Ôn luyện bài tập và thực hành | Môn Xác suất thống kê | Trường đại học sư phạm kỹ thuật TP. Hồ Chí Minh

Một lô hang có 9 sản phẩm giống nhau. Mỗi lần kiểm tra, người ta chọn ngẫu nhiên 3 sản ohaarm; kiểm tra xong trả sản phẩm lại lô hàng. Tính xác suất để sau 3 lần kiểm tra, 9 sản phẩm đều được kiểm tra. Ta chia 9 sản phẩm thành 3 nhóm. Gọi a là kiểm tra nhóm, đặt a là sau 3 lần kiểm tra 9 sản phẩm đều được kiểm tra Tài liệu giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem!

Thông tin:
125 trang 1 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Ôn luyện bài tập và thực hành | Môn Xác suất thống kê | Trường đại học sư phạm kỹ thuật TP. Hồ Chí Minh

Một lô hang có 9 sản phẩm giống nhau. Mỗi lần kiểm tra, người ta chọn ngẫu nhiên 3 sản ohaarm; kiểm tra xong trả sản phẩm lại lô hàng. Tính xác suất để sau 3 lần kiểm tra, 9 sản phẩm đều được kiểm tra. Ta chia 9 sản phẩm thành 3 nhóm. Gọi a là kiểm tra nhóm, đặt a là sau 3 lần kiểm tra 9 sản phẩm đều được kiểm tra Tài liệu giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem!

33 17 lượt tải Tải xuống
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
1
BÀI T P
XÁC SU T TH NG KÊ
c 1 : 1 - 2 8
c 2 : 2 9 - 4 0
c 3 : 4 1 - 5 7
c 4 : 5 8 - 6 5
c 5 : 6 5 - 9 3
c 6 ; 9 4 - 1 1 6
c 7 : 1 1 7 - 1 2 5
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
2
CHƯƠNG 1: XÁC SU T
1.1.
M t h p có 100 t m th nh nhau c ghi các s t 1 n 100, Rút ng u ư ñư ñ
nhiên hai th r i t theo th t t trái qua ph i. Tính xác su t n ñ ñ
a/ Rút c hai th l p nên m t s có hai ch s . ñư
b/ Rút c hai th l p nên m t s chia h t cho 5. ñư
Gii
a/
A
:“Hai th rút c l p nên m t s có hai ch s ñư
( )
2
9
2
100
9.8
0,0073
100.99
A
P A
A
= =
b/
B
: “Hai th rút c l p nên m t s chia h t cho 5” ñư
S chia h t cho 5 t i là 0 ho c 5. có bi n c n cùng ph Đ
B
thích h p v i ta rút
th th hai m t cách tùy ý trong 20 th mang các s 5;10;15;20;…;95;100, và rút 1
trong 99 th còn l i t vào v trí âu. Do ó s tr ng h p thu n l i cho là 99.20 ñ ñ ñ ư
( )
2
100
99.20
0,20
P B
A
= =
1.2.
Mt h p có ch a 7 qu c u tr ng và 3 qu c u en cùng kích th c. Rút ñ ư
ngu nhiên cùng m t lúc 4 qu c u. Tính xác su t ñ trong 4 qu c u rút ñưc có
a/ Hai qu c u en. ñ
b/ Ít nh t 2 c u en ñ
c/ Toàn c u tr ng
Gii
Rút ng u nhiên cùng 1 lúc 4 trong 10 qu c u nên s tr ng h p ng kh ư ñ
năng là
4
10
a/
A
:”trong 4 qu c u rút có 2 qu c u en” ñ
( )
2 2
3 7
4
10
.
0,30
C C
P A
C
= =
b/
B
:”trong 4 qu c u c rút có ít nh t 2 qu c u en” ñư ñ
( )
2 2 3 1
3 7 3 7
4
10
. .
1
3
C C C C
P B
C
+
= =
c/
C
:”trong 4 qu c u c ch n có toàn c u tr ng” ñư
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Di
p Hoàng Ân
3
( )
4
7
4
10
1
6
C
P C
C
= =
1.3.
Mt h p thu c có 5 ng thu c t t và 3 ng kém ch t l ng. Ch n ng u ư
nhiên l n l t không tr l i 2 ng. Tính xác su t : ư ñ
a/ C hai ng c ch n u t t. ñư ñ
b/ Ch ng c ch n ra u tiên là t t. ñư ñ
c/ trong hai ng có ít nh t m t ng thu c t t.
Gii
Chn ng u nhiên l n l ưt không tr l i 2 trong 8 ng nên các tr ưng hp
ñng kh năng là
2
8
A
.
a/
A
:” C hai c ch n u t t ng ñư ñ
( )
2
5
2
8
0,357
A
P A
A
=
b/
B
:” Ch c ch n ra u tiên là t t” ng ñư ñ
( )
1 1
3 5
2
8
.
0,268
C C
P B
A
=
c/
C
:” trong hai ng có ít nh t m t ng thu c t t
( )
2
3
2
8
1 0,893
A
P C
A
=
1.4.
Mt h p ng 15 qu bóng bàn trong ó có 9 qu m i. L n u ng i ta l y ñ ñ ñ ư
ngu nhiên 3 qu ñ thi ñu, sau ó l i tr vào h p. L n th hai l y ng u nhiên 3 ñ
qu. Tính xác su t ñ c 3 qu l y ra l n sau u m i. ñ
Gii
Đt
A
:” c 3 qu l y ra l n sau u m i” ñ
i
B
:” Trong 3 qu l y ra thi u có ñ ñ
i
qu m i”
{
}
0;1;2;3
i
Ta th y các
{
}
0 1 2 3
; ; ;
B B B B
lp thành nhóm y các bi n c , theo công th c xác ñ ñ
sut toàn ph n
(
)
= + + +
( )
    

= + + +
1.5.
T m t l p có 8 n sinh viên và 12 nam sinh viên, ng i ta ch n ng u nhiên ư
5 sinh viên l p Ban cán b l p (BCB). Tính xác su t ñ ñ
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Di
p Hoàng Ân
4
a/ BCB g m 3 n 2 nam,
b/ BCB có ít nh t m t n ,
c/ BCB có ít nh t hai nam và hai n .
Gii
Đt
k
A
: “BCB có k nam sinh viên” (
{
}
0,1,2,3,4,5
k
),
chúng ta có:
5
12 8
5
20
.
C
C
( )
C
k
k
k
P A
=
a/ BCB g m 3 n và 2 nam.
Xác sut ph i tính:
3
2
12 8
5
20
.
77
2
323
( )
C
C
P A
C
= =
b/ t N: “BCB có ít nh t m t n ”, thì Đ
5
N A
=
.
Do ñó,
0
5
12 8
5
20
5 5
.
33 613
646 646
( ) ( ) 1 ( )
1
P N P A P A
C
C
C
= =
= = =
c/ t H: “BCB có ít nh t hai nam và hai n ”. Đ
Do ó, ñ
(
)
(
)
(
)
2 3
P H P A P A
= +
=


 
 
+ =
1.6.
T m t h p ch a 8 viên bi và 5 viên bi tr i ta l y ng u nhiên 2 ñ ng ngư
ln, m i l i. Tính xác su t l y c n 1 viên bi, không hoàn l ñ ñư
a/ 2 viên bi ; ñ
b/ hai viên bi khác màu;
c/ viên bi th hai là bi tr ng.
Gii
Vi
{
}
1, 2 ,
i
ñăt:
i
T
: “viên bi l y ra l n th
i
là bi tr ng”,
i
D
: “viên bi l y ra l n th
i
là bi ”. ñ
a/ t Đ
A
:“ly ñưc 2 viên bi ñ”, chúng ta có:
(
)
(
)
(
)
(
)
1 2 1 2
8 7
14
13 12 3
1
9
. . /P A P D D P D P D D = ===
b/ t Đ
B
: “l y c hai viên bi khác màu”, chúng ta có: ñư
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
5
(
)
(
)
(
)
(
)
( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2
1 2 1 1 2 1
. / . /
P B P T D D T P T D P DT
P T P D T P D P T D
= + = +
= +
Suy ra:
5 8 8 5 20
13 12 13 12 39
( )P B = + =
c/
2 1 2 1 2
T TT DT
= +
, nên xác su t ph i tính là:
(
)
(
)
(
)
( ) ( ) ( ) ( )
2 1 2 1 2
1 2 1 1 2 1
. / . /
P T P TT P D T
P T P T T P D P D T
= +
= +
suy ra
(
)
5 8 5 5
4
2
13 12 13 12 13
P T
= + =
1.7.
M t công ty c n tuy n 4 nhân viên. Có 8 ng i, g m 5 nam và 3 n n p ư
ñơn xin d tuyn, và m i ng i u có c hư ñ ơ i c tuyñư n như nhau. Tính xác su t
ñ ư ñư trong 4 ng i c tuyn,
a) có duy nh t m t nam;
b) có ít nh t m t n .
Gii
Đt
: “Có
nam c tuy n trong 4 nhân viên” ñư
 
Gi
: “có duy nh t 1 nam”
( ) ( )
1 3
5 3
1
4
8
.
5
70
= = =
a) Gi
: “có ít nh t 1 n
( )
4
5
4
4
8
13
1 ( ) 1
14
= = =
1.8.
M t công ty c n tuy n 4 nhân viên. Có 8 ng i, g m 5 nam và 3 n n p ư
ñơn xin d tuyn, và m i ng i u có c hư ñ ơ i c tuyñư n như nhau. Tính xác su t
ñ ư ñư trong 4 ng i c tuyn,
a/ có không quá hai nam;
b/ có ba n , bi t r ng có ít nh t m t n ã c tuy n. " ñ ñư
Gii
Đt
: “Có
nam c tuy n trong 4 nhân viên” ñư
 
a/ G i
: “có không quá 2 nam”
( )
1 3 2 2
5 3 5 3
1 2
4
8
. .
1
( ) ( )
2
+
= + = =
b/ G i
: “ch n ra 3 n , bi t r ng có ít nh t 1 n c tuy n”. " ñư
Gi
B
: “Có ít nh t m t n c ch n”. ñư
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
6
Ta có
( )
4
5
4
4
8
13
1 ( ) 1
14
= = =
( )
1
1
( )
1
( | )
( ) 13
= = =
1.9.
M t c a hàng sách c l ng r ng: Trong t ng s các khách hàng n c a # ư ư " $ ñ #
hàng, có 30% khách c n h i nhân viên bán hàng, 20% khách mua sách và 15%
khách th c hi n c hai u trên. G p ng u nhiên m t khách trong nhà sách. Tính % ñi
xác su t ng i này ñ ư
a/ không th c hi n c hai u trên; % ñi
b/ không mua sách, bi t r i này ã h i nhân viên bán hàng. "ng ngư ñ
Gii
Đt
: “khách hàng c n t v n” ư
: “khách hàng c n mua sách”
Theo ta có: ñ
(
)
(
)
(
)
0,3; 0,2; 0,15
= = =

a/ Xác su t khách hàng không c n mua sách c n t v n là: ũng không c ư
( ) ( ) ( ) ( )
3 2 15 13
. 1 1 1
10 10 100 20
= + = + =

b/ không mua sách, bi t r i này ã h i nhân viên bán hàng. "ng ngư ñ
( )
( )
( )
( ) ( )
( )
3 15
1
10 100
/
3
2
10
= = = =


1.10.
M t cu c u tra cho th y, m t thành ph , có 20,7% dân s dùng lo i ñi '
sn ph m (
, 50% dùng lo i s n ph m (
và trong s nh ng ngưi dùng
, có
36,5% dùng
. Ph ng v n ng u nhiên m t ng i dân trong thành ph ó, tính xác ư ñ
sut ñ ngưi y
a/ Dùng c
;
b/ Không dùng
, cũng không dùng
.
Gii
Đt
: “ ng i dân trong thành ph n ph m ư dùng s (
: “ ng i dân trong thành ph dùng s n ph m ư (
Theo bài ta có: ñ
(
)
(
)
(
)
0,207; 0,5; | 0,365
= = =
a) Xác su t ng ưi dân ñó dùng c
(
)
(
)
(
)
. / 0,5.0,365 0,1825
= = =

b) Xác su t ng ưi dân ñó không dùng c
(
)
(
)
(
)
(
)
. . 0,4755
= + =

1.11.
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
7
M t cu c u tra cho th y, m t thành ph , có 20,7% dân s dùng lo i ñi '
sn ph m (
, 50% dùng lo i s n ph m (
và trong s nh ng ngưi dùng
, có
36,5% dùng
. Ph ng v n ng u nhiên m t ng i dân trong thành ph ó, tính xác ư ñ
sut ñ ngưi y
a/ Dùng c
;
b/ Dùng
, bi t r ng ng i " ư y không dùng
.
Gii
Đt
: “ ng i dân trong thành ph n ph m ư dùng s (
: “ ng i dân trong thành ph dùng s n ph m ư (
Theo bài ta có: ñ
(
)
(
)
(
)
0,207; 0,5; / 0,365
= = =
a/ Xác su t ng i dân ư ñó dùng c
(
)
(
)
(
)
. / 0,5.0,365 0,1825
= = =

b/ Xác su t ng i dân ư ñó dùng
, bi t r "ng không dùng
( )
(
)
( )
( ) ( )
( )
.
0,5 0,1852
/ 0,404
1 0,207
= = = =
1.12.
Theo m t cu c u tra thì xác su t m t h gia ình có máy vi tính n u ñi ñ ñ
thu nh p hàng n m trên 20 tri u (VN ) là 0,75. Trong s các h c u tra thì ă % Đ ñư ñi
60% có thu nh p trên 20 tri u và 52% có máy vi tính. Tính xác su t m t h gia % ñ
ñình ñưc chn ngu nhiên
a/ có máy vi tính và có thu nh p hàng n m trên 20 tri u; ă %
b/ có máy vi tính, nh p trên 20 tri u. ưng không có thu nh %
Gii
Đt
: “H gia ình c ch n ng u nhiên có máy vi tính” ñ ñư
: “H gia ình c ch n ng u nhiên có thu nh p hàng n m trên 20 tri u” ñ ñư ă %
Theo bài ta có: ñ
(
)
(
)
(
)
0,52; 0,6; / 0,75
= = =
a/ Xác su t h gia ình c ch n có máy vi tính và có thu nh p hàng n m trên ñ ñ ñư ă
20 tri u là: %
(
)
(
)
(
)
. / 0,6.0,75 0, 45
P AB P B P A B= = =
b/ Xác su t h gia ình c ch n có máy vi tính nh p ít h ñ ñ ñư ưng thu nh ơn 20
tri%u là:
(
)
( ) ( )
0,52 0,45 0,07
= = =  
1.13.
Theo m t cu c u tra thì xác su t m t h gia ình có máy vi tính n u ñi ñ ñ
thu nh p hàng n m trên 20 tri u (VN ) là 0,75. Trong s các h c u tra thì ă % Đ ñư ñi
60% có thu nh p trên 20 tri u và 52% có máy vi tính. Tính xác su t m t h gia % ñ
ñình ñưc chn ngu nhiên
a/ Có máy vi tính và có thu nh p hàng n m trên 20 tri u; ă %
b/ Có thu nh p hàng n m trên 20 tri u, bi t r ng h ó không có máy vi ă % " ñ
tính.
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
8
Gii
Đt
: “H gia ình c ch n ng u nhiên có máy vi tính” ñ ñư
: “H gia ình c ch n ng u nhiên có thu nh p hàng n m trên 20 tri u” ñ ñư ă %
Theo bài ta có: ñ
(
)
(
)
(
)
0,52; 0,6; / 0,75
= = =
a/ Xác su t h gia ình c ch n có máy vi tính và có thu nh p hàng n m trên ñ ñ ñư ă
20 tri u là: %
(
)
(
)
(
)
. / 0,6.0,75 0, 45
P AB P B P A B= = =
b/ Xác su t h gia ình c ch n có thu nh p hàng n m trên 20 tri u nh ñ ñ ñư ă % ưng
không có máy vi tính là:
( )
(
)
( )
( ) ( )
( )
0,6 0, 45
/ 0,3125
1 0,52
= = = =

1.14.
Trong m t i tuy n có hai v n ng viên A và B thi u. A thi u tr c ñ ñ ñ ñ ư
và có hy v ng 80% th ng tr n. Do nh h ng tinh th n, n u A th ng tr n thì có ư'
60% kh n ng B th ng tr n, còn n u A thua thì kh n ng này c a B ch còn 30%. ă ă
Tính xác su t c a các bi n c sau:
a/ i tuyĐ n thng hai trn;
b/ i tuyĐ n thng ít nht mt trn.
Gii
Đt
: “v n ng viên ñ
th ng” v i
{
}
,
Theo bài ta có:ñ
( ) ( )
(
)
0,8; / 0, 6; / 0,3
= = =
a/ Xác su t i tuy n th ng 2 tr n ñ
(
)
(
)
(
)
. / 0,8.0,6 0,48
= = =
b/ i tuyĐ n th ng ít nh t mt tr n nghĩa là có ít nh t mt trong hai v n ng viên ñ
A, ho c B th ng. Xác su t c n tính là:
(
)
(
)
(
)
(
)
.
0,54 0,8 0,48 0,86
A B B A A B
P M M P M P M P M M
= +
= + =
1.15.
Trong m t i tuy n có hai v n ng viên A và B thi u. A thi u tr c ñ ñ ñ ñ ư
và có hy v ng 80% th ng tr n. Do nh h ng tinh th n, n u A th ng tr n thì có ư'
60% kh n ng B th ng tr n, còn n u A thua thì kh n ng này c a B ch còn 30%. ă ă
Tính xác su t c a các bi n c sau:
a/ B th ng tr n;
b/ i tuyĐ n ch thng có mt trn.
Gii
Đt
: “v n ng viên ñ
th ng” v i
{
}
,
Theo bài ta có:ñ
( ) ( )
(
)
0,8; / 0, 6; / 0,3
= = =
a/ Xác su t B th ng tr n là:
( ) ( )
(
)
(
)
( ) | . . | 0,54
B A B A A B A
P M P M P M M P M P M M
= + =
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
9
b/ t Đ
: “ i tuyñ n ch th ng 1 tr n”
Xác su t i tuy n ch th ng 1 tr n là: ñ
(
)
(
)
(
)
(
)
(
)
(
)
(
)
. . . .
B A
A B A A B B A B
P D P M M P M M P M P M M P M P M M
= + = +
(
)
(
)
(
)
2. . 0,8 0,54 2.0,48 0,38
A B A B
P M P M P M M= + = + =
`
1.16.
Đ thành l p i tuy n qu c gia v m t môn h c, ng i ta t ch c m t cu c ñ ư $
thi tuy n gm 3 vòng. Vòng th nh t ly 80% thí sinh; vòng th hai ly 70% thí
sinh ã qua vòng th nh t và vòng th ba l y 45% thí sinh ã qua vòng th hai. ñ ñ Đ
vào c i tuy n, thí sinh ph i v t qua c c 3 vòng thi. Tính xác su t ñư ñ ư ñư ñ
mt thí sinh b t k
a/ c vào i tuy n; Đư ñ
b/ B lo i vòng th ba. '
Gii
Đt
: “thí sinh c ch n vòng ñư '
” v i
{
}
1, 2,3
Theo bài ta có: ñ
(
)
(
)
(
)
1 2 1 3 1 2
0,8; | 0,7; | 0, 45
= = =
a/ Xác su t thí sinh ó c vào i tuy n là ñ ñ ñư ñ
(
)
(
)
(
)
(
)
1 2 3 1 2 1 3 1 2
. | . | 0,8.0,7.0,45 0,252
= = =
b/ Xác su t thí sinh ó b lo i vòng th III là ñ ñ '
(
)
( ) ( )
(
)
3 3
1 2 1 2 1 1 2
. / . /=
(
)
(
)
(
)
(
)
1 2 1 3 1 2
. | . 1 | 0,8.0,7.0,55 0,308
= = =
1.17.
Đ thành l p i tuy n qu c gia v m t môn h c, ng i ta t ch c m t cu c ñ ư $
thi tuy n gm 3 vòng. Vòng th nh t ly 80% thí sinh; vòng th hai ly 70% thí
sinh ã qua vòng th nh t và vòng th ba l y 45% thí sinh ã qua vòng th hai. ñ ñ Đ
vào c i tuy n, thí sinh ph i v t qua c c 3 vòng thi Tính xác su t ñư ñ ư ñư ñ
mt thí sinh b t k
a/ Đưc vào i tuy n; ñ
b/ B lo i ng th hai, bi t r ng thí sinh này b lo i. ' "
Gii
Đt
: “thí sinh c ch n vòng ñư '
” v i
{
}
1, 2,3
Theo bài ta có: ñ
(
)
(
)
(
)
1 2 1 3 1 2
0,8; | 0,7; | 0, 45
= = =
a/ Xác su t thí sinh ó c vào i tuy n là ñ ñ ñư ñ
(
)
(
)
(
)
(
)
1 2 3 1 2 1 3 1 2
. | . | 0,8.0,7.0,45 0,252
= = =
b/ t K: “Thí sinh ó b lo i” Đ ñ
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
1 2 3 3
1 1 2 1 1 1 2 1 2
1= + + = + +
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
10
( ) ( )
(
)
3
1 2 1 1 2
1 . / 1 0,8.0,7 0,308 0,748
= + = + =
Vy, xác su t thí sinh ó b lo i vòng II, bi t r ng thí sinh ó b lo i là: ñ ñ ' " ñ
( )
(
)
( )
(
)
( )
( )
(
)
( )
( )
2 2 2
1 1 1
2
. . . |
0,8 1 0,7
| 0,3209
0,748
= = = = =
1.18.
M t lô hàng có 9 s n ph m gi ng nhau. M i l n ki m tra, ng i ta ch n ( ư
ngu nhiên 3 s n ph m; ki m tra xong tr s n ph m l i lô hàng. Tính xác su t ( ( ñ
sau 3 l n ki m tra, 9 s n ph m u c ki m tra. ( ñ ñư
Gii
Chia 9 s n ph m thành 3 nhóm. G i (
: “Ki m tra nhóm
{
}
1, 2,3
Đt
:”Sau 3 l n ki m tra, 9 s n ph m u c ki m tra” ( ñ ñư
( )


= = =
1.19.
M t l p h c c a Tr ng i h c AG có 2/3 là nam sinh viên và 1/3 là n ư Đ
sinh viên. S sinh viên quê An Giang chi m t l 40% trong n sinh viên, và ' %
chim t l 60% trong nam sinh viên. %
a)
Chn ng u nhiên m t sinh viên c a l p. Tính xác su t ñ ch n ñưc m t
sinh viên quê An Giang. N u bi t r ng sinh viên v a ch n quê An ' " '
Giang thì xác su t sinh viên ó là nam b ng bao nhiêu? ñ ñ "
b)
Chn ng u nhiên không hoàn l i hai sinh viên c a l p. Tính xác su t ñ
có ít nh t m t sinh viên quê An Giang, bi t r ng l p h c có 60 sinh viên. ' "
Gii
a)
Đt :
: “Ch n c sinh viên nam” ñư
( )
2
3
=
: “Ch n c sinh viên n ñư
( )
1
3
=
: “Ch n c sinh viên q An Giang” ñư '
( ) ( ) ( ) ( ) ( ) ( )
8
( ) | |
15
= + = + =
 
Do ó, ñ
( ) ( ) ( | ) 3
( | )
( ) ( ) 4
= = =

b)
Lp có 60 sinh viên suy ra có 40 sinh viên nam và 20 sinh viên n
S sinh viên Nam quê An Giang: 24 '
S sinh viên N quê An Giang: 8 '
Nên t ng s sinh viên quê An Giang là 32 sinh viên $ '
: “ít nh t m t sinh viên quê An Giang” '
2
28
2
60
232
( ) 1 ( ) 1
295
= = =
1.20.
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
11
Có ba h p A, B và C ng các l thu c. H p A có 10 l t t và 5 l h ng, ñ
hp B có 6 l t t và 4 l hng, h p C có 5 l t t và 5 l h ng
a/ L y ng u nhiên t m i h p ra m t l thu c, tính xác su t c 3 l ñ ñư
cùng lo i.
b/ L y ng u nhiên m t h p r i t h p ó l y ra 3 l thu c thì c 1 l t t ñ ñư
và 2 l h ng. Tính xác su t h p A ã c ch n. ñ ñ ñư
Gii
a/ và
:“l l y ra t h p th
là t t”
{
}
Nên, xác su t c 3 l cùng lo i ñ ñư

     
+ = +
= + =
b/ t Đ
:“Ly ñưc h p th
{
}
;
:“Ly ñưc 2 l h ng và 1 l
tt”
(
)
(
)
(
)
(
)
(
)
(
)

  


= + +
= + + =
Khi ó xác su t h p A c ch n ñ ñ ñư
(
)
(
)
(
)
(
)
(
)




= = = =
1.21.
Có hai h p B và C ng các l thu c. H p B có 6 l t t và 4 l h ng, h p C ñ
có 5 l t t và 5 l h ng. L y ng u nhiên hai l thu c t h p B b o h p C, r i
tip theo l y ng u nhiên m t l thu c t h p C thì ñưc l h ng. Tính xác su t ñ
a/ L h ó là c a h p B b sang; ng ñ
b/ Hai l thu c b t h p B vào h p C u là l h ng. ñ
Gii
Gi
: “Hai l thu c l y t h p B b vào h p C có
l h ng”
{
}
t ñ
: “l thu c l y t h p C (sau khi ã b 2 l t B b sang) b h ng” ñ
( ) ( ) ( ) ( ) ( ) ( )


= + + =
a/ l h ó là c a h p B b sang ng ñ
(
)
(
)
(
)
(
)
( )
 

   
+
= =
= + =
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
12
b/ hai l thu c b t h p B vào h p C u là l h ñ ng
(
)
(
)
(
)
 
 
 
= = = =
1.22.
Trong m t i tuy n có 3 v n ng viên A, B và C thi u v i xác su t ñ ñ ñ
chin th ng l n l ưt là 0,6; 0,7 và 0,8. Gi s m i ng # ưi thi ñu m t tr n ñc l p
nhau.Tính xác su t : ñ
a/ i tuyñ n th ng ít nh t mt tr n,
b/ i tuyñ n thng 2 tr n.
Gii
Đt :
: “v n ng viên A chi n th ng” ñ
(
)
0,6
=
: “v n ng viên B chi n th ñ ng”
(
)
0,7
=
: “v n ng viên C chi n th ñ ng”
(
)
0,8
=
a/ G i
: “ i tuyñ n thng ít nht 1 tr n”
(
)

= = =
b/ G i
: “ i tuyñ n th ng 2 trn”
(
)
(
)
(
)

= + + =
1.23.
Trong m t i tuy n có 3 v n ng viên A, B và C thi u v i xác su t ñ ñ ñ
chin th ng l n l ưt là 0,6; 0,7 và 0,8. Gi s m i ng # ưi thi ñu m t tr n ñc l p
nhau.Tính xác su t : ñ
a/ i tuyĐ n thng ít nht mt tr n,
b/ A thua trong tr ng h p i tuyư ñ n thng 2 trn.
Gii
Đt :
: “v n ng viên A chi n th ng” ñ
(
)
0,6
=
: “v n ng viên B chi n th ñ ng”
(
)
0,7
=
: “v n ng viên C chi n th ñ ng”
(
)
0,8
=
a/ G i
: “ i tuyñ n thng ít nht 1 tr n”
(
)

= = =
b/ A thua trong tr ng h p i tuyư ñ n thng 2 trn
Gi
: “ i tuyñ n thng 2 tr n”
(
)
(
)
(
)

= + + =
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
13
(
)

  


= = =
1.24.
Trong n m h c v a qua, tr i h c XYZ, t l sinh viên thi tr t ă ' ưng ñ % ư
môn Toán là 34%, thi tr t môn Tâm lý là 20,5%, và trong s các sinh viên tr t ư ư
môn Toán, có 50% sinh viên tr t môn Tâm lý. G p ng u nhiên m t sinh viên ư
ca tr ng XYZ. ư
a/ Tính xác su t anh ta tr t c hai môn Toán và Tâm lý; u c hai môn ñ ư ñ
Toán và Tâm lý.
b/ N u bi t r ng sinh viên này tr t môn Tâm lý thì xác su t anh ta u " ư ñ ñ
môn Toán là bao nhiêu?
Gii
: “sinh viên thi tr t môn Toán” ư
(
)
0,34
=
: “sinh viên thi tr t môn Tâm Lý” ư
(
)
0,205
=
khi ó ñ
( | ) 0,5
=
a/ Xác su t sinh viên tru t môn c môn Toán và Tâm Lý
(
)
(
)
 
= = =
Xác su t sinh viên u c môn Toán và Tâm Lý ñ
(
)
(
)
(
)
(
)

= = + =
b/ Xác su t sinh viên u môn Toán, bi t r ng tr t môn Tâm Lý: ñ " ư
( )
(
)
(
)
(
)
(
)
(
)



= = =
.
1.25.
Trong n m h c v a qua, tr i h c XYZ, t l sinh viên thi tr t ă ' ưng ñ % ư
môn Toán là 34%, thi tr t môn Tâm lý là 20,5%, và trong s các sinh viên tr t ư ư
môn Toán, có 50% sinh viên tr t môn Tâm lý. Ch n ng u nhiên 12 sinh viên c a ư
trưng XYZ. Nhi u kh n t là s có bao nhiêu sinh viên thi tr ăng nh + ưt c hai môn
Toán và Tâm lý. Tính xác su t t ng ng. ươ
Đáp s
G i
: “sinh viên thi tr t môn Toán” ư
(
)
0,34
=
: “sinh viên thi tr t môn Tâm Lý” ư
(
)
0,205
=
khi ó ñ
( | ) 0,5
=
Xác su t sinh viên tru t môn c môn Toán và Tâm Lý
(
)
(
)
 
= = =
Nên, Sinh viên tr t c Toán và Tâm lý v i xác su t không i ư ñ$

=
.
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê Di
p Hoàng Ân
14
Do ó, ch n 12 sinh viên ngh a là th c hi n 12 phép th Bernoulli v i xác ñ ĩ % #
sut thành công (trưt c Toán và Tâm lý) không ñ$i

=
.s sinh viên nhi u
kh n ng tră ưt c hai môn
(
)

+ = =
.
Xác su t t ng ng là ươ
( ) ( ) ( )
2 10
2
12 12
2 0,17 . 1 0,17 0,296
= = .
1.26.
Trong n m h c v a qua, tr i h c XYZ, t l sinh viên thi tr t ă ' ưng ñ % ư
môn Toán là 34%, thi tr t môn Tâm lý là 20,5%, và trong s các sinh viên tr t ư ư
môn Toán, có 50% sinh viên tr t môn Tâm lý. Ph i ch n bao nhiêu sinh viên ư
ca tr ng XYZ sao cho, v i xác suư t không bé h n 99%, trong s ó có ít nhơ ñ t
mt sinh viên ñu c hai môn Toán và Tâm lý.
Gii
: “sinh viên thi tr t môn Toán” ư
(
)
0,34
=
: “sinh viên thi tr t môn Tâm Lý” ư
(
)
0,205
=
khi ó ñ
( | ) 0,5
=
Xác su t sinh viên u c môn Toán và Tâm Lý ñ
(
)
(
)
(
)
(
)

= = + =
G i
n
là s sinh viên c n ch n. Xác su t sinh viên u c hai môn Toán ñ ñ
và Tâm Lý không i ñ$

=
nên ta có quá trình Bernoulli
(
)
,
B n p
.
Đt
: “ ít nh t m t sinh viên u c hai môn Toán và Tâm Lý ”. ñ
Theo yêu c u bài toán ta c ñư
(
)
(
)
(
)
  
= =
(
)
(
)
      
Vy, ch n ít nh t 5 sinh viên.
1.27.
Ba máy 1, 2 và 3 c a m t xí nghi p s n xu t, theo th t , 60%, 30% và %
10% t ng s s n ph m c a m t xí nghi p. T l s n xu t ra ph ph m c a các máy $ ( % % (
trên, theo th t , là 2%, 3% và 4%. L y ng u nhiên m t s n ph m t lô hàng c a (
xí nghi%p, trong ó l n l n các s n ph m do 3 máy s n xu t. ñ ñ (
a/ Tính xác su t s n ph m l y ra là s n ph m t t. Ý ngh a c a xác ñ ( ( ĩ
sut ó ñ ñi vi lô hàng là gì?
b/ N u s n ph m l y c là ph ph m, thì nhi u kh n t là do ( ñư ( ăng nh
máy nào s n xu t?
Gii
Đt
: “s n ph m l y ra do máy (
s n xu t” v i
{
}
1, 2,3
(
)
(
)
(
)
1 2 3
0,6; 0,3; 0,1
= = =
:“sn ph m l y ra là ph ph m” ( (
(
)
(
)
(
)
  
= = =
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê Di
p Hoàng Ân
15
a/
:”sn ph m l y ra là s n ph m t t” ( (
(
)
(
)
(
)
(
)
(
)
(
)
(
)

= + + =
Ý ngh a, xác su t th hi n t l s n ph m t t c a lô hàng. ĩ % % (
b/ Xác su t l y ra s n ph m là ph ph m ( (
(
)
(
)

= =
Theo công th c Bayes
( )
(
)
(
)
(
)
(
)
(
)



= = = =
( )
(
)
(
)
(
)
(
)
(
)



= = = =
( )
(
)
(
)
(
)
(
)
(
)
 


= = = =
Do ó, s n ph m do máy 1 s n xu t ra ph ph m nhi u nh t. ñ ( (
1.28.
Chia ng u nhiên 9 t m vé s , trong ó có 3 vé trúng th ng, u cho 3 ñ ư' ñ
ngưi (m i ng ưi 3 t m). Tính xác su t ñ c 3 ng ưi ñu ñưc trúng thư'ng.
Gii
Đt
: “Ng i mua vé th ư
ñưc vé trúng th ng” v i ư'
{
}
1, 2,3
( ) ( ) ( ) ( )

= = =
1.29.
Trong s các b nh nhân ang c u tr t i m t b n, có 50% u % ñ ñư ñi %nh vi% ñi
tr b nh A, 30% u tr b nh B và 20% u tr b nh C. T i b nh vi n này, xác % ñi % ñi % % %
sut ñ ch a kh i các b nh A, B và C, theo th t , là 0,7; 0,8 và 0,9. Hãy tính t %
l% b c ch a kh i b nh A trong t ng s b nh nhân ã c ch a kh i %nh nhân ñư % $ % ñ ñư
b%nh trong b n. %nh vi%
Gii
Đt
: “b u tr b%nh nhân ñi %nh
” v i
{
}
, ,
: “b c kh i b nh” %nh nhân ñư %
Theo bài ta có: ñ
(
)
(
)
(
)
0,5; 0,3; 0, 2
= = =
(
)
(
)
(
)
/ 0,7; / 0,8; / 0,9
= = =
Xác su t b nh nhân kh i b nh là ñ % %
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê Di
p Hoàng Ân
16
( ) ( ) ( )
. / 0,5.0,7 0,3.0,8 0,2.0,9 0, 77
=
= = + + =
Xác su t b nh nhân tr kh i b nh A là ñ % %
( )
(
)
(
)
. |
0,5.0,7
| 45,45%
( ) 0,77
= = =
1.30.
Có hai bình nh sau: Bình A ch a 5 bi , 3 bi tr ng và 8 bi xanh; bình B ư ñ
cha 3 bi ñ 5 bi tr ng. Gieo m t con xúc x c vô t : N u m t 3 ho c m t 5 ư
xut hi n thì ch n ng u nhiên m t bi t bình B; các tr% ưng hp khác thì ch n ng u
nhiên m t bi t bình A. Tính xác su t ch n c viên bi u viên bi tr ñ ñư ñ. N ng
ñư ñc chn, tính xác sut mt 5 ca con xúc xc xut hi%n.
Gii
Đt
: “Gieo con xúc x c c m t 3 ho c m t 5”, ñư ă
=
: “L y t bình ra m t bi là bi ”. Ta có ñ

= + = + =
Gi
: “m t viên bi c ch n là bi tr ng” ñư

= + = + =
Đt
: “gieo con xúc x c c m t 5”. ñư
Xác su t m t 5 xu t hi n, bi t r ng bi c ch n là bi tr ng là % " ñư
( )
(
)
(
)
(
)



= = = =
1.31.
Có hai bình nh sau: Bình A ch a 5 bi , 3 bi tr ng và 8 bi xanh; bình B ư ñ
cha 3 bi ñ 5 bi tr ng.
L y ng u nhiên 3 viên bi t bình A b vào bình B, r i t bình B l y ng u
nhiên 1 viên bi thì c bi . Theo ý b n, viên bi ó v n thu c bình nào? ñư ñ ñ
Gii
Gi
: “ có
k
bi trong 3 viên bi l y t bình A b vào bình B” v i ñ
{
}
0,1, 2,3
Đt
: “L y m t bi t bình B ra là bi ”. ñ
 
 

 
 

  
=
= = + +
+ + =
Đt
: “bi sau cùng l y t bình B”. ñ
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê Di
p Hoàng Ân
17


= =
Do ó ñ
(
)
(
)
(
)
(
)

 
  
= = = = >
.
Vy, bi sau cùng nhi u kh n ng nh t là c a bình B. ñ ă
1.32.
Có hai chu ng nuôi th . Chu ng th nh t có 1 con th tr ng và 5 con th
nâu; chu ng th hai có 9 con th tr ng và 1 con th nâu. T m i chu ng b t ng u
nhiên ra m t con nghiên c u. Các con th còn l i c d n vào m t chu ng th ñ ñư
ba. T chu ng th ba này l i b t ng u nhiên ra m t con th . Tính xác su t con ñ
th b t ra sau cùng là m t con th nâu.
Gii
Đt
: “Th b t chu ng 1 ra nghiên c u là th nâu ” '
=
: “Th b t chu ng 2 ra nghiên c u là th nâu '

=
Gi
: “Th b t chu ng 3 ra nghiên c u là th nâu ” '
(
)
(
)
(
)
(
)
= + + +
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
= + +
+ +
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
= + +
+ +
( ) ( )
(
)
(
)
(
)
( ) ( )
(
)

    
= + + + =
1.33.
Ban giám c m t công ty liên doanh v i n c ngoài ang xem xét kh ñ ư ñ
năng ñình công ca công nhân ñ ñòi t ng l hai nhà máy A và B. Kinh ă ương '
nghi%m cho h bi t cu c ình công nhà máy A và B x y ra l n l t v i xác su t ñ ' ư
0,75 và 0,65. Ngoài ra, h c t r ng n nhà máy B ũng bi " u công nhân ' ñình công
thì có 90% kh n ng nhà máy A ình công ng h . ă ñ công nhân ' ñ
a/ Tính xác su t công nhân c hai nhà máy ình công. ñ ' ñ
b/ N u công nhân nhà máy A ình công thì xác su t công nhân nhà ' ñ ñ '
máy B ình công ng h b ng bao nhiêu? ñ ñ "
Gii
Đt :
: “ Công nhân nhà máy A” ñình công '

=
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê Di
p Hoàng Ân
18
: “Công nhân ình công nhày B” ñ '
(
)

= =
a/ Xác su t công nhân 2 nhà máy là ñình công '
(
)
(
)
(
)
. | , . , ,

 
= = =
b/ N u công nhân nhà máy A ình công thì xác su t nhà máy B ' ñ ñ công nhân '
ñình công là
( )
(
)
( )
,
| ,
,




= = =
1.34.
M t nhân viên ki m toán nh n th y 15% các b n cân i thu chi ch ñ a các
sai l m. Trong các b n ch a sai l m, 60% c xem là các giá tr b t th ng so ñư ư
vi các s xu t phát t g c. Trong t t c các b n cân i thu chi thì 20% là nh ñ ng
giá tr b t th ng. N u m t con s m t b ng cân i t ra b t th ng thì xác su t ư ' ñ ư
ñ s y là mt sai lm là bao nhiêu?
Gii
Đt
: “b n cân i thu chi ch a sai l m” ñ

=
: “b n cân i thu chi ch a giá tr b t th ng” ñ ư
(
)
= =
Xác su t 1 con s 1 b ng cân i t ra b t th ng là 1 sai l m: ' ñ ư
( )
(
)
( )
(
)
(
)
( )
. |
, . ,
| ,
,



= = = =
1.35.
M t hãng s n xu t m t lo i t l nh X c tính r ng 80% s ng i ư "ng kho ư
dùng t nh do hãng ng ng l nh có c qu ng cáo t l ñ y s n xu t. Trong s nh ưi
ñ ñc qung cáo, có 30% mua loi t lnh X; 10% không c qung cáo cũng mua
loi t l nh X. Tính xác su t ñ m t ng ưi tiêu dùng ã mua lo i t l nh X mà có ñ
ñc qung cáo.
Gii
Đt
: “ng i ó c qu ng cáo” ư ñ ñ
=
: “ng i ó mua t l nh X” ư ñ
( )
(
)
/ , ; / ,
= =
Trưc tiên tính xác su t ñ ngưi mua t l nh X
( ) ( )
(
)
( ) ( )
(
)
(
)
. / . / ,

= + = + =
Xác su t 1 ng i tiêu dùng ã mua lo i t l nh X mà có c qu ng cáo: ñ ư ñ ñ
( )
(
)
( )
(
)
(
)
( )
. |
, . ,
|
,


= = = =
1.36.
Trên m t b ng cáo, ng i ta m c hai h th èn c l p. H ng qu ư % ng bóng ñ ñ %
thng I g m 4 bóng m c n i ti p, h th ng II g m 3 bóng m c song song. Kh %
năng b h ng c a m i bóng trong 18 gi th p sáng liên t ,c là 0,1. Vi c h% ng ca
m i bóng c a m i h th % ng ñưc xem như ñc l p. Tính xác su t ñ
a/ H th ng I b h ng; %
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
19
b/ H th ng II không b h ng. %
Gii
a/ t Đ
:”bóng ñèn th
trong h th ng I bi h ng” %
{
}
.
Xác su t h th ng I b h % ng
(
)

= + + + = = =
b/ t Đ
:”bóng ñèn th
trong h th ng II bi h ng” %
{
}
.
Xác su t h th ng II không b h ng %
 
+ + = = =
1.37.
Trên m t b ng cáo, ng i ta m c hai h th èn c l p. H ng qu ư % ng bóng ñ ñ %
thng I g m 4 bóng m c n i ti p, h th ng II g m 3 bóng m c song song. Kh %
năng b h ng c a m i bóng trong 18 gi th p sáng liên t ,c là 0,1. Vi c h% ng ca
m i bóng c a m i h th % ng ñưc xem như ñc l p. Tính xác su t ñ
a/ C hai h th ng b h ng; %
b/ Ch có m t h th ng b h ng. %
Gii
a/ t Đ
: “bóng èn th ñ
trong h th ng I bi h ng” %
{
}
.
:”bóng ñèn th
trong h th ng II bi h ng” %
{
}
.
Xác su t h th ng I b h % ng
(
)
 
= + + + = = =
Xác su t h th ng II b h ng là: %
(
)

= =
Nên, xác su t c hai h th ng b h ng là %
  

= = =
b/ Xác su t ch có m t h th ng b h % ng

+ = + =
1.38.
M t lô hàng g m r t nhi èn, trong ó có 8% bóng èn x u. M t u bóng ñ ñ ñ
ngưi ñn mua hàng vi qui ñnh: Ch n ng èn em ki m tra và u nhiên 10 bóng ñ ñ
nu có nhi u h n m ơ t bóng ñèn x u thì không nh n lô hàng. Tính xác su t ñ
hàng ñưc ch p nh n.
Gii
Vi%c ki m tra 10 bóng èn, ngh a là th c hi n 10 phép th Bernoulli, v ñ ĩ % # i
xác su t “thành công” g u p bóng x

=
(không ñ$i).
Khi ó ñ
(
)
; , , . , , , , ,...,
= =


   
(
:s l n thành công trong 10 phép th ) #
Đt
: “nh n lô hàng”
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
20
(
)
(
)
(
)
(
)
(
)

  
     
= + = =
1.39.
Mt nhóm nghiên c u ang nghiên c u v nguy c m t s c t i m t nhà ñ ơ
máy n nguyên t s gây ra s rò r . Nhóm nghiên c u nh n th y các ñi% # + phóng x
loi s c ch th là: ho ho n, s gãy ñ$ c a v t li u ho c sai l m c a con %
ngưi, và 2 hay nhi u h ơn 2 s c không bao gi cùng x y ra.
Nu có h a ho n thì s rò r phóng x x y ra kho ng 20% s l n. N u có s
gãy c a v t li u thì s rò r phóng x x y ra kho ng 50% s l n, và n u có s ñ$ %
sai l m c a con ng i thì s rò r s x y ra kho ng 10% s l n. Nhóm nghiên c u ư +
cũng tìm c xác su t : Hoñư ñ hon và s rò r cùng x y ra là 0,0010, phóng x
gãy v t li u và s rò r cùng x y ra là 0,0015, sai l m c a con ng i ñ$ % phóng x ư
và s rò r phóng x cùng x y ra là 0,0012. Tìm xác su t ñ
a/ có ho ho n; có gãy v t li u và có sai l m c a con ng ñ$ % ưi;
b/ có m t s rò r phóng x ;
c/ m t s rò r phóng x c gây ra b i s sai l m c a con ng i. ñư ' ư
Gii
Đt
: “x y ra h a ho n”
: “x y ra gãy ñ$
: “x y ra sai l m c a con ng i” ư
: “s rò r phóng x
Ta có
(
)
(
)
(
)
(
)
(
)
(
)
 
  
  
= = =
= = =
a/ Xác su t có ho ho n là
( )
(
)
( )
,
|


= =
Xác su t có gãy v t li u là ñ$ %
( )
(
)
( )
,
|


= =
và xác su t sai l m c a con ng i ư
( )
(
)
( )
,
|


= =
b/ Xác su t có s rò r x y ra: phóng x
(
)
(
)
(
)
(
)
, , , ,
  
   
= + + = + + =
c/ Xác su t m t s rò r c gây ra b i s sai l m c a con ng i là phóng x ñư ' ư
(
)
(
)
 
 

= = =
1.40.
| 1/125

Preview text:

Bài tp Xác sut thng kê Dip Hoàng Ân c 1 : 1 - 2 8 c 2 : 2 9 - 4 0 c 3 : 4 1 - 5 7 c 4 : 5 8 - 6 5 BÀI TP c 5 : 6 5 - 9 3
XÁC SUT THNG KÊ c 6 ; 9 4 - 1 1 6 c 7 : 1 1 7 - 1 2 5 1 MATHEDUCARE.COM
Bài tp Xác sut thng kê Dip Hoàng Ân
CHƯƠNG 1: XÁC SUT 1.1.
Mt hp có 100 tm th như nhau ñưc ghi các s t 1 ñn 100, Rút ngu
nhiên hai th ri ñt theo th t t trái qua phi. Tính xác sut ñn
a/ Rút ñưc hai th lp nên mt s có hai ch s.
b/ Rút ñưc hai th lp nên mt s chia ht cho 5. Gii
a/ A :“Hai th rút ñưc lp nên mt s có hai ch s” 2 A 9.8 P ( A) 9 = = ≈ 0,0073 2 A 100.99 100
b/ B : “Hai th rút ñưc lp nên mt s chia ht cho 5”
S chia ht cho 5 tn cùng phi là 0 hoc 5. Đ có bin c B thích hp vi ta rút
th th hai mt cách tùy ý trong 20 th mang các s 5;10;15;20;…;95;100, và rút 1
trong 99 th còn li ñt vào v trí ñâu. Do ñó s trưng hp thun li cho là 99.20 99.20 P (B) = = 0, 20 2 A100 1.2.
Mt hp có cha 7 qu cu trng và 3 qu cu ñen cùng kích thưc. Rút
ngu nhiên cùng mt lúc 4 qu cu. Tính xác sut ñ trong 4 qu cu rút ñưc có a/ Hai qu cu ñen. b/ Ít nht 2 cu ñen c/ Toàn cu trng Gii
Rút ngu nhiên cùng 1 lúc 4 trong 10 qu cu nên s trưng hp ñng kh năng là 4 C 10
a/ A :”trong 4 qu cu rút có 2 qu cu ñen” 2 2 C .C P ( A) 3 7 = = 0,30 4 C10
b/ B :”trong 4 qu cu ñưc rút có ít nht 2 qu cu ñen” 2 2 3 1
C .C +C .C 1 P (B) 3 7 3 7 = = 4 C 3 10
c/ C:”trong 4 qu cu ñưc chn có toàn cu trng” 2 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân 4 C 1 P (C ) 7 = = 4 C 6 10 1.3.
Mt hp thuc có 5 ng thuc tt và 3 ng kém cht lưng. Chn ngu
nhiên ln lưt không tr li 2 ng. Tính xác sut ñ:
a/ C hai ng ñưc chn ñu tt.
b/ Ch ng ñưc chn ra ñu tiên là tt.
c/ trong hai ng có ít nht mt ng thuc tt. Gii
Chn ngu nhiên ln lưt không tr li 2 trong 8 ng nên các trưng hp ñng kh năng là 2 A . 8 2 A
a/ A :” C hai ng ñưc chn ñu tt” P( ) 5 A = ≈ 0,357 2 A8 1 1 C C b/ .
B :” Ch ng ñưc chn ra ñu tiên là tt” P (B) 3 5 = ≈ 0,268 2 A8 2 A
c/ C:” trong hai ng có ít nht mt ng thuc tt” P(C) 3 = 1− ≈ 0,893 2 A8 1.4.
Mt hp ñng 15 qu bóng bàn trong ñó có 9 qu mi. Ln ñu ngưi ta ly
ngu nhiên 3 qu ñ thi ñu, sau ñó li tr vào hp. Ln th hai ly ngu nhiên 3
qu. Tính xác sut ñ c 3 qu ly ra ln sau ñu mi. Gii
Đt A :” c 3 qu ly ra ln sau ñu mi”
B :” Trong 3 qu ly ra ñ thi ñu có i qu mi” i ∈{0;1;2; } 3 i
Ta thy các {B ; B ; B ; B lp thành nhóm ñy ñ các bin c, theo công thc xác 0 1 2 3} sut toàn phn ( ) =     
   +     
  +  
   +     
           = ( + + + )      ≈    1.5.
T mt lp có 8 n sinh viên và 12 nam sinh viên, ngưi ta chn ngu nhiên
5 sinh viên ñ lp Ban cán b lp (BCB). Tính xác sut ñ 3 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
a/ BCB gm 3 n và 2 nam,
b/ BCB có ít nht mt n,
c/ BCB có ít nht hai nam và hai n. Gii
Đt A : “BCB có k nam sinh viên” ( k ∈ 0,1,2,3,4,5 ), k { } chúng ta có: k 5 k C . C − 12 8 P (A ) k = 5 2 C 0
a/ BCB gm 3 n và 2 nam. Xác sut phi tính: 2 3 C12. C 8 77 P( 2 A ) = = 5 323 C20
b/ Đt N: “BCB có ít nht mt n”, thì N = 5 A . Do ñó,
P(N ) = P( 5 A ) = 1 − P( 5 A ) 5 0 C 12. C 8 33 613 = − = 1 − = 5 646 646 C20
c/ Đt H: “BCB có ít nht hai nam và hai n”. Do ñó,
P (H ) = P( A + P A 2) ( 3)      =     + =     1.6.
T mt hp cha 8 viên bi ñ và 5 viên bi trng ngưi ta ly ngu nhiên 2
ln, m i ln 1 viên bi, không hoàn li. Tính xác sut ñ ly ñưc a/ 2 viên bi ñ; b/ hai viên bi khác màu;
c/ viên bi th hai là bi trng. Gii Vi i ∈{1, } 2 , ñăt:
T : “viên bi ly ra ln th i là bi trng”, i
D : “viên bi ly ra ln th i là bi ñ”. i
a/ Đt A :“ly ñưc 2 viên bi ñ”, chúng ta có:
P (A) = P ( 8 7 14 1 D D2 )= P ( 1
D ).P (D2 / 1 D )= . = 13 12 39
b/ Đt B : “ly ñưc hai viên bi khác màu”, chúng ta có: 4 MATHEDUCARE.COM
Bài tp Xác sut thng kê Dip Hoàng Ân P (B ) =P (T D + D T = P T D + P D T 1 2 1 2 ) ( 1 2 ) ( 1 2 )
= P (T .P D / T + P D .P T / D 1 ) ( 2 1 ) ( 1 ) ( 2 1 ) Suy ra: 5 8 8 5 20
P(B) = 1312 + 1312 = 39
c/ T = TT + D T , nên xác sut phi tính là: 2 1 2 1 2
P (T = P TT + P D T 2 ) ( 1 2 ) ( 1 2 ) = P (T P T T + P D P D T 1 ). ( 2 / 1 ) ( 1 ). ( 2 / 1 ) suy ra P (T2) 5 4 8 5 5 = 13 12 + 13 12 = 13 1.7.
Mt công ty cn tuyn 4 nhân viên. Có 8 ngưi, gm 5 nam và 3 n np
ñơn xin d tuyn, và m i ngưi ñu có cơ hi ñưc tuyn như nhau. Tính xác sut
ñ trong 4 ngưi ñưc tuyn, a) có duy nht mt nam;
b) có ít nht mt n. Gii
Đt : “Có nam ñưc tuyn trong 4 nhân viên” ∈    1 3 Gi . 5
: “có duy nht 1 nam” () = () 5 3 = = 1 4 70 8
a) Gi : “có ít nht 1 n” 4 13 () 5
= 1− () = 1 4 − = 4 14 8 1.8.
Mt công ty cn tuyn 4 nhân viên. Có 8 ngưi, gm 5 nam và 3 n np
ñơn xin d tuyn, và m i ngưi ñu có cơ hi ñưc tuyn như nhau. Tính xác sut
ñ trong 4 ngưi ñưc tuyn, a/ có không quá hai nam;
b/ có ba n, bit r"ng có ít nht mt n ñã ñưc tuyn. Gii
Đt : “Có nam ñưc tuyn trong 4 nhân viên” ∈   
a/ Gi : “có không quá 2 nam” 1 3 2 2
.+. 1 () 5 3 5 3
= () + () 1 2 = = 4 2 8
b/ Gi : “chn ra 3 n, bit r"ng có ít nht 1 n ñưc tuyn”.
Gi B : “Có ít nht mt n ñưc chn”. 5 MATHEDUCARE.COM
Bài tp Xác sut thng kê Dip Hoàng Ân 4 Ta có 13 () 5 =1 − (   ) =1 − = 4 4 14 8 () 1 () 1
= (| ) = = 1 ( ) 13 1.9.
Mt c#a hàng sách ưc lưng r"ng: Trong t$ng s các khách hàng ñn c#a
hàng, có 30% khách cn hi nhân viên bán hàng, 20% khách mua sách và 15%
khách thc hi%n c hai ñiu trên. Gp ngu nhiên mt khách trong nhà sách. Tính
xác sut ñ ngưi này
a/ không thc hi%n c hai ñiu trên;
b/ không mua sách, bit r"ng ngưi này ñã hi nhân viên bán hàng. Gii
Đt : “khách hàng cn tư vn”
: “khách hàng cn mua sách”
Theo ñ ta có: () = 0,3;() = 0,2;( )= 0,15
a/ Xác sut khách hàng không cn mua sách cũng không cn tư vn là:
( ) = ( )
+ ( )− ( ) 3 2  15  13 . = 1− + 1− − 1−  = 10 10  100  20
b/ không mua sách, bit r"ng ngưi này ñã hi nhân viên bán hàng. 3 15 () − ( )
() −( ) 1 10 100 / = = = = ( ) ( ) 3 2 10 1.10.
Mt cuc ñiu tra cho thy, ' mt thành ph, có 20,7% dân s dùng loi
sn ph(m , 50% dùng loi sn ph(m và trong s nhng ngưi dùng , có
36,5% dùng . Phng vn ngu nhiên mt ngưi dân trong thành ph ñó, tính xác sut ñ ngưi y
a/ Dùng c ;
b/ Không dùng , cũng không dùng . Gii
Đt : “ ngưi dân trong thành ph dùng sn ph(m
: “ ngưi dân trong thành ph dùng sn ph(m
Theo ñ bài ta có: () = 0,207;() = 0,5;(| ) = 0,365
a) Xác sut ngưi dân ñó dùng c
() = () .(/ ) = 0,5.0,365 = 0,1825
b) Xác sut ngưi dân ñó không dùng c ( .
) = (). + () − ( )= 0,4755 1.11. 6 MATHEDUCARE.COM
Bài tp Xác sut thng kê Dip Hoàng Ân
Mt cuc ñiu tra cho thy, ' mt thành ph, có 20,7% dân s dùng loi
sn ph(m , 50% dùng loi sn ph(m và trong s nhng ngưi dùng , có
36,5% dùng . Phng vn ngu nhiên mt ngưi dân trong thành ph ñó, tính xác sut ñ ngưi y
a/ Dùng c ;
b/ Dùng , bit r"ng ngưi y không dùng . Gii
Đt : “ ngưi dân trong thành ph dùng sn ph(m
: “ ngưi dân trong thành ph dùng sn ph(m
Theo ñ bài ta có: () = 0,207;()= 0,5;(/) = 0,365
a/ Xác sut ngưi dân ñó dùng c
() = () .(/ ) = 0,5.0,365 = 0,1825
b/ Xác sut ngưi dân ñó dùng , bit r"ng không dùng
(.) () −( ) ( ) 0,5 −0,1852 / = = = = 0,404 () ( ) 1 −0,207 1.12.
Theo mt cuc ñiu tra thì xác sut ñ mt h gia ñình có máy vi tính nu
thu nhp hàng năm trên 20 tri%u (VNĐ) là 0,75. Trong s các h ñưc ñiu tra thì
60% có thu nhp trên 20 tri%u và 52% có máy vi tính. Tính xác sut ñ mt h gia
ñình ñưc chn ngu nhiên
a/ có máy vi tính và có thu nhp hàng năm trên 20 tri%u;
b/ có máy vi tính, nhưng không có thu nhp trên 20 tri%u. Gii
Đt : “H gia ñình ñưc chn ngu nhiên có máy vi tính”
: “H gia ñình ñưc chn ngu nhiên có thu nhp hàng năm trên 20 tri%u”
Theo ñ bài ta có: () = 0,52;() = 0,6;(/ ) = 0,75
a/ Xác sut ñ h gia ñình ñưc chn có máy vi tính và có thu nhp hàng năm trên 20 tri%u là:
P ( AB) = P( B ).P ( A/ B) = 0,6.0,75 = 0, 45
b/ Xác sut ñ h gia ñình ñưc chn có máy vi tính nhưng thu nhp ít hơn 20 tri%u là:
() = ( )
( ) = 0,52 − 0,45 = 0, 07 1.13.
Theo mt cuc ñiu tra thì xác sut ñ mt h gia ñình có máy vi tính nu
thu nhp hàng năm trên 20 tri%u (VNĐ) là 0,75. Trong s các h ñưc ñiu tra thì
60% có thu nhp trên 20 tri%u và 52% có máy vi tính. Tính xác sut ñ mt h gia
ñình ñưc chn ngu nhiên
a/ Có máy vi tính và có thu nhp hàng năm trên 20 tri%u;
b/ Có thu nhp hàng năm trên 20 tri%u, bit r"ng h ñó không có máy vi tính. 7 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân Gii
Đt : “H gia ñình ñưc chn ngu nhiên có máy vi tính”
: “H gia ñình ñưc chn ngu nhiên có thu nhp hàng năm trên 20 tri%u”
Theo ñ bài ta có: () = 0,52;() = 0,6;(/ ) = 0,75
a/ Xác sut ñ h gia ñình ñưc chn có máy vi tính và có thu nhp hàng năm trên 20 tri%u là:
P ( AB) = P( )
B .P( A / B) = 0,6.0,75 = 0, 45
b/ Xác sut ñ h gia ñình ñưc chn có thu nhp hàng năm trên 20 tri%u nhưng không có máy vi tính là: () ( )
() −( ) 0,6 −0, 45 / = = = = 0,3125 ( ) () 1 0 − ,52 1.14.
Trong mt ñi tuyn có hai vn ñng viên A và B thi ñu. A thi ñu trưc
và có hy vng 80% thng trn. Do nh hư'ng tinh thn, nu A thng trn thì có
60% kh năng B thng trn, còn nu A thua thì kh năng này ca B ch còn 30%.
Tính xác sut ca các bin c sau:
a/ Đi tuyn thng hai trn;
b/ Đi tuyn thng ít nht mt trn. Gii
Đt : “vn ñng viên thng” vi ∈{ ,  }
Theo ñ bài ta có:() = 0,8;(/ ) = 0,6;(/   )= 0,3
a/ Xác sut ñi tuyn thng 2 trn là (      ) = ( ) . ( /
) = 0, 8.0, 6 = 0, 48
b/ Đi tuyn thng ít nht mt trn nghĩa là có ít nht mt trong hai vn ñng viên
A, hoc B thng. Xác sut cn tính là: P (M M = P M + P MP M M A B ) ( B ) ( A) ( . A B ) = 0,54 + 0,8 − 0,48 = 0,86 1.15.
Trong mt ñi tuyn có hai vn ñng viên A và B thi ñu. A thi ñu trưc
và có hy vng 80% thng trn. Do nh hư'ng tinh thn, nu A thng trn thì có
60% kh năng B thng trn, còn nu A thua thì kh năng này ca B ch còn 30%.
Tính xác sut ca các bin c sau: a/ B thng trn;
b/ Đi tuyn ch thng có mt trn. Gii
Đt : “vn ñng viên thng” vi ∈{ ,  }
Theo ñ bài ta có:() = 0,8;(/ ) = 0,6;(/   )= 0,3
a/ Xác sut B thng trn là: P( M ) = (
P M ) P( M | M .) + P(M ).P (M | M ) = 0,54 B A B A A B A 8 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
b/ Đt : “ñi tuyn ch thng 1 trn”
Xác sut ñi tuyn ch thng 1 trn là:
P (D) = P (M .M B + P M M = P M P M M + P M P M M A
) ( A. B ) ( A) ( .A B) ( B) ( .A B ) = P (M + P MP M M A) ( B) 2. (
.A B)= 0,8 + 0,54 − 2.0,48 = 0,38 ` 1.16.
Đ thành lp ñi tuyn quc gia v mt môn hc, ngưi ta t$ chc mt cuc
thi tuyn gm 3 vòng. Vòng th nht ly 80% thí sinh; vòng th hai ly 70% thí
sinh ñã qua vòng th nht và vòng th ba ly 45% thí sinh ñã qua vòng th hai. Đ
vào ñưc ñi tuyn, thí sinh phi vưt qua ñưc c 3 vòng thi. Tính xác sut ñ mt thí sinh bt kỳ
a/ Đưc vào ñi tuyn;
b/ B loi ' vòng th ba. Gii
Đt : “thí sinh ñưc chn ' vòng ” vi { ∈ 1, 2, } 3 Theo ñ bài ta có:
( = 0,8;  | = 0,7;  |  = 0, 45 1 ) ( 2 1) ( 3 1 2 )
a/ Xác sut ñ thí sinh ñó ñưc vào ñi tuyn là
(   =   .  | .  |  = 0,8.0,7.0, 45 = 0,252 1 2 3 ) ( 1) ( 2 1 ) ( 3 1 2)
b/ Xác sut ñ thí sinh ñó b loi ' vòng th III là (  3
) = ( ).(/ ).( 3 / 1 2 1 2 1 1 2 )
= (.  | . 1−   |  = 0,8.0, 7.0,55 = 0,308 1 ) ( 2 1 ) ( ( 3 1 2 )) 1.17.
Đ thành lp ñi tuyn quc gia v mt môn hc, ngưi ta t$ chc mt cuc
thi tuyn gm 3 vòng. Vòng th nht ly 80% thí sinh; vòng th hai ly 70% thí
sinh ñã qua vòng th nht và vòng th ba ly 45% thí sinh ñã qua vòng th hai. Đ
vào ñưc ñi tuyn, thí sinh phi vưt qua ñưc c 3 vòng thi Tính xác sut ñ mt thí sinh bt kỳ
a/ Đưc vào ñi tuyn;
b/ B loi ' vòng th hai, bit r"ng thí sinh này b loi. Gii
Đt : “thí sinh ñưc chn ' vòng ” vi { ∈ 1, 2, } 3 Theo ñ bài ta có:
( = 0,8;  | = 0,7;  |  = 0, 45 1 ) ( 2 1) ( 3 1 2 )
a/ Xác sut ñ thí sinh ñó ñưc vào ñi tuyn là
(   =   .  | .  |  = 0,8.0,7.0, 45 = 0,252 1 2 3 ) ( 1) ( 2 1 ) ( 3 1 2)
b/ Đt K: “Thí sinh ñó b loi”
( ) = ( 1
) + (2
) + ( 3
) =1− () + ( ) − (  ) + ( 3 1 1 2 1 1 1 2 1 2 ) 9 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
=1 − ().(/ ) + (  3 =1 −0,8.0,7 +0,308 =0,748 1 2 1 1 2 )
Vy, xác sut ñ thí sinh ñó b loi ' vòng II, bit r"ng thí si nh ñó b loi là:
( 2.) (.2 ) ( ) .(2 | 1 1 1 ) ( 0,8 1− 0,7 2 | ) ( ) = = = = = 0,3209 ( ) () ( ) 0,748 1.18.
Mt lô hàng có 9 sn ph(m ging nhau. M i ln kim tra, ngưi ta chn
ngu nhiên 3 sn ph(m; kim tra xong tr sn ph(m li lô hàng. Tính xác sut ñ
sau 3 ln kim tra, 9 sn ph(m ñu ñưc kim tra. Gii
Chia 9 sn ph(m thành 3 nhóm. Gi : “Kim tra nhóm { ∈ 1, 2, } 3
Đt :”Sau 3 ln kim tra, 9 sn ph(m ñu ñưc kim tra”   ( )
    =              =   =              1.19.
Mt lp hc ca Trưng Đi hc AG có 2/3 là nam sinh viên và 1/3 là n
sinh viên. S sinh viên quê ' An Giang chim t l% 40% trong n sinh viên, và
chim t l% 60% trong nam sinh viên.
a) Chn ngu nhiên mt sinh viên ca lp. Tính xác sut ñ chn ñưc mt
sinh viên quê ' An Giang. Nu bit r"ng sinh viên va chn quê ' An
Giang thì xác sut ñ sinh viên ñó là nam b"ng bao nhiêu?
b) Chn ngu nhiên không hoàn li hai sinh viên ca lp. Tính xác sut ñ
có ít nht mt sinh viên quê ' An Giang, bit r"ng lp hc có 60 sinh viên. Gii a) Đt : 2
: “Chn ñưc sinh viên nam” ()= 3 1
: “Chn ñưc sinh viên n” () = 3
: “Chn ñưc sinh viên quê ' An Giang” 8
() = ( ) + ( ) = ( )  (| ) + ( )
 (| ) = 15 Do ñó, (  ) ( ) (   | ) 3
(|) = = = () () 4
b) Lp có 60 sinh viên suy ra có 40 sinh viên nam và 20 sinh viên n
S sinh viên Nam quê ' An Giang: 24
S sinh viên N quê ' An Giang: 8
Nên t$ng s sinh viên quê ' An Giang là 32 sinh viên
: “ít nht mt sinh viên quê ' An Giang” 2 232 28
() = 1− () = 1− = 2 295 60 1.20. 10 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
Có ba hp A, B và C ñng các l thuc. Hp A có 10 l tt và 5 l hng,
hp B có 6 l tt và 4 l hng, hp C có 5 l tt và 5 l hng
a/ Ly ngu nhiên t m i hp ra mt l thuc, tính xác sut ñ ñưc 3 l cùng loi.
b/ Ly ngu nhiên mt hp ri t hp ñó ly ra 3 l thuc thì ñưc 1 l tt
và 2 l hng. Tính xác sut ñ hp A ñã ñưc chn. Gii
a/ và :“l ly ra t hp th là tt” ∈ {}
Nên, xác sut ñ ñưc 3 l cùng loi    +  
  =     
  +                           =   +   =       
b/ Đt :“Ly ñưc hp th ∈ { 
 } ; :“Ly ñưc 2 l hng và 1 l tt”
 = ()   +     +     ( ) ( ) ( ) ( ) ( )                    = + + =          
Khi ñó xác sut ñ hp A ñưc chn (      ) ( ) ( ) 
 = = = =  () ()  1.21.
Có hai hp B và C ñng các l thuc. Hp B có 6 l tt và 4 l hng, hp C
có 5 l tt và 5 l hng. Ly ngu nhiên hai l thuc t hp B b vào hp C, ri
tip theo ly ngu nhiên mt l thuc t hp C thì ñưc l hng. Tính xác sut ñ
a/ L hng ñó là ca hp B b sang;
b/ Hai l thuc b t hp B vào hp C ñu là l hng. Gii
Gi : “Hai l thuc ly t hp B b vào hp C có l hng” ∈ {}
và ñt : “l thuc ly t hp C (sau khi ñã b 2 l t B b sang) b hng” 
 = () () + () () + () (=       ) 
a/ l hng ñó là ca hp B b sang    ()  +   (  )  ()  (  )
  = =      ()               = + =
          11 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
b/ hai l thuc b t hp B vào hp C ñu là l hng       
( )( )           = = = =     ()
        1.22.
Trong mt ñi tuyn có 3 vn ñng viên A, B và C thi ñu vi xác sut
chin thng ln lưt là 0,6; 0,7 và 0,8. Gi s# m i ngưi thi ñu mt trn ñc lp nhau.Tính xác sut ñ:
a/ ñi tuyn thng ít nht mt trn,
b/ ñi tuyn thng 2 trn. Gii Đt :
: “vn ñng viên A chin thng” ( ) = 0,6
: “vn ñng viên B chin thng” ( ) = 0,7
: “vn ñng viên C chin thng” ( ) = 0,8
a/ Gi : “ ñi tuyn thng ít nht 1 trn”
 =  − (
 )= −        =  
b/ Gi : “ ñi tuyn thng 2 trn”
 = (
 )+ (
 ) + (  ) =  1.23.
Trong mt ñi tuyn có 3 vn ñng viên A, B và C thi ñu vi xác sut
chin thng ln lưt là 0,6; 0,7 và 0,8. Gi s# m i ngưi thi ñu mt trn ñc lp nhau.Tính xác sut ñ:
a/ Đi tuyn thng ít nht mt trn,
b/ A thua trong trưng hp ñi tuyn thng 2 trn. Gii Đt :
: “vn ñng viên A chin thng” ( ) = 0,6
: “vn ñng viên B chin thng” ( ) = 0,7
: “vn ñng viên C chin thng” ( ) = 0,8
a/ Gi : “ ñi tuyn thng ít nht 1 trn”
 =  − (
 )= −        =  
b/ A thua trong trưng hp ñi tuyn thng 2 trn
Gi : “ ñi tuyn thng 2 trn”
 = (
 )+ (
 ) + (  ) =  12 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
(  )      = = = ≈            1.24.
Trong năm hc va qua, ' trưng ñi hc XYZ, t l% sinh viên thi trưt
môn Toán là 34%, thi trưt môn Tâm lý là 20,5%, và trong s các sinh viên trưt
môn Toán, có 50% sinh viên trưt môn Tâm lý. Gp ngu nhiên mt sinh viên ca trưng XYZ.
a/ Tính xác sut ñ anh ta trưt c hai môn Toán và Tâm lý; ñu c hai môn Toán và Tâm lý.
b/ Nu bit r"ng sinh viên này trưt môn Tâm lý thì xác sut ñ anh ta ñu môn Toán là bao nhiêu? Gii
: “sinh viên thi trưt môn Toán” ()= 0,34
: “sinh viên thi trưt môn Tâm Lý” () = 0,205
khi ñó (|) = 0,5
a/ Xác sut sinh viên trut môn c môn Toán và Tâm Lý  
  = () () =    = 
Xác sut sinh viên ñu c môn Toán và Tâm Lý ( )
=  −  
 ∪  =  − () − ( )
+ ( ) = 
b/ Xác sut sinh viên ñu môn Toán, bit r"ng trưt môn Tâm Lý: ()
() −() 
() = = = . ( ) ()  1.25.
Trong năm hc va qua, ' trưng ñi hc XYZ, t l% sinh viên thi trưt
môn Toán là 34%, thi trưt môn Tâm lý là 20,5%, và trong s các sinh viên trưt
môn Toán, có 50% sinh viên trưt môn Tâm lý. Chn ngu nhiên 12 sinh viên ca
trưng XYZ. Nhiu kh năng nht là s+ có bao nhiêu sinh viên thi trưt c hai môn
Toán và Tâm lý. Tính xác sut tương ng. Đáp s
Gi : “sinh viên thi trưt môn Toán” () = 0,34
: “sinh viên thi trưt môn Tâm Lý” () = 0,205 khi ñó (|)= 0,5
Xác sut sinh viên trut môn c môn Toán và Tâm Lý  
  = ()() =    = 
Nên, Sinh viên trưt c Toán và Tâm lý vi xác sut không ñ$i =  . 13 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
Do ñó, chn 12 sinh viên nghĩa là thc hi%n 12 phép th# Bernoulli vi xác
sut thành công (trưt c Toán và Tâm lý) không ñ$i =  .s sinh viên nhiu
kh năng trưt c hai môn (  )    + = =  .      
Xác sut tương ng là (2 )=(0,17 )2 . (1 − 0,17 )10 2 = 0, 296 . 12 12 1.26.
Trong năm hc va qua, ' trưng ñi hc XYZ, t l% sinh viên thi trưt
môn Toán là 34%, thi trưt môn Tâm lý là 20,5%, và trong s các sinh viên trưt
môn Toán, có 50% sinh viên trưt môn Tâm lý. Phi chn bao nhiêu sinh viên
ca trưng XYZ sao cho, vi xác sut không bé hơn 99%, trong s ñó có ít nht
mt sinh viên ñu c hai môn Toán và Tâm lý. Gii
: “sinh viên thi trưt môn Toán” () = 0,34
: “sinh viên thi trưt môn Tâm Lý” () = 0,205
khi ñó (|) = 0,5
Xác sut sinh viên ñu c môn Toán và Tâm Lý (   ) =  −  
 ∪  =  − () − ()+ ( ) =  
Gi n là s sinh viên cn chn. Xác sut ñ sinh viên ñu c hai môn Toán
và Tâm Lý không ñ$i =  nên ta có quá trình Bernoulli B (n, p) .
Đt : “ ít nht mt sinh viên ñu c hai môn Toán và Tâm Lý ”.
Theo yêu cu bài toán ta ñưc
() =  − ( )  =  − − ≥ ( )  
⇔   ≥ ( )⇔    ≥  ( )≥  
Vy, chn ít nht 5 sinh viên. 1.27.
Ba máy 1, 2 và 3 ca mt xí nghi%p sn xut, theo th t, 60%, 30% và
10% t$ng s sn ph(m ca mt xí nghi%p. T l% sn xut ra ph ph(m ca các máy
trên, theo th t, là 2%, 3% và 4%. Ly ngu nhiên mt sn ph(m t lô hàng ca
xí nghi%p, trong ñó ñ ln ln các sn ph(m do 3 máy sn xut.
a/ Tính xác sut ñ sn ph(m ly ra là sn ph(m tt. Ý nghĩa ca xác
sut ñó ñi vi lô hàng là gì?
b/ Nu sn ph(m ly ñưc là ph ph(m, thì nhiu kh năng nht là do máy nào sn xut? Gii
Đt : “sn ph(m ly ra do máy sn xut” vi ∈{1, 2, } 3
( = 0,6;  = 0,3;   = 0,1 1 ) ( 2) ( 3)
:“sn ph(m ly ra là ph ph(m”
(=     =    =  ) (  ) (  ) 14 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
a/ :”sn ph(m ly ra là sn ph(m tt”
() = ()() + ()() + ()(=        )
Ý nghĩa, xác sut th hi%n t l% sn ph(m tt ca lô hàng.
b/ Xác sut ly ra sn ph(m là ph ph(m
() =  − () =  Theo công thc Bayes (    
) ( )( ) 
(= = = =    ) () ()  
(
     ) ( ) (  ) (    = = = =    ) () ()   (    
) ()( ) 
(= = = =   ) () (  )  
Do ñó, sn ph(m do máy 1 sn xut ra ph ph(m nhiu nht. 1.28.
Chia ngu nhiên 9 tm vé s, trong ñó có 3 vé trúng thư'ng, ñu cho 3
ngưi (m i ngưi 3 tm). Tính xác sut ñ c 3 ngưi ñu ñưc trúng thư'ng. Gii
Đt : “Ngưi mua vé th ñưc vé trúng thư'ng” vi ∈{1, 2, } 3       ( ) = ( ) (  ) ( 
)                         =   =               1.29.
Trong s các b%nh nhân ñang ñưc ñiu tr ti mt b%nh vi%n, có 50% ñiu
tr b%nh A, 30% ñiu tr b%nh B và 20% ñiu tr b%nh C. Ti b%nh vi%n này, xác
sut ñ cha khi các b%nh A, B và C, theo th t, là 0,7; 0,8 và 0,9. Hãy tính t
l% b%nh nhân ñưc cha khi b%nh A trong t$ng s b%nh nhân ñã ñưc cha khi b%nh trong b%nh vi%n. Gii
Đt : “b%nh nhân ñiu tr b%nh ” vi {
,,}
: “b%nh nhân ñưc khi b%nh”
Theo ñ bài ta có: () = 0,5;() = 0,3;()= 0, 2
( / ) = 0,7; (/ ) = 0,8; (/ ) = 0,9
Xác sut ñ b%nh nhân khi b%nh là 15 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
() = ∑ (    = + + = ).
( / ) 0,5.0,7 0,3.0,8 0,2.0,9 0,77 =
Xác sut ñ b%nh nhân tr khi b%nh A là (    ) . ( | ) 0,5.0,7
(| = = = ) 45, 45% () 0,77 1.30.
Có hai bình như sau: Bình A cha 5 bi ñ, 3 bi trng và 8 bi xanh; bình B
cha 3 bi ñ và 5 bi trng. Gieo mt con xúc xc vô tư: Nu mt 3 hoc mt 5
xut hi%n thì chn ngu nhiên mt bi t bình B; các trưng hp khác thì chn ngu
nhiên mt bi t bình A. Tính xác sut ñ chn ñưc viên bi ñ. Nu viên bi trng
ñưc chn, tính xác sut ñ mt 5 ca con xúc xc xut hi%n. Gii Đt 
: “Gieo con xúc xc ñưc mt 3 hoăc mt 5”,     = 
: “Ly t bình ra mt bi là bi ñ”. Ta có           =    
   + 
  =  +  =      
Gi : “mt viên bi ñưc chn là bi trng”       
  =  
   +        =  +  =       
Đt : “gieo con xúc xc ñưc mt 5”.
Xác sut mt 5 xut hi%n, bit r"ng bi ñưc chn là bi trng là  () (  )              = = =   =  ()  ()     1.31.
Có hai bình như sau: Bình A cha 5 bi ñ, 3 bi trng và 8 bi xanh; bình B
cha 3 bi ñ và 5 bi trng.
Ly ngu nhiên 3 viên bi t bình A b vào bình B, ri t bình B ly ngu
nhiên 1 viên bi thì ñưc bi ñ. Theo ý bn, viên bi ñó vn thuc bình nào? Gii
Gi : “ có k bi ñ trong 3 viên bi ly t bình A b vào bình B” vi ∈{0,1,2, } 3
Đt : “Ly mt bi t bình B ra là bi ñ”.            =     
   =  +  + ∑    =               +  +  =       
Đt : “bi ñ sau cùng ly t bình B”. 16 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân        = =    () () Do ñó         = = =  = > . () ()    
Vy, bi ñ sau cùng nhiu kh năng nht là ca bình B. 1.32.
Có hai chung nuôi th. Chung th nht có 1 con th trng và 5 con th
nâu; chung th hai có 9 con th trng và 1 con th nâu. T m i chung bt ngu
nhiên ra mt con ñ nghiên cu. Các con th còn li ñưc dn vào mt chung th
ba. T chung th ba này li bt ngu nhiên ra mt con th. Tính xác sut ñ con
th bt ra sau cùng là mt con th nâu. Gii Đt 
: “Th bt ' chung 1 ra nghiên cu là th nâu ”   =  
: “Th bt ' chung 2 ra nghiên cu là th nâu” = 
Gi : “Th bt ' chung 3 ra nghiên cu là th nâu ” 
  = ( 
 ) + ( 
 ) + ( 
  )+ (   ) = ( 
  )( 
 ) +( 
  )(    ) +
+()() +()() = ( )
  ()( 
  ) +( )
  ()(   ) + + ( )   ( )
 (   )+ ( )  ( )
  (   ) = ( )
  ()  + ( )
  ()  + ( )
  ()  + ( )
  ()   =      1.33.
Ban giám ñc mt công ty liên doanh vi nưc ngoài ñang xem xét kh
năng ñình công ca công nhân ñ ñòi tăng lương ' hai nhà máy A và B. Kinh
nghi%m cho h bit cuc ñình công ' nhà máy A và B xy ra ln lưt vi xác sut
0,75 và 0,65. Ngoài ra, h cũng bit r"ng nu công nhân ' nhà máy B ñình công
thì có 90% kh năng ñ công nhân ' nhà máy A ñình công ng h.
a/ Tính xác sut ñ công nhân ' c hai nhà máy ñình công.
b/ Nu công nhân ' nhà máy A ñình công thì xác sut ñ công nhân ' nhà
máy B ñình công ñ ng h b"ng bao nhiêu? Gii
Đt : : “ Công nhân ñình công ' nhà máy A”   =   17 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
: “Công nhân ñình công ' nhà máy B” 
=   ( ) =  
a/ Xác sut công nhân ñình công ' 2 nhà máy là
() = ( )
.(| ) = , . , = ,
b/ Nu công nhân ' nhà máy A ñình công thì xác sut ñ công nhân ' nhà máy B ñình công là ( ) ,   ( | ) = = = ,   ( ) ,   1.34.
Mt nhân viên kim toán nhn thy 15% các bn cân ñi thu chi cha các
sai lm. Trong các bn cha sai lm, 60% ñưc xem là các giá tr bt thưng so
vi các s xut phát t gc. Trong tt c các bn cân ñi thu chi thì 20% là nhng
giá tr bt thưng. Nu mt con s ' mt bng cân ñi t ra bt thưng thì xác sut
ñ s y là mt sai lm là bao nhiêu? Gii
Đt : “bn cân ñi thu chi cha sai lm”   = 
: “bn cân ñi thu chi cha giá tr bt thưng” 
=  ( ) =  
Xác sut 1 con s ' 1 bng cân ñi t ra bt thưng là 1 sai lm: ( )
().(|) ,   .  ,  
( | ) = = = = ,   ( ) () ,   1.35.
Mt hãng sn xut mt loi t lnh X ưc tính r"ng khong 80% s ngưi
dùng t lnh có ñc qung cáo t lnh do hãng y sn xut. Trong s nhng ngưi
ñc qung cáo, có 30% mua loi t lnh X; 10% không ñc qung cáo cũng mua
loi t lnh X. Tính xác sut ñ mt ngưi tiêu dùng ñã mua loi t lnh X mà có ñc qung cáo. Gii
Đt : “ngưi ñó ñc qung cáo”   =  
: “ngưi ñó mua t lnh X” (/ ) = , ;  (/ ) = ,
Trưc tiên tính xác sut ñ ngưi mua t lnh X
( ) = ( )
+ ( ) = ( )
.(/ ) + ( )
.( / ) = ,  
Xác sut ñ 1 ngưi tiêu dùng ñã mua loi t lnh X mà có ñc qung cáo:
( ) ().(| ) ,  .  ,   
(| ) = = = = () ( ) ,  1.36.
Trên mt bng qung cáo, ngưi ta mc hai h% thng bóng ñèn ñc lp. H%
thng I gm 4 bóng mc ni tip, h% thng II gm 3 bóng mc song song. Kh
năng b hng ca m i bóng trong 18 gi thp sáng liên t,c là 0,1. Vi%c hng ca
m i bóng ca m i h% thng ñưc xem như ñc lp. Tính xác sut ñ a/ H% thng I b hng; 18 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
b/ H% thng II không b hng. Gii
a/ Đt :”bóng ñèn th trong h% thng I bi hng” ∈ {}.
Xác sut h% thng I b hng  = 
  + + +  =  − () 
=  −   =          
b/ Đt :”bóng ñèn th trong h% thng II bi hng” ∈ {}.
Xác sut h% thng II không b hng 
  + +  =  − 
   =  −  =         1.37.
Trên mt bng qung cáo, ngưi ta mc hai h% thng bóng ñèn ñc lp. H%
thng I gm 4 bóng mc ni tip, h% thng II gm 3 bóng mc song song. Kh
năng b hng ca m i bóng trong 18 gi thp sáng liên t,c là 0,1. Vi%c hng ca
m i bóng ca m i h% thng ñưc xem như ñc lp. Tính xác sut ñ
a/ C hai h% thng b hng;
b/ Ch có mt h% thng b hng. Gii
a/ Đt : “bóng ñèn th trong h% thng I bi hng” ∈ { }  .
:”bóng ñèn th trong h% thng II bi hng” ∈ {} .
Xác sut h% thng I b hng  = 
  + + +  = −  = −  =       (    )
Xác sut h% thng II b hng là: () = =    
Nên, xác sut c hai h% thng b hng là    =  
=    =  
b/ Xác sut ch có mt h% thng b hng 
  + =  +     
=   1.38.
Mt lô hàng gm rt nhiu bóng ñèn, trong ñó có 8% bóng ñèn xu. Mt
ngưi ñn mua hàng vi qui ñnh: Chn ngu nhiên 10 bóng ñèn ñem kim tra và
nu có nhiu hơn mt bóng ñèn xu thì không nhn lô hàng. Tính xác sut ñ lô hàng ñưc chp nhn. Gii
Vi%c kim tra 10 bóng ñèn, nghĩa là thc hi%n 10 phép th# Bernoulli, vi
xác sut “thành công” gp bóng xu =   (không ñ$i). Khi ñó            (; , ) , . ,  − =  , = , , ,...,
(:s ln thành công trong 10 phép th#)
Đt : “nhn lô hàng” 19 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân ( )
= (  ) + (  ) =( ) − (  )   =      1.39.
Mt nhóm nghiên cu ñang nghiên cu v nguy cơ mt s c ti mt nhà
máy ñi%n nguyên t# s+ gây ra s rò r phóng x. Nhóm nghiên cu nhn thy các
loi s c ch có th là: ho hon, s gãy ñ$ ca vt li%u hoc sai lm ca con
ngưi, và 2 hay nhiu hơn 2 s c không bao gi cùng xy ra.
Nu có ha hon thì s rò r phóng x xy ra khong 20% s ln. Nu có s
gãy ñ$ ca vt li%u thì s rò r phóng x xy ra khong 50% s ln, và nu có s
sai lm ca con ngưi thì s rò r s+ xy ra khong 10% s ln. Nhóm nghiên cu
cũng tìm ñưc xác sut ñ: Ho hon và s rò r phóng x cùng xy ra là 0,0010,
gãy ñ$ vt li%u và s rò r phóng x cùng xy ra là 0,0015, sai lm ca con ngưi
và s rò r phóng x cùng xy ra là 0,0012. Tìm xác sut ñ
a/ có ho hon; có gãy ñ$ vt li%u và có sai lm ca con ngưi;
b/ có mt s rò r phóng x;
c/ mt s rò r phóng x ñưc gây ra b'i s sai lm ca con ngưi. Gii
Đt : “xy ra ha hon”
: “xy ra gãy ñ$”
: “xy ra sai lm ca con ngưi”
: “s rò r phóng x” Ta có ( )
=  ( )
=  () =  ()
=   () =   () =  
a/ Xác sut có ho hon là ( ) ( ) = = ,  
(|)
Xác sut có gãy ñ$ vt li%u là ( ) () = = ,
(| )
và xác sut sai lm ca con ngưi ( ) () = = ,
(|)
b/ Xác sut có s rò r phóng x xy ra:
( ) = (  ) + (  ) + ( ) = ,   + ,
  +, = ,  
c/ Xác sut mt s rò r phóng x ñưc gây ra b'i s sai lm ca con ngưi là ()         = = = ()    1.40. 20 MATHEDUCARE.COM