-
Thông tin
-
Quiz
Lecture 9 Precipitation titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Lecture 9 Precipitation titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Chemistry Laboratory (CH012IU) 59 tài liệu
Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 696 tài liệu
Lecture 9 Precipitation titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Lecture 9 Precipitation titration - Chemistry Laboratory | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Môn: Chemistry Laboratory (CH012IU) 59 tài liệu
Trường: Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 696 tài liệu
Thông tin:
Tác giả:

































Tài liệu khác của Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh
Preview text:
Analytical Chemistry 1 Lecture'9 Precipitationtitration Instructor:*Nguyen*ThaoTrang Producing'Soluble'Complexes
Complexation reactions involve a metal ion M reacting
witha ligandL toforma complexML. M+ L ML
Complexation reactionsoccurin a stepwise fashion,and
the reaction above is often followed by additional reactions: ML+L ML2 ML2 +L ML3 …... MLn-1+L MLn Producing Soluble Complexes
• The equilibrium constants for complex formation
reactions are generally written as formation constants.
• The overall formation constants are products of the
stepwiseformationconstantsfortheindividualsteps leadingto theproduct. Forming'Insoluble'Species
• Additionofligandstoa metalionmayresultininsoluble species.
• Inmanycases,theintermediateunchargedcomplexesin
thestepwiseformationschememaybesparinglysoluble,
whereastheadditionofmoreligandmoleculesmay result insolublespecies.
• Ex. AgCl is insoluble, but addition of large excess of Cl- producessolubleAgCl - 2- 3- 2 , AgCl3 , andAgCl4 . Forming'Insoluble'Species
In contrastto complexation equilibria, which are most
oftentreatedasformationreactions,solubilityequilibria
areusuallytreatedasdissociationreactions MxAy(s) xMy+(aq)+yAx-(aq) Ksp= [My+]x[Ax- y ]
where, Ksp = solubility product. Hence, for BiI3, the solubilityproductiswrittenK 3+ - sp= [Bi ][I ]3.
EffectQofQionicQstrengthQonQsaltQsolubility • Fe3+ + SCN- ⇌ Fe(SCN)2+ Pale yellow colorless Red K 2+ 3+ - eq = [Fe(SCN) ]/( F [ e ].[SCN ])
àdecreases with adding the “inert salt” KNO3 à not really a constant! with added KNO3 6
EffectQofQionicQstrengthQonQsaltQsolubility • CaSO 2- 4 (s) ⇌ Ca2+ + SO4 K 2- sp = [Ca2+][SO4 ] = 2.4 x10-5
Adding KNO3, more CaSO4 dissolves
à increase the solubility of CaSO4 7 Ionic strength
Cation is surrounded by excess anions.
Anion is surrounded by excess cations 8 Ionic strength
Adding salt to the solution, the ionic strength increases. • Thus Ca2+ , SO 2- 4
are surrounded by charged ionic
atmospheres that partially screen the ions from each
other. The formation of CaSO4 requires the disruption of
the ionic atmospheres surrounding the Ca2+ and SO 2- 4 ions.
• Increasing the concentrations of ions in solution, by
adding KNO3, increases the size of these ionic atmospheres.
• Since more energy is now required to disrupt the ionic
atmospheres, there is a decrease in the formation of
CaSO4, and an apparent increase in the equilibrium constant. 9 Ionic strength
• A measure of total concentration of ions in solution.
• The more highly the ion is charged, the more it is counted. . 1 1 𝜇 = c ( + c ( + c ( ++… . +c ( = / c ( 2 &z& (z( *z* .z. 2 0z0 01& 10 Ionic strength 11 Activity Coefficient
• TheQtrueQthermodynamicQequilibriumQconstantQisQaQfunction
activityQratherQthanQconcentration.
• TheQactivityQofQaQspecies,QaA ,QisQdefinedQasQtheQproductQ
molarQconcentration,Q[A],QandQaQsolution-dependentQactivityQ coefficient,Q𝛾A . aA ='[A].𝛾A • Ca(SO 2- 4)2 (s) ⇌ Ca2+ + SO4 • K 2+ 2- 2- 2+ 2- sp = aCa
. aSO4 = [Ca2+][SO4 ]. 𝛾Ca . 𝛾SO4 12 Activity Coefficient
• For gases, pure liquids, pure solids, nonionic solutes, the
activity coefficients are unity à the difference between
concentration and activity can be negligibl . e
• For ionic solutes, the activity coefficients can be
calculated by the extended Debye Huckel theory:
𝒍𝒐𝒈𝜸= + 7𝟎.𝟓𝟏𝒛𝟐 𝝁
𝟏>(𝜶 𝝁/𝟑𝟎𝟓)
where 𝛼 is the effective diameter of hydrated ion in pm at 25oC
- Debye Huckel is valid when 𝜇 ≤ 0.1 M, beyond not very accurate in predicting γ 13 Activity Coefficient 14 pH revisit
• 𝑝𝐻 =−logAMN =−log{ H> .𝛾MN} 15 pH revisit
• 𝑝𝐻 =−logAMN =−log{ H> .𝛾MN} 16 Precipitation titration
• Precipitation titration, which is based on reactions that
yieldioniccompoundsoflimitedsolubility.
• Theslowrateofformationofmostprecipitates,however,
limitsthenumberofprecipitatingagentsthatcanbeused intitrations toa handful.
• The most widely used and important precipitating
reagent, silver nitrate AgNO3, which is used for the
determination of the halogens, the halogen-like anions.
Titrations with silver nitrate are sometimes called argentometrictitrations. Precipitation titration
• ConsiderQtheQtitrationQofQ25.00QmLQofQ0.1000QMQ 0.05000QMQAg+.
Ag+(aq)Q+QI-(aq)Qà AgIQ(s)Q(1)
TheQdissociationQreactionQofQtheQprecipitation: AgI(s)QßàAg+(aq)Q+QI-(aq); K -17 sp=[Ag+][I-]Q=Q8.3Qx 10
KQ=Q1/Ksp=Q1.2x 1016Qà theQtitrationQgoesQtoQ completion! 18 Precipitation titration
• At equivalence point: Ve volume of Ag+ required
to react completely with all I- present. 19 Precipitation titration
• Before the equivalence point:VAg+ = 10.00 mL 20 Precipitation titration
• Before the equivalence point: repeat the
calculation of pAg+ based on [I-] remained.
• Or can apply streamlined calculation base on
fraction remaining of the analyte and dilution: 21 Precipitation titration • At the equivalence point: AgI(s) ßàAg+(aq) + I-(aq); x x
àThe pAg is independent on the original concentrations and volumes! 22 Precipitation titration
• After the equivalence point:VAg+ = 52.00 mL
àthe volume of Ag+ excess the equivalence point: 2.00 mL. 23
The shape of Precipitation titration
• Titrationcurvesforprecipitationreactionsarederivedin
a completelyanalogouswayto themethodsdescribedfor
titrationsinvolvingstrongacids andstrongbases.
• Most indicators for argentometric titrations respond to
changes in the concentration of silver ions. As a
consequence, titration curves for precipitation reactions
usuallyconsistofa plotofpAg+ versus volumeofAgNO3.
The shape of Precipitation titration • Higher [Ag+], larger pAg+ change at the equivalence point.
• Lower [I-], the larger volume
of the titrant required at the equivalence point, the less accurate the determination of the end point. • TheQsmallerQKsp,QtheQ greaterQchangeQinQpAgQ atQtheQequivalenceQ point. • IonsQformingQ precipitatesQwithQKsp>Q 10-10doQnotQyieldQ satisfyingQendpoints.
Endpoint of Precipitation titration
Colorchangeortheappearanceordisappearanceof turbidity. Therequirementsare:
• (1) the color change should occur over a limited rangeinthep-function,and
• (2) the color change should take place within the
steepportionofthetitration curve.
Formation of a Colored Precipitate The'Mohr'Method
• Sodium chromate can serve as an indicator for the
argentometric determination of Cl-, Br-, and CN- by
reacting with Ag+ to form a brick-red silver chromate
(Ag2CrO4) precipitateintheequivalence-pointregion.
• The reactions involved in the determination of chloride andbromide(X-) are titrationreaction: Ag+ +X- AgX(s) [white]
indicatorreaction: 2Ag+ + CrO 2- 4 Ag C 2 rO4(s) [red]
The solubilityofsilverchromateis several timesgreater
than thatofsilverchlorideorsilverbromide.
FigureQ1.QBeforeQtheQadditionQofQanyQsilverQ
nitrateQtheQchromateQindicatorQgivesQtheQclearQ solutionQaQlemon-yellowQcolor.
FigureQ2.QCloudyQprecipitateQofQAgClrearQth
endpointQ(left)QandQlightQred-brownQAg2CrO4
formedQwithQslightlyQ excessQAg+QjustQoverQtheQ endpointQ(right). 29
The Volhard Method (Colored Complex)
• ThemostimportantapplicationoftheVolhardmethod
isfortheindirectdeterminationofhalideions.
• A measuredexcessofstandardsilvernitratesolutionis
added to the sample, and the excess silver ion is
determined by back-titration with a standard thiocyanatesolution.
The'VolhardMethod'(Colored'Complex)
In the Volhard method, excess silver ions are titrated
witha standard solutionofthiocyanateion: Ag+ + SCN- AgSCN(s)
Iron(III)serves astheindicator. Thesolutionturnsred
withthefirstslightexcessofthiocyanateion: Fe3++ SCN- Fe(SCN)2+ [FeS(CN ) 2] + 3 red Kf = [ - 3+ = . 10 × 5 1 0 Fe ] [ SCN ]
The titration mustbe carried out in acidic solution to
preventprecipitation ofiron(III)asthehydratedoxide.
FigureQ2.QafterQtheQendpoint,QtheQredQQ FigureQ1.QBeforeQtheQendpoint Fe(SCN)2+ 32
Adsorption'Indicators:'The'FajansMethod
• An adsorption indicator is an organic compound that
tends to be adsorbed onto the surface ofthe solid in a
precipitationtitration. Ideally,theadsorptionoccursnear
the equivalence point and results not only in a color
changebutalsoina transferofcolorfromthesolutionto thesolid(orthereverse).
• Fluoresceinisa typicaladsorptionindicatorusefulforthe titrationofCl- withAgNO3.
– In aqueous solution, fluorescein partially dissociates into
hydroniumionsandnegativelychargedfluoresceinateionthat areyellow-green.
– Thefluoresceinateionformsanintenselyredsilversalt.
• Titrations involving adsorption indicators are rapid, accurate,and reliable.