Lecture'8
Complexation'reactions'and'titration
Instructor:*Nguyen*ThaoTrang
Analytical Chemistry 1
Outlines
Complex formation
Organic complexing agents
Ethylenediaminetetraacetic acid (EDTA) titration
2
Complex)formation
Many metalcations(Lewis acid) formcomplexesin
solutionwithsubstances,calledligands,containinga
pairofunsharedelectrons(Lewisbase).
A ligand is a molecule (or ion) which possesses at
least one position atwhichitcan attachitselftoa
metalion.
3
ph c ch t trong dung d ch
sở h u
Complex)formation
Monodentate ( )unidentate : ligand binds to a metal
ionthroughonly oneatom(onetoothedligand).
Ex. CN
-
isa monodentateasitbindsto themetal
throughonlytheC atom.
4
Complex)formation
Multidentate: ligandattachestoa metalionthrough
morethanoneligandatom(manytoothedligandor
chelatingligand)
Ex. Ethylenediamine is a bidentateasit bindsto
themetalthroughtwoN atoms.
5
Complexation)equilibria
Complexationreactions)involve)a)metal-ion)M)
reacting)with)a)ligand)L)to)form)a)complex)ML:
M'+'L'
ML
AddingmoreL:
ML)+)L) ML
2
,)K
1*
=[ML
2
]/[ML][L];
ML
2
+)L) ML
3
,)K
2*
=[ML
3
]/[ ][ML ];L
2
...
ML
n-1
+)L) ML
n
,)K
n
=[ML
n
]/[ ][MLL
n-1
];
6
Complexation)equilibria
The)equilibria)can)be)expressed)as)sum)of)individual)
steps:)
M)+)L) ML,)β
1*
=[ML]/([M][L])=*K
1
M)
+)2L) ML
2
,)β
2*
=[ML
2
]/([M][L]
2
)=*K
1
K
2
...
M)
+)nL) ML
n
,
n
=[ML
n
]/([M][L]
n
)=K K
1 2*
...K
n
inwhichβ
n
istheoverallformationconstant
7
Complexation)equilibria
Fraction'of'each'species:
TotalconcentrationofthemetalM:
C
M
= +[M]+ [ML] [ML
2
]+ [ML
3
]+...+ [ML
n
]
=
[M]+β
1
[M][L]+β
2
[M][L]
2
3
[M][L]
3
+...β
n
[M][L]
n
àFractionofeachspecies:
𝛼
"
=
M
C
"
=
[M]
[M])+)β
1
*
[M][L])+)β
2
*
[M][L]2)+)β [M][L]3)+...)βn
3
* *
[M]
=
1
1)+)β
1
*
[L])+)β [L]2)+)β [L]3)+...)
2
*
3
*
Β
n
*
[L]
n
8
Complexation)equilibria
Fraction)of)each)species:
TotalconcentrationofthemetalM:
C
M
= +[M]+ [ML] [ML
2
]+ [ML
3
]+...+ [ML
n
]
=
[M]+β
1
[M][L]+β
2
[M][L]
2
3
[M][L]
3
+...β
n
[M][L]
n
àFractionofeachspecies:
𝛼
"*
=
ML
C
"
=
β
1
*
[M][L]
[M])+)β
1
*
[M][L])+)β
2
*
[M][L]2)+)β [M][L]3)+...)βn
3
* *
[M]
=
β
1
*
[L]
1)+)β
1
*
[L])+)β [L]2)+)β [L]3)+...)
2
*
3
*
Β
n
*
[L]
n
9
Organic complexing agents
Manyorganicreagentsareusefulinconvertingmetalionsinto
theformthatcanbeextractedfromwaterintoanimmiscible
organicphase.
Many organic complexing reagents are widely used in
spectrophotometricdetermination ofmetalionsduetothe
formationofcoloredorUVabsorbedmetal-ligandcomplexes.
10
EDTA,)a)common)multidentateligand
Ethylenediaminetetraaceticacid)(EDTA))is)an)aminocarboxylic
acid.
EDTA)has)6)binding)sites)(4)carboxylate)groups)and)2)amino)
groups),)providing)6)pairs)of)electrons)à EDTA)forms)a)cage-
like)structure)around)the)metal)ion)in)metal–ligand)complex:
11
EDTA,)a)common)multidentateligand
Acid-base)properties:)hexaproticacid,)designated)H
6
Y
2+
.
Neutral)acid)is)tetraprotic,)with)the)formula)H
4
Y.
12
EDTA,)a)common)multidentateligand
Fraction)of)EDTA:
13
Complexes)of)EDTA)and)Metal)ions
EDTA)complex:)Y
4-
forms)a)complex)with)a)metal)ion)M
n+
:
K
f
is)defined)as)a)formation*constant*or)stability)constant
At)any)pH:)the)analytical)concentration)of)EDTA)is)given)by:
14
Complexes)of)EDTA)and)Metal)ions
Conditional formation constant or effective formation
constant:
This conditional formation constant can be applied for a
complex formation between a metal ion and all forms of
uncomplexedEDTA:
à Thebasicequationincomplexometrictitration
If𝐾
.
is large,wecanconsiderthereactiontobecompleteat
eachpointinthetitration.
15
Complexes)of)EDTA)and)Metal)ions
Computing
0
12
:
3
12
=
𝐾
4
𝐾
5
𝐾
6
𝐾
7
[𝐻 ] +;𝐾
9 7
4
[𝐻
9
]
6
+;𝐾
4
𝐾
5
[𝐻
9
]
5
+𝐾
4
𝐾
5
𝐾
6
[𝐻
9
]+ 𝐾
4
𝐾
5
𝐾
6
𝐾
7
whereK K
1
,K ,K
2 3
and
4
arethe4 dissociationconstantsforH Y.
4
16
17
Complexes)of)EDTA)and)Metal)ions
18
Complexes)of)EDTA)and)Metal)ions
Complexometrictitration)with)EDTA
Complexometrictitration:)Plot)of)pM(=)-log[M
n+
])
19
Complexometrictitration)with)EDTA
Complexometrictitration:)Plot)of)pM(=)-log[M
n+
])
Before the equivalence point:
-
Excess M
n+
in solution
-
Dissociation of the MY
n-4
complex is negligible
à
[M
n+
]
free
= [M
n+
]
excess
20
Complexometrictitration)with)EDTA
Complexometrictitration:)Plot)of)pM(=)-log[M
n+
])
At the equivalence point:
-
No free M
n+
in solution
-
Dissociation of the MY
n-4
complex:
à
[M
n+
]
free
= [EDTA]
free
After the equivalence point:
- Free EDTA in solution
21
Complexometrictitration)with)EDTA
Ex.'Titration'of'50.00'mL'of'Ca
2+'
0.0400'M'with'EDTA'solution'
of'0.0800'M'(buffered'to'pH'10.0)
Ca
2+
+)EDTA)à CaY
2-
𝐾
.
=𝛼
0
7
<
.K
?
=)(0.30 10 1.34)x)10)(
10.65
)=
10)
à large!
V
e
=)(50.00)mL)(0.0400)M)/(0.0800)M))=)25.00)mL
Before&the&equivalence&point:&V
EDTA
=&5.00&mL
nEDTA)
added
=)nCa
2+)
reacted)
=)(5.00)mL)(0.0800)M))=)0.400)mmol
nCa
2+)
excess)
=)nCa
2+)
initial)
- nCa
2+)
reacted)
=)(50.00)mL)(0.0400)M))- 0.400)=)1.60)
mmol
à
[Ca
2+)
excess
])=)(1.60)mmol)/(50.00)+)5.00)mL))=)0.0291)M
à
pCa
2+)
=)1.54
22
Complexometrictitration)with)EDTA
Ex.'Titration'of'50.00'mL'of'Ca
2+'
0.0400'M'with'EDTA'solution'
of'0.0800'M'(buffered'to'pH'10.0)
Ca
2+
+)EDTA)à CaY
2-
At&the&equivalence&point:&V
EDTA
=&25.00&mL
nCaY
2-
produced
=)2.00)mmol
[CaY
2-
]
produced
=)2.00)mmol/(50.00)+)25.00))=)0.0267
CaY Ca
2-
2+
+)EDTA
(0.0267 x) x x
1/𝐾
.
=)[Ca
2+
][EDTA])/)[CaY
2-
]
x /
2
(0.0267 x) = 1/1.34.10
10
à x = 1.4x10
-6
M
à
pCa
2+)
=)5.85
23
Complexometrictitration)with)EDTA
Ex.'Titration'of'50.00'mL'of'Ca
2+'
0.0400'M'with'EDTA'solution'
of'0.0800'M'(buffered'to'pH'10.0)
Ca
2+
+)EDTA)à CaY
2-
After&the&equivalence&point:&V
EDTA
=&26.00&mL
nEDTA
excess)
=)(26.00-25.00)(0.0800)M)=)0.0800)mmol
[EDTA]
excess)
=)0.0800)mmol/(50.00)+)26.00)mL))=)1.05)x)10
-3
M
[CaY
2-
]
produced
=)2.00)mmol/(50.00)+)26.00 2.63)))=) x)10
-2
M
𝐾
.
=)[CaY
2-
]/[Ca
2+
][EDTA])=1.34 x 10
10
à
[Ca
2+)
])=)1.9)x 10
-9
M
à
pCa
2+)
=)8.73
24
Complexometric titration curve
25
The greater the K
f
’,
the more distinct the
end point!
Indicators)in)complexometrictitration
Metalindicators: arecompoundsthatchange colorwhenthey
bindtoa metalion.
Useful indicators must bind metal less strongly than EDTA
does.
26
Indicators)in)complexometrictitration
Example:)reaction)of)Mg
2+
with)EDTA)at)pH)10)with)Calmagite
indicator.
Any)excess)EDTA)from)titration)will)form)complex)with)a)metal)
that)binds)to)the)indicator,)and)thus,)releasing)free)indicator)
à identify)the)endpoint.
27
Complexometrictitration)with)EDTA
Application: Using complexometric titration with EDTA to
determine
theconcentrationofCa
2+
andMg
2+
presentintap
water.
A watersupplyisconsideredhardwhentheamountofCa
+2
,
Mg
+2
, and/orFe
+3
ionsbecomestoohighforitsintendeduse.
Softwaterdoesnotcontainanysignificantamountsofthese
ions.
Itisnot necessaryto measureeach ioncontributingtothe
water hardness separately. Instead, all hard water ions are
determined collectively and reported as an "apparent
hardness"assumingthatallofthehardnessisderivedfrom
CaCO
3
.
28
Complexometrictitration)with)EDTA
Procedure:
A)1:1)complex)between)EDTA)and)Mg
2+
/Ca
2+
(called)M
n+
))is)formed)
when))EDTA)is)added)to)a)solution)of)Mg
2+
and)Ca
2+)
:
The)indicator)used:)EriochromeBlack)T)(EBT))has)3)ionizableprotons)
H
3
In)and)a)complex)between)EBT)and)Mg
2+
/Ca
2+
has)a)smaller)𝐾
.
At)pH)~)10,)free)EBT)(HIn
2-
))has)a)blue)color)and)complexedEBT)is)wine)
red
29
Complexometrictitration)with)EDTA
Procedure:
At)pH)10,)before)the)equivalent)point:)M
n+
is)in)excess:
A)complex)is)formed)between M
n+
and)EDTA.
A)complex)is)formed)between)M
n+
and)EBT.)
Free)M
n+
à Solution)has)a)color)of)the)complexedEBT:)red
At)the)equivalent)point:)all)M
n+)
complexedwith)EDTA)and)EBT.
After)the)equivalent)point:)EDTA)is)in)excess,)no)free)M
n+
.
EDTA)competes)with)EBT)for)M
n+
.
𝐾
.
(EDTA-M
n+)
))>)𝐾
.
()EBT-M
n+
))à EBT)will)be)released)from)the)
complex.
Solution)has)a)color)of)the)free)EBT:)blue
Transition)color:)red)to)light)blue)
30

Preview text:

Analytical Chemistry 1 Lecture'8
Complexation'reactions'and'titration Instructor:*Nguyen*ThaoTrang Outlines • Complex formation • Organic complexing agents
• Ethylenediaminetetraacetic acid (EDTA) titration 2 Complex)formation
phức chất trong dung dịch
• Many metal cations (Lewis acid) form complexes in
solutionwithsubstances,calledligands,containinga
pairofunsharedelectrons(Lewisbase). sở hữu
• A ligand is a molecule (or ion) which possesses at
least one position atwhich itcan attach itselfto a metalion. 3 Complex)formation • Monodentate (unidentat ) e : ligand binds to a metal
ionthroughonly oneatom(onetoothedligand).
– Ex. CN- isa monodentateasitbindsto themetal throughonlytheC atom. 4 Complex)formation
• Multidentate: ligandattachestoa metalionthrough
morethanoneligandatom(manytoothedligandor chelatingligand)
– Ex. Ethylenediamine is a bidentate as it binds to themetalthroughtwoN atoms. 5 Complexation)equilibria
• Complexationreactions)involve)a)metal-ion)M)
reacting)with)a)ligand)L)to)form)a)complex)ML: M'+'L'⇌ ML AddingmoreL:
ML)+)L)⇌ ML2,)K1*=[ML2]/[ML][L];
ML2 +)L)⇌ ML3,)K2*=[ML3]/[L][ML ] 2 ; ...
MLn-1+)L)⇌ MLn,)Kn=[MLn]/[L][MLn-1]; 6 Complexation)equilibria
• The)equilibria)can)be)expressed)as)sum)of)individual) steps:)
M)+)L)⇌ ML,)β1*=[ML]/([M][L])=*K1
M)+)2L)⇌ ML2,)β2*=[ML2]/([M][L]2)=*K1 K2 ...
M)+)nL)⇌ MLn,)βn=[MLn]/([M][L]n)=K1 K2*...Kn
inwhichβn istheoverallformationconstant 7 Complexation)equilibria • Fraction'of'each'species: TotalconcentrationofthemetalM: CM = [M]+ [ML + ] [ML2]+ [ML3]+...+ [MLn]
= [M]+β1 [M][L]+β2 [M][L]2 +β3 [M][L]3 +...βn[M][L]n àFractionofeachspecies: M 𝛼" = C" [M]
= [M])+)β1 [M][L])+)β [M][L]2)+)β3 [M][L]3)+...)βn [M] * 2* * * 1
= 1)+)β1 [L])+)β2 [L]2)+)β [L]3)+...)Β [L]n * * 3* n* 8 Complexation)equilibria • Fraction)of)each)species: TotalconcentrationofthemetalM: CM = [M]+ [ML + ] [ML2]+ [ML3]+...+ [MLn]
= [M]+β1 [M][L]+β2 [M][L]2 +β3 [M][L]3 +...βn[M][L]n àFractionofeachspecies: ML 𝛼"*= C" β [M][L] = 1*
[M])+)β1 [M][L])+)β [M][L]2)+)β3 [M][L]3)+...)βn [M] * 2* * * β [L] = 1*
1)+)β1 [L])+)β2 [L]2)+)β [L]3)+...)Β [L]n * * 3* n* 9 Organic complexing agents
• Manyorganicreagentsareusefulinconvertingmetalionsinto
theformthatcanbeextractedfromwaterintoanimmiscible organicphase.
• Many organic complexing reagents are widely used in
spectrophotometricdetermination ofmetal ionsduetothe
formationofcoloredorUVabsorbedmetal-ligandcomplexes. 10
EDTA,)a)common)multidentateligand
• Ethylenediaminetetraaceticacid)(EDTA))is)an)aminocarboxylic acid.
• EDTA)has)6)binding)sites)(4)carboxylate)groups)and)2)amino)
groups),)providing)6)pairs)of)electrons)à EDTA)forms)a)cage-
like)structure)around)the)metal)ion)in)metal–ligand)complex: 11
EDTA,)a)common)multidentateligand
• Acid-base)properties:)hexaproticacid,)designated)H6Y2+.
• Neutral)acid)is)tetraprotic,)with)the)formula)H4Y. 12
EDTA,)a)common)multidentateligand • Fraction)of)EDTA: 13
Complexes)of)EDTA)and)Metal)ions
• EDTA)complex:)Y4-forms)a)complex)with)a)metal)ion)Mn+:
• Kf is)defined)as)a)formation*constant*or)stability)constant
• At)any)pH:)the)analytical)concentration)of)EDTA)is)given)by: 14
Complexes)of)EDTA)and)Metal)ions
• Conditional formation constant or effective formation constant:
• This conditional formation constant can be applied for a
complex formation between a metal ion and all forms of uncomplexedEDTA:
à Thebasicequationincomplexometrictitration
• If𝐾′. is large,wecanconsiderthereactiontobecompleteat eachpointinthetitration. 15
Complexes)of)EDTA)and)Metal)ions • Computing∝012: ∝312 𝐾 = 4𝐾5𝐾6𝐾7
[𝐻9]7+;𝐾4[𝐻9]6+;𝐾4𝐾5[𝐻9]5 +𝐾4𝐾5𝐾6[𝐻9]+ 𝐾4𝐾5𝐾6𝐾7 whereK1,K2,K3 an K
d 4 arethe4 dissociationconstantsforH4Y. 16
Complexes)of)EDTA)and)Metal)ions 17
Complexes)of)EDTA)and)Metal)ions 18
Complexometrictitration)with)EDTA
• Complexometrictitration:)Plot)of)pM(=)-log[Mn+]) 19
Complexometrictitration)with)EDTA
• Complexometrictitration:)Plot)of)pM(=)-log[Mn+])
• Before the equivalence point: - Excess Mn+ in solution
- Dissociation of the MYn-4 complex is negligible à [Mn+]free = [Mn+]excess 20
Complexometrictitration)with)EDTA
• Complexometrictitration:)Plot)of)pM(=)-log[Mn+]) • At the equivalence point: - No free Mn+ in solution
- Dissociation of the MYn-4 complex: à [Mn+]free = [EDTA]free
• After the equivalence point: - Free EDTA in solution 21
Complexometrictitration)with)EDTA
• Ex.'Titration'of'50.00'mL'of'Ca2+'0.0400'M'with'EDTA'solution'
of'0.0800'M'(buffered'to'pH'10.0) Ca2++)EDTA)à CaY2- • 𝐾′ < 10.65 10) . =𝛼07 .K? =)(0.30) 1 ( 0 ) 1 = .34) x)10 à large!
• Ve =)(50.00)mL)(0.0400)M)/(0.0800)M))=)25.00)mL
Before&the&equivalence&point:&VEDTA =&5.00&mL
• nEDTA) added=)nCa2+)reacted)=)(5.00)mL)(0.0800)M))=)0.400)mmol
• nCa2+)excess)=)nCa2+)initial)- nCa2+)reacted)=)(50.00)mL)(0.0400)M))- 0.400)=)1.60) mmol
à [Ca2+)excess])=)(1.60)mmol)/(50.00)+)5.00)mL))=)0.0291)M à pCa2+)=)1.54 22
Complexometrictitration)with)EDTA
• Ex.'Titration'of'50.00'mL'of'Ca2+'0.0400'M'with'EDTA'solution'
of'0.0800'M'(buffered'to'pH'10.0) Ca2++)EDTA)à CaY2-
At&the&equivalence&point:&VEDTA =&25.00&mL • nCaY2-produced =)2.00)mmol
• [CaY2-]produced =)2.00)mmol/(50.00)+)25.00))=)0.0267 CaY2-⇌ Ca2++)EDTA (0.0267 – x) x x
1/𝐾′. =)[Ca2+][EDTA])/)[CaY2-]
x2/(0.0267 – x) = 1/1.34.1010 à x = 1.4x10-6 M à pCa2+)=)5.85 23
Complexometrictitration)with)EDTA
• Ex.'Titration'of'50.00'mL'of'Ca2+'0.0400'M'with'EDTA'solution'
of'0.0800'M'(buffered'to'pH'10.0) Ca2++)EDTA)à CaY2-
After&the&equivalence&point:&VEDTA =&26.00&mL
• nEDTAexcess)=)(26.00-25.00)(0.0800)M)=)0.0800)mmol
• [EDTA]excess)=)0.0800)mmol/(50.00)+)26.00)mL))=)1.05)x)10-3M
• [CaY2-]produced =)2.00)mmol/(50.00)+)26.00))=)2.63)x)10-2M
𝐾′. =)[CaY2-]/[Ca2+][EDTA])=1.34 x 1010 à [Ca2+)])=)1.9)x 10-9 M à pCa2+)=)8.73 24 Complexometric titration curve The greater the Kf’, the more distinct the end point! 25
Indicators)in)complexometrictitration
• Metalindicators: arecompoundsthatchange colorwhenthey bindtoa metalion.
• Useful indicators must bind metal less strongly than EDTA does. 26
Indicators)in)complexometrictitration
• Example:)reaction)of)Mg2+with)EDTA)at)pH)10)with)Calmagite indicator.
• Any)excess)EDTA)from)titration)will)form)complex)with)a)metal)
that)binds)to)the)indicator,)and)thus,)releasing)free)indicator) à identify)the)endpoint. 27
Complexometrictitration)with)EDTA
• Application: Using complexometric titration with EDTA to
determinetheconcentrationofCa2+andMg2+ presentintap water.
• A watersupplyisconsideredhardwhentheamountofCa+2,
Mg+2, and/orFe+3 ionsbecomestoohighforitsintendeduse.
Softwaterdoesnotcontainanysignificantamountsofthese ions.
• It isnot necessary to measure each ion contributingtothe
water hardness separately. Instead, all hard water ions are
determined collectively and reported as an "apparent
hardness" assumingthatallofthehardness isderivedfrom CaCO3. 28
Complexometrictitration)with)EDTA • Procedure:
– A)1:1)complex)between)EDTA)and)Mg2+/Ca2+ (called)Mn+))is)formed)
when))EDTA)is)added) to)a)solution)of)Mg2+and)Ca2+):
– The)indicator)used:)EriochromeBlack)T)(EBT))has)3)ionizableprotons)
H3In)and)a)complex)between)EBT)and)Mg2+/Ca2+ has)a)smaller)𝐾′.
– At)pH)~)10,)free) EBT)(HIn2-))has)a)blue)color)and)complexedEBT)is)wine) red 29
Complexometrictitration)with)EDTA • Procedure:
– At)pH)10,)before)the)equivalent)point:)Mn+is)in)excess:
• A)complex)is)formed)between Mn+ and)EDTA.
• A)complex)is)formed)between)Mn+ and)EBT.) • Free)Mn+
à Solution)has)a)color)of)the)complexedEBT:)red
– At)the)equivalent) point:)all)Mn+)complexedwith)EDTA)and)EBT.
– After)the)equivalent) point:)EDTA)is)in)excess,)no)free)Mn+.
• EDTA)competes)with)EBT)for)Mn+.
• 𝐾′. (EDTA-Mn+)))>)𝐾′.()EBT-Mn+))à EBT)will)be)released)from)the) complex.
• Solution)has)a)color)of)the)free)EBT:)blue
– Transition)color:)red)to)light)blue) 30