ H O
2
14
Initial**mmol 0.500*********0.0100*****************0
Final***mmol 0.490* 0 0.0100
+=
[HA]
][A
logpKpH
-
a
07.3
[0.490]
[0.0100]
log4.76pH =
+=
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
Before*the*equivalence*point:
By adding OH
-
a buffer solution of HA and A :
-
is formed
After adding 2.50 mL OH
-
(haft of the volume at equivalence point)
HA
+ OH
-
A
-
+ H O
2
15
Initial**mmol 0.500*********0.250*****************0
Final***mmol 0.250* 0 0.250
+=
[HA]
][A
logpKpH
-
a
[0.250]
pH 4.76 log 4.76
[0.250]
= + =
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
At*the*equivalence*point:
Volume of OH
-
= 5.00 mL
mmol OH
-
= (5.00 mL)(0.100 M) = 0.500 mmol
HA is used up and [HA] = 0
Only A
-
is present in solution à mmol A
-
= 0.500 mmol
[A
-
] = (0.500 mmol)/(50.00 mL + 5.00 mL) = 0.00909 M (= F)
16
A
-
+ H
2
O HA + OH
-
F - x x x
2
b
[x ]
K
[F - x]
w
a
K
K
= =
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
At*the*equivalence*point:
Volume of OH
-
= 5.00 mL
x = [OH
-
] = 2.3 x 10
-6
pOH = 5.64 à pH = 14.00 5.64 = 8.36
pH is greater than 7.00
pH at equivalence point increases with decreasing strength of acid
17
2
10
b
[x ]
K 5.8 10
[F - x]
w
a
K
K
= = = ×
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
HC
2
H O
3 2
+*OH
-
*C
2
H
3 2
O
-
+*H O
2
After*the*equivalence*point:
pH is determined by the excess [OH
-
] (approximation)
After adding 5.10 mL OH
-
[OH
-
] = (0.10 mL)(0.100 M)/(50.00 mL + 5.10 mL) = 1.81 x 10
-4
pH = 14.00 00 =pOH 14. 3.74 = 10.26
18
Weak*acid-strong*base
Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M*
NaOH
19
pH
Volume*of*NaOH*added*(mL)
8.36
5.00
Equivalence*point
(maximum*slope*or*point*
of*inflection)
pH*=*pK
a
Minimum*slope
pK
a
2.50
Buffer*region
Excess*OH
-
Strong*acid-weak*base
The*reverse*of*weak*acid*and*strong*base:
B**
+**H
+
→**BH
+*
Similarly*assume*reaction*goes*to*completion
Consider*50.00*mL*of*0.0100*M*pyridine*with*0.100*M*HCl(K
b
of*pyridine*=*1.6*x*
10
-9*
)
Determine volume of acid at equivalence point:
mmol mmolpyridine H
+
(V HCl)(0.100 M) = (50.00 mL)(0.010 M)
à Volume HCl = 5.00 mL
20
| 1/33

Preview text:

Analytical Chemistry 1 Lecture 6 Acid-Base*Titrations
Instructor:-Nguyen-Thao Trang Acid-base*titration
• Write*balanced*chemical*equation*between*titrant*and* analyte.
• Calculate*composition*and*pH*after*each*addition*of*titrant.
• Construct*a*graph*of*pH*versus*titrant*added. 2
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid: H+ +**OH- →**H2O
– The equilibrium constant: K = 1/K -14 14 w = 1/10 = 10
– Reaction goes to completion
– At equivalence point (end point):
moles*of*titrant*=*moles*of*analyte
(V*titrant)(M* titrant)*=*(V*analyte)(M* analyte) Volume,*L
Molar*concentration,**M*or*mol/L 3
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid
3 regions of titration curve exists:
– Before the equivalence point: pH is determined by excess OH- in the solution.
– At the equivalence point: pH is determined by dissociation of water (H+ ≈ OH-).
– After the equivalence point: pH is determined by excess H+ in the solution. 4
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl
First*calculate*the*volume*of*HCl needed*to*reach*the* equivalence*point
(V*titrant)(M* titrant)*=*(V*analyte)(M* analyte)
(V*HCl)(C*HCl)*=*(V*NaOH)(C*NaOH)*
(V*HCl)(0.100*M)*=*(50.00*mL)(0.100*M) à Volume*HCl =*50.00*mL 5
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl Before*the*equivalence*point
– Initial amount of analyte (NaOH) = 50.00 mL x 0.100 M = 5.00 mmol
– After adding 1.00 mL of HCl:
• mmol H+ added = mmol OH- consumed
• mmol H+ = (1.00 mL)(0.100 M) = 0.100 mmol
àmmol OH- remaining = 5.00 – 0.100 = 4.90 mmol
• Total volume = 50.00 mL + 1.00 mL = 51.00 mL
• [OH-] = 4.90 mmol/51.00 mL = 0.0961 M
• pOH = - log(0.0961) = 1.017 à pH = 14.000 - 1.017 = 12.983 6
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl Before*the*equivalence*point
– Repeat calculations for all volumes added.
– Increments can be large initially but must be reduced just before and
just after the equivalence point (around 50.00 mL in this case).
– Sudden change in pH occurs near the equivalence point.
– Greatest slope at the equivalence point. 7
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl At*the*equivalence*point
– pH is determined by the dissociation of water: H2O**↔**H+ +**OH- x**********x Kw =*x2 =*1.0*x*10-14 à x*=*1.0*x*10-7 pH*=*7.00**(at*25*oC) 8
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl After*the*equivalence*point
– Excess H+ is present: After adding 51.00 mL of HCl
• Excess HCl present = 51.00 – 50.00 = 1.00 mL
• Excess H+ = (1.00 mL)(0.100 M) = 0.100 mmol
• Total volume of solution = 50.00 + 51.00 = 101.00 mL
• [H+] = 0.100 mmol/101.00 mL = 9.90 x 10-4 M
• pH = -log(9.90 x 10-4) = 3.004 9
Titration*of*strong*base*with*strong*acid*
• Consider*titration*of*a*strong*base*with*a*strong*acid:*50.00*
mL*of*0.100*M*NaOH with*0.100*M*HCl Titration*curve Excess*OH- Excess*H+ H Equivalence*point p
(maximum*slope*or*point*of*inflection) 7 𝑑"𝑝𝐻 =0 𝑑𝑉" 50.00
Volume*of*HCl*added*(mL) 10
Titration*of*strong*acid*with*strong*base*
• Consider*titration*of*a*strong*acid*with*a*strong*base:*50.00*
mL*of*0.100*M*HCl with*0.100*M*NaOH Titration*curve Excess*H+ Excess*OH- H p 𝑑"𝑝𝐻 =0 𝑑𝑉" 7 Equivalence*point (maximum*slope*or*point* of*inflection) 50.00
Volume*of*NaOH*added*(mL) 11 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2
Equilibrium*constant*=*1/Kb =*1/*(Kw/Ka)*=*1.7*x*109* à so*large,*can*
assume* the*reaction* goes*to*completion.
Determine* volume*of*the*base*at*equivalence* point:* mmol HC2H3O2 ≈*mmol OH-
(V*NaOH)(0.100*M)*=*(50.00*mL)(0.0100*M) à Volume*NaOH =*5.00*mL 12 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2 Before*adding*the*base
– pH is determined by equilibrium of weak acid: HA***↔***H+ +*A- F - x x x [x2 ] [x2 ] K = = a [F - x] [0.0100 - x] x*=*4.1*x*10-4 pH*=*3.39 13 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2 Before*the*equivalence*point:
– By adding OH- a buffer solution of HA and A- is forme : d • After adding 0.100 mL OH-: HA + OH- → A- + H O 2 Initial**mmol
0.500* *******0.0100*** ****** ******0 Final***mmol 0.490* 0 0.0100 ⎛[A- ] ⎞ pH = pK + a lo ⎜ ⎜ g ⎝ [HA] ⎠ [ ⎛0.0100] ⎞ pH = 4.76 +log = 0 . 3 7 [ ⎜ ⎜ ⎝ 0.490] ⎟ ⎟ ⎠ 14 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2 Before*the*equivalence*point:
– By adding OH- a buffer solution of HA and A- is forme : d
• After adding 2.50 mL OH- (haft of the volume at equivalence point) HA + OH- → A- + H O 2 Initial**mmol
0.500* *******0.250**** ******* ****0 Final***mmol 0.250* 0 0.250 ⎛[A- ] ⎞ pH = pK + a lo ⎜ ⎜ g ⎝ [HA] ⎠ [ ⎛0.250] ⎞ pH = 4.76 lo + g = 4.76 [ ⎜0.250] ⎟ ⎝ ⎠ 15 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2 At*the*equivalence*point: – Volume of OH- = 5.00 mL
• mmol OH- = (5.00 mL)(0.100 M) = 0.500 mmol • HA is used up and [HA] = 0
• Only A- is present in solution à mmol A- = 0.500 mmol
• [A-] = (0.500 mmol)/(50.00 mL + 5.00 mL) = 0.00909 M (= F) A- + H2O ↔ HA + OH- F - x x x 2 [x ] K K w = = b 16 [F - x] Ka Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2 At*the*equivalence*point: – Volume of OH- = 5.00 mL 2 [x ] Kw 1 − 0 K = = =5.8 1 × 0 b [F - x] Ka • x = [OH-] = 2.3 x 10-6
• pOH = 5.64 à pH = 14.00 – 5.64 = 8.36 • pH is greater than 7.00
• pH at equivalence point increases with decreasing strength of acid 17 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH HC2H O 3 2 +*OH- →*C2H3O - 2 +*H O 2 After*the*equivalence*point:
– pH is determined by the excess [OH-] (approximation) • After adding 5.10 mL OH-
• [OH-] = (0.10 mL)(0.100 M)/(50.00 mL + 5.10 mL) = 1.81 x 10-4
• pH = 14.00 – pOH = 14.00 – 3.74 = 10.26 18 Weak*acid-strong*base
• Consider*50.00*mL*of*0.0100*M*acetic*acid*with*0.100*M* NaOH Buffer*region Excess*OH- Minimum*slope H p 8.36 pH*=*pKa Equivalence*point (maximum*slope*or*point* pKa of*inflection) 2.50 5.00
Volume*of*NaOH*added*(mL) 19 Strong*acid-weak*base
• The*reverse*of*weak*acid*and*strong*base: B**+**H+ →**BH+*
• Similarly*assume*reaction*goes*to*completion
• Consider*50.00*mL*of*0.0100*M*pyridine*with*0.100*M*HCl(Kb of*pyridine*=*1.6*x*10-9*)
– Determine volume of acid at equivalence point: • mmol pyridine ≈ mmol H+
• (V HCl)(0.100 M) = (50.00 mL)(0.010 M) à Volume HCl = 5.00 mL 20