Phương pháp giải toán 9 Ôn tập chương I (có đáp án và lời giải chi tiết)

Tổng hợp Phương pháp giải toán 9 Ôn tập chương I (có đáp án và lời giải chi tiết) rất hay và bổ ích giúp bạn đạt điểm cao. Các bạn tham khảo và ôn tập để chuẩn bị thật tốt cho kỳ thi tốt nghiệp sắp đến nhé. Mời bạn đọc đón xem.

Môn:

Toán 9 2.5 K tài liệu

Thông tin:
11 trang 10 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Phương pháp giải toán 9 Ôn tập chương I (có đáp án và lời giải chi tiết)

Tổng hợp Phương pháp giải toán 9 Ôn tập chương I (có đáp án và lời giải chi tiết) rất hay và bổ ích giúp bạn đạt điểm cao. Các bạn tham khảo và ôn tập để chuẩn bị thật tốt cho kỳ thi tốt nghiệp sắp đến nhé. Mời bạn đọc đón xem.

42 21 lượt tải Tải xuống
Trang 1
ÔN TẬP CHƯƠNG I
A. KIN THC TRNG TÂM
Vi s
a
không âm, ta có
2
0x
ax
xa

.
Vi
,0ab
thì
a b a b
.
A
có nghĩa khi và chỉ khi
0A
.
Vi mi s thc
,ab
thì
33
a b a b
.
Các công thc biến đổi căn thức
(1)
; (2)
AB A B
(vi
0; 0AB
);
(3)
AA
B
B
(vi
0; 0AB
); (4)
2
||A B A B
(vi
0B
);
(5)
2
A B A B
(vi
0; 0AB
); (6)
||
A AB
BB
(vi
0AB
0B
);
(7)
A A B
B
B
(vi
0B
); (8)
2
()C C A B
AB
AB
(vi
0A
2
AB
);
(9)
()C C A B
AB
AB
(vi
0; 0;A B A B
).
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Tìm điều kiện để căn thức xác định (hay có nghĩa)
Vi A, B là các biu thc, ta có
A
có nghĩa khi và chỉ khi
0A
.
A
B
có nghĩa khi và chỉ khi
0B
.
A
B
có nghĩa khi và chỉ khi
0B
.
Ví d 1. Tìm điều kin ca
x
để các căn thức sau xác định
a)
35x
; b)
12x
; c)
5
2x
.
Ví d 2. Tìm điều kin ca
x
để các biu thức sau xác định
a)
1
24
1
x
x

; b)
3
21
x
x
.
Dng 2: Rút gn biu thc. Tính giá tr ca biu thc
Tìm điều kiện để biu thức có nghĩa (nếu cn).
Áp dng các công thc biến đổi căn thức, quy tc thc hin các phép tính v phân thc
Trang 2
đại s để rút gn biu thc.
Thay giá tr ca biến vào biu thức đã rút gọn ri thc hin phép tính.
Ví d 3. Rút gn các biu thc sau
a)
9 25 49 1
: : 3
16 36 8 8
;
b)
2 2 2 2
45,8 44,2 6 ( 2 1) ( 2 1)


.
Ví d 4. Rút gn các biu thc sau
a)
22
22
1 165 124 32
4
34 164 176 112
;
b)
5( 6 1) 2 3
6 1 2 3


.
Ví d 5. Rút gn biu thc
2 9 3 2 1
5 6 2 3
x x x
P
x x x x
.
Ví d 6. Cho biu thc
2 1 3 11
9
33
x x x
P
x
xx


.
a) Rút gn
P
.
b) Tính giá tr ca
P
vi
7 4 3
4
x
.
Ví d 7. Cho biu thc
1 5 6 6
:
9
3 3 2
P
x
x x x



.
a) Rút gn
P
.
b) Tính các giá tr nguyên ca
x
để
P
có giá tr nguyên.
Dng 3: Chng minh biu thc có mt tính chất nào đó
Trước tiên tìm điều kiện để biu thức có nghĩa.
Rút gn biu thc ri kết lun.
Ví d 8. Cho biu thc
31
:
9
33
xx
P
x
xx





.
a) Rút gn
P
.
b) Chng minh rng
1
3
P
.
Trang 3
Ví d 9. Cho biu thc
11
1 1 1
x x x
P
x x x x x
.
a) Rút gn
P
.
b) Chng minh rng biu thc
P
luôn luôn không âm vi mi giá tr ca
x
làm
P
xác định.
Ví d 10. Cho biu thc
1
:
1
xx
P
x x x x






.
a) Rút gn
P
.
b) Tìm giá tr ln nht ca
P
.
Dng 4: Giải phương trình
Tìm điều kiện để hai vế của phương trình có nghĩa (nếu cn).
Áp dng công thc biến đổi căn thức để đưa phương trình về dạng đơn giản hơn.
Nếu hai vế đều không âm thì ta có th bình phương hai vế để kh dấu căn.
Ví d 11. Giải phương trình
a)
2
25(3 1) 10x 
; b)
35
32
xx
xx


.
Ví d 12. Giải phương trình
a)
2
5 (2 1) 2xx
; b)
21x x x
.
C. BÀI TP VN DNG
I. PHN TRC NGHIM
Câu 1. Điu kiện xác định ca biu thc
15x
A.
15x 
. B.
15x
. C.
15x 
. D.
15x
.
Câu 2. Tìm
x
để biu thc
2
1
( 2)x
có nghĩa.
A.
2x
. B.
2x
. C.
2x 
. D.
2x
.
Câu 3. Tìm nghim của phương trình
11
.
22
x
x
A.
2x
. B.
3x
. C.
6x
. D.
1x
.
Câu 4. Cho
0a
, rút gn biu thc
3
a
a
ta được kết qu
A.
2
a
. B.
a
. C.
a
. D.
a
.
Trang 4
Câu 5. Cho
13 4 3 3ab
vi
a
,
b
là các s nguyên. Tính giá tr ca biu thc
33
T a b
.
A.
9T
. B.
7T
. C.
9T 
. D.
7T 
.
Câu 6. Kết qu ca phép tính
2
2 5 5
A.
2 5 2
. B.
2
. C.
2
. D.
2 2 5
.
Câu 7. Điu kiện để biu thc
42x
xác định là
A.
2x
. B.
2x
. C.
2x
. D.
2x
.
Câu 8. Cho biu thc
22
( 3 1) (1 3)P
. Khẳng định nào sau đây đúng.
A.
2P
. B.
2 2 3P 
. C.
23P 
. D.
23P
.
Câu 9. Tìm điều kin ca
x
để biu thc
2
56xx
có nghĩa.
A.
2x
. B.
2x
hoc
3x
.
C.
23x
. D.
3x
.
Câu 10. Tìm điều kin ca
x
để đẳng thc
22
3
3
xx
x
x

đúng.
A.
2x
. B.
2x 
. C.
3x 
. D.
3x
.
Câu 11. Giá tr ca
x
tha mãn
8 4 2x
A.
3
2
x 
. B.
1x
. C.
1x 
. D.
3
2
x
.
Câu 12. Cho
2
44K a a a
vi
2a
. Khẳng định nào sau đây đúng?
A.
2K 
. B.
2K
. C.
22Ka
. D.
22Ka
.
Câu 13. Tìm tt c các giá tr ca
x
tha mãn
2
(2 1) 9.x
A.
5x 
,
4x
. B.
5x
,
4x
.
C.
5x 
,
4x 
. D.
5x
,
4x 
.
Câu 14. Chn khẳng định \textbf{đúng} trong các khẳng định sau
A.
2019 2018
4 3 7 4 3 7 4 3 7
.
B.
2019 2018
4 3 7 4 3 7 4 3 7
.
Trang 5
C.
2018 2019
4 3 7 4 3 7 7 4 3
.
D.
2018 2019
4 3 7 4 3 7 4 3 7
.
Câu 15. Kết qu rút gn biu thc
11
13 15 15 17

A.
13 17
2
. B.
17 13
2
. C.
17 13
. D.
17 13
2
.
Câu 16. Cho
63
3 9 6A a a
, vi
0a
. Khẳng định nào sau đây đúng?
A.
3
3Aa
. B.
0A
. C.
3
3Aa
. D.
3
15Aa
.
Câu 17. Tìm các giá tr ca
a
sao cho
1
0
a
a
.
A.
0a
. B.
01a
. C.
1a
. D.
01a
.
Câu 18. Cho
2
4 4 4Q a a a
, vi
2a
. Khẳng định nào sau đây?
A.
52Qa
. B.
32Qa
. C.
32Qa
. D.
52Qa
.
Câu 19. Kết qu rút gn biu thc
11
4
22
x
A
x
xx

vi
0x
,
4x
dng
xm
xn
.
Tính giá tr ca
mn
.
A.
2mn
. B.
4mn
. C.
4mn
. D.
2mn
.
Câu 20. Rút gn biu thc
2
4(1 6 9 )Q x x
vi
1
3
x 
.
A.
2(1 3 )Qx
. B.
2(1 3 )Qx
. C.
2(1 3 )Qx
. D.
2(1 3 )Qx
.
Câu 21. Kết qu rút gn ca biu thc
1 1 2
:
1
11
a
K
a
a a a a







(vi
0a
,
1a
)
có dng
ma n
a
. Tính giá tr
22
.mn
A.
22
10mn
. B.
22
2mn
. C.
22
1mn
. D.
22
5mn
.
Câu 22. Giá tr ca biu thc
225
49
16
bng
A.
13
4
. B.
13
4
. C.
43
4
. D.
43
4
.
Trang 6
Câu 23. Đẳng thức nào dưới đây đúng?
A.
2
7 ( 7)( 7)x x x
. B.
2
7 7 7x x x
.
C.
2
7 (7 )(7 )x x x
. D.
2
7 7 7x x x
.
Câu 24. Tính
4 16.M 
A.
6M
. B.
25M
. C.
52M
. D.
20M
.
Câu 25. Điu kin ca
x
để
4 x
có nghĩa là
A.
4x
. B.
1
4
x
. C.
1
4
x
. D.
4x
.
Câu 26. Tìm tt c các giá tr ca
x
để biu thc
2x
có nghĩa.
A.
2x
. B.
2x
. C.
2x
. D.
0x
.
Câu 27. Đẳng thức nào sau đây đúng với mi
0x
?
A.
2
93xx
. B.
2
93xx
. C.
2
99xx
. D.
2
99xx
.
Câu 28. Cho
2
46P a a
. Khẳng định nào dưới đây đúng.
A.
4Pa
. B.
4| |Pa
. C.
2 6| |P a a
. D.
2| | 6P a a
.
Câu 29. Tính
12
3
M
.
A.
4M
. B.
3M
. C.
1M
. D.
2M
.
Câu 30. Cho biu thc
2Pa
vi
0a
. Khi đó biểu thc
P
bng
A.
2a
. B.
2a
. C.
2
2a
. D.
2
2a
.
Câu 31. Tính
9. 4M
.
A.
6M
. B.
5M
. C.
13M
. D.
36M
.
Câu 32. Cho
33
33
( 1) ( 1)M a a
. Khẳng định nào sau đây đúng?
A.
2Ma
. B.
1Ma
. C.
Ma
. D.
2Ma
.
II. PHN T LUN
Bài 1. Rút gn các biu thc sau
Trang 7
a)
9 4 5 9 4 5A
; b)
2
10 25B x x x
vi
0x
.
Bài 2. Tính
a)
( 8 18 5)( 50 5)
; b)
3 1 3 2 2 3 1
2 3 4

.
Bài 3. Giải phương trình
4 2 2
3
72
x
x
.
Bài 4. Cho biu thc
1 2 1
:
2
12
xx
P
x x x
.
a) Rút gn
.P
b) Tính giá tr ca
P
khi
3 2 2x 
.
c) Tìm
x
để
1.P
Bài 5. Cho biu thc
3 1 1
11
x x x
P
x x x x x x x



.
a) Rút gn
P
.
b) Tìm các giá tr ca
x
để
10P
.
c) Tìm các giá tr nguyên ca
x
để
P
có giá tr nguyên.
Bài 6. [TS10 Hà Tĩnh, 2018-2019] Rút gn biu thc
75 3P 
.
Bài 7. [TS10 Ngh An, 2018-2019]
a) So sánh
2 3 27
74
.
b) Chứng minh đẳng thc
1 1 4
1
4
22
x
xx




, vi
0x
4x
.
Bài 8. [TS10 Bc Giang, 2018-2019] Tính giá tr ca biu thc
5 20 5 1A
.
Bài 9. [TS10 Trà Vinh, 2018-2019] Rút gn biu thc
2 75 3 48 4 27.
Bài 10. [TS10 Phú Yên, 2018-2019] So sánh
5
26
.
Bài 11. [TS10 Qung Tr, 2018-2019] Rút gn biu thc
2 5 3 45A 
.
Bài 12. [TS10 Hà Nam, 2018-2019] Cho biu thc
32
9
33
aa
B
a
aa

vi
0, 9aa
.
Trang 8
a) Rút gn
B
.
b) Tìm các s nguyên
a
để
B
nhn giá tr nguyên.
Bài 13. [TS10 Điện Biên, 2018-2019] Cho biu thc
2
1 1 1
: , v?i 0, 1.
1
1
x
A x x
x x x
x




a) Rút gn biu thc
A
.
b) Tìm giá tr ln nht ca biu thc
9P A x
.
Bài 14. [TS10 Hà Ni, 2018-2019]
Cho hai biu thc
4
1
x
A
x
3 1 2
2 3 3
x
B
x x x

vi
0x
,
1x
.
a) Tính giá tr ca biu thc
A
khi
9x
.
b) Chng minh
1
1
B
x
.
c) Tìm tt c giá tr ca
x
để
5.
4
Ax
B
Bài 15. [TS10 Bình Thun, 2018-2019] Rút gn biu thc
6 2 2 16 12A
.
Bài 16. [TS10 Thái Nguyên, 2018-2019] Không dùng máy tính cm tay, tính giá tr ca biu thc
15 12 1
.
5 2 2 3
A


Bài 17. [TS10 Thanh Hóa, 2018-2019] Cho biu thc
1
:
4 4 2 2
x x x
A
x x x x x




, vi
0x
.
a) Rút gn biu thc
A
.
b) Tìm tt c các giá tr ca
x
để
1
3
A
x
.
Bài 18. [TS10 Bc Kn, 2018-2019] Rút gn biu thc sau
11
2
1 2 1
x
B
xx




vi
1
0, 1,
4
x x x
.
Trang 9
Bài 19. [TS10 Đà Nẵng, 2018-2019] Trục căn thức mu ca biu thc
1
.
23
A
Bài 20. [TS10 Tin Giang, 2018-2019] Tính giá tr ca biu thc
1
4 2 3 12
2
A
.
Bài 21. [TS10 Đà Nẵng, 2018-2019] Cho
0, 4.aa
Chng minh
2( 2)
1.
4
2
aa
a
a

Bài 22. [TS10 Lai Châu, 2018-2019]
Cho biu thc
2 3 9
9
33
x x x
A
x
xx

(vi
0x
9x
).
a) Rút gn biu thc
A
.
b) Tìm giá tr ln nht ca biu thc
A
.
Bài 23. [TS10 Lạng Sơn, 2018-2019] Cho biu thc
1 16
3
4 3 11
x
Q
xx




.
a) Tính
Q
khi
25x
.
b) Rút gn biu thc
Q
đã cho ở trên.
Bài 24. [TS10 Sóc Trăng, 2018-2019] Các đẳng thức sau đúng hay sai, giải thích?
a)
2
( 3) 3
. b)
xy
xy
xy

vi
0, 0xy
.
Bài 25. [TS10 Đồng Tháp, 2018-2019] Tính
81 16H 
.
Bài 26. [TS10 Đồng Tháp, 2018-2019] Tìm điều kin ca
x
để
2x
có nghĩa.
Bài 27. [TS10 Bc Kn, 2018-2019] Rút gn biu thc
2 20 3 45 4 80A
.
Bài 28. [TS10 Hòa Bình, 2018-2019] Rút gn:
12 3A 
.
Bài 29. [TS10 Lạng Sơn, 2018-2019] Tính giá tr ca các biu thc sau
a)
36 5A 
; b)
2
11 5 5B
; c)
3 3 2 3C
.
Bài 30. [TS10 Cần Thơ, 2018-2019] Rút gn biu thc
1
9 4 5
52
A
.
Bài 31. [TS10 Ninh Bình, 2018-2019] Rút gn biu thc:
3 5 20P 
.
Bài 32. [TS10 Bình Phước, 2018-2019] Tính giá tr ca các biu thc
Trang 10
a)
36 25M 
. b)
2
5 1 5N
.
Bài 33. [TS10 Vĩnh Long, 2018-2019]
a) Tính giá tr biu thc
3 27 2 12 4 48A
.
b) Rút gn biu thc
1
7 4 3
23
B
.
Bài 34. [TS10 Hà Nam, 2018-2019] Rút gn các biu thc
11
2 8 6 3
22
A
.
Bài 35. [TS10 Hưng Yên, 2018-2019] Rút gn biu thc
3 12 3 27.P
Bài 36. [TS10 Lào Cai, 2018-2019] Tính giá tr ca các biu thc sau:
a)
16 9 2A
. b)
2
3 1 1B
.
Bài 37. [TS10 Bc Liêu, 2018-2019] Rút gn biu thc
a)
45 20 2 5A
. b)
24
22
a a a
B
aa



, (vi
0; 4aa
).
Bài 38. [TS10 Vũng Tàu, 2018-2019] Rút gn biu thc
3
12
16 8 .
3
P
Bài 39. [TS10 Bình Định, 2018-2019] Cho biu thc
11
1 2 1
x
A
x x x x x



, vi
0x
.
a) Rút gn biu thc
A
.
b) Tìm các giá tr ca
x
để
1
2
A
.
Bài 40. [TS10 Nam Định, 2018-2019]
Cho biu thc
2
4 2 1
1 3 2
x x x
M
x
x x x





, vi
0x
,
1x
,
4x
.
a) Rút gn
M
.
b) Tìm
x
để
4M
.
Bài 41. [TS10 Bình Phước, 2018-2019] Cho biu thc
1
1
xx
P
x

, vi
0x
1x
.
Trang 11
a) Rút gn biu thc
P
.
b) Tìm các giá tr ca
x
, biết
3P
.
Bài 42. [TS10 Thái Bình, 2018-2019] Cho biu thc
1
1
x
A
xx

.
a) Tính giá tr biu thc
A
vi
4
9
x
.
b) Tìm điều kiện để biu thc
A
có nghĩa.
c) Tìm
x
để
3
2
A
.
Bài 43. [TS10 Lào Cai, 2018-2019]
Cho biu thc
6 1 1 2 6
:
1
33
xx
P
x
x x x x






vi
0x
,
9x
.
a) Rút gn biu thc
P
.
b) Tìm
x
để
1P
.
Bài 44. [TS10 Đắk Lk, 2018-2019] Tìm
x
biết
23x
.
Bài 45. [TS10 Long An, 2018-2019]
a) Rút gn biu thc
3 27 4 3.T
b) Rút gn biu thc
1 1 2
:
16
44
x
A
x
xx





vi
0, 16xx
.
c) Giải phương trình
2
8 16 2xx
.
--- HT ---
| 1/11

Preview text:

ÔN TẬP CHƯƠNG I
A. KIẾN THỨC TRỌNG TÂM x 0
 Với số a không âm, ta có a x   . 2 x a
 Với a,b  0 thì a b a b . 
A có nghĩa khi và chỉ khi A  0 .
 Với mọi số thực a,b thì 3 3 a b a b .
 Các công thức biến đổi căn thức (1) 2 A A ; (2) AB
A B (với A  0; B  0 ); A A (3) 
(với A  0; B  0 ); (4) 2 A B |
A |  B (với B  0); B B A AB (5) 2 A B
A B (với A  0; B  0 ); (6) 
(với AB  0 và B  0 ); B | B | A A B C C( A B) (7)  (với B  0 ); (8)  (với A  0 và 2 A B ); B B 2 A B A B C C( A B ) (9) 
(với A  0; B  0; A B ). A B A B
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Tìm điều kiện để căn thức xác định (hay có nghĩa)
Với A, B là các biểu thức, ta có 
A có nghĩa khi và chỉ khi A  0 .  A
có nghĩa khi và chỉ khi B  0 . BA
có nghĩa khi và chỉ khi B  0 . B
Ví dụ 1. Tìm điều kiện của x để các căn thức sau xác định 5 a) 3x  5 ; b) 1 2x ; c) . x  2
Ví dụ 2. Tìm điều kiện của x để các biểu thức sau xác định 1 x  3 a) 2x  4  ; b) . x 1 2x 1
Dạng 2: Rút gọn biểu thức. Tính giá trị của biểu thức
 Tìm điều kiện để biểu thức có nghĩa (nếu cần).
 Áp dụng các công thức biến đổi căn thức, quy tắc thực hiện các phép tính về phân thức Trang 1
đại số để rút gọn biểu thức.
 Thay giá trị của biến vào biểu thức đã rút gọn rồi thực hiện phép tính.
Ví dụ 3. Rút gọn các biểu thức sau 9 25 49 1 a) :  : 3 ; 16 36 8 8 b) 2 2 2 2
45,8  44, 2  6 ( 2 1)  ( 2 1)    .
Ví dụ 4. Rút gọn các biểu thức sau 2 2 1 165 124 32 a)  4 ; 2 2 34 164 176 112 5( 6 1) 2  3 b)  . 6 1 2  3 2 x  9 x  3 2 x 1
Ví dụ 5. Rút gọn biểu thức P    . x  5 x  6 x  2 3  x 2 x x 1 3 11 x
Ví dụ 6. Cho biểu thức P    . x  3 x  3 9  x a) Rút gọn P . 7  4 3
b) Tính giá trị của P với x  . 4  1 5 6  6
Ví dụ 7. Cho biểu thức P    :   .  x  3 x  3 9  x x  2 a) Rút gọn P .
b) Tính các giá trị nguyên của x để P có giá trị nguyên.
Dạng 3: Chứng minh biểu thức có một tính chất nào đó
 Trước tiên tìm điều kiện để biểu thức có nghĩa.
 Rút gọn biểu thức rồi kết luận.  x  3 1  x
Ví dụ 8. Cho biểu thức P   :   .  x  9 x  3  x  3 a) Rút gọn P . 1
b) Chứng minh rằng P  . 3 Trang 2 1 1 x x x
Ví dụ 9. Cho biểu thức P    . x 1  x x 1  x x 1 a) Rút gọn P .
b) Chứng minh rằng biểu thức P luôn luôn không âm với mọi giá trị của x làm P xác định. x  1 x
Ví dụ 10. Cho biểu thức P  :      . x x x x 1   a) Rút gọn P .
b) Tìm giá trị lớn nhất của P .
Dạng 4: Giải phương trình
 Tìm điều kiện để hai vế của phương trình có nghĩa (nếu cần).
 Áp dụng công thức biến đổi căn thức để đưa phương trình về dạng đơn giản hơn.
 Nếu hai vế đều không âm thì ta có thể bình phương hai vế để khử dấu căn.
Ví dụ 11. Giải phương trình x  3 x  5 a) 2 25(3x 1)  10 ; b)  . x  3 x  2
Ví dụ 12. Giải phương trình a) 2
5x  (2x 1)  2 ;
b) x  2 x 1  x .
C. BÀI TẬP VẬN DỤNG
I. PHẦN TRẮC NGHIỆM
Câu 1. Điều kiện xác định của biểu thức x 15 là A. x  15  . B. x 15. C. x  15  . D. x 15. 1
Câu 2. Tìm x để biểu thức có nghĩa. 2 (x  2) A. x  2 . B. x  2 . C. x  2  . D. x  2 . x
Câu 3. Tìm nghiệm của phương trình 1 1  . x  2 2 A. x  2 . B. x  3. C. x  6 . D. x 1. 3 a
Câu 4. Cho a  0 , rút gọn biểu thức ta được kết quả a A. 2 a . B. a . C. a . D. a . Trang 3
Câu 5. Cho 13  4 3  a 3  b với a , b là các số nguyên. Tính giá trị của biểu thức 3 3
T a b . A. T  9 . B. T  7 . C. T  9  . D. T  7  .
Câu 6. Kết quả của phép tính   2 2 5  5 là A. 2 5  2 . B. 2  . C. 2 . D. 2  2 5 .
Câu 7. Điều kiện để biểu thức 4  2x xác định là A. x  2 . B. x  2 . C. x  2 . D. x  2 .
Câu 8. Cho biểu thức 2 2
P  ( 3 1)  (1 3) . Khẳng định nào sau đây đúng. A. P  2 . B. P  2  2 3 . C. P  2  3 . D. P  2 3 .
Câu 9. Tìm điều kiện của x để biểu thức 2
x  5x  6 có nghĩa. A. x  2 .
B. x  2 hoặc x  3. C. 2  x  3 . D. x  3. x  2 x  2
Câu 10. Tìm điều kiện của x để đẳng thức  đúng. x  3 x  3 A. x  2 . B. x  2  . C. x  3  . D. x  3 .
Câu 11. Giá trị của x thỏa mãn 8  4x  2 là 3 3 A. x   . B. x 1. C. x  1  . D. x  . 2 2 Câu 12. Cho 2
K a a  4a  4 với a  2 . Khẳng định nào sau đây đúng? A. K  2  . B. K  2 .
C. K  2a  2 .
D. K  2a  2 .
Câu 13. Tìm tất cả các giá trị của x thỏa mãn 2 (2x 1)  9. A. x  5  , x  4 .
B. x  5, x  4 . C. x  5  , x  4  .
D. x  5, x  4  .
Câu 14. Chọn khẳng định \textbf{đúng} trong các khẳng định sau 2019 2018 A. 4 3  7 4 37  4 37. 2019 2018 B. 4 3  7 4 37  4 37. Trang 4 2018 2019 C. 4 3  7 4 37 74 3 . 2018 2019 D. 4 3  7 4 37 4 37. 1 1
Câu 15. Kết quả rút gọn biểu thức  là 13  15 15  17 13  17 17  13 17  13 A. . B. . C. 17  13 . D. . 2 2 2 Câu 16. Cho 6 3
A  3 9a  6a , với a  0 . Khẳng định nào sau đây đúng? A. 3 A  3  a . B. A  0 . C. 3 A  3a . D. 3 A  15a . a 1
Câu 17. Tìm các giá trị của a sao cho  0 . a A. a  0 . B. 0  a 1 . C. a 1 . D. 0  a 1 . Câu 18. Cho 2
Q  4a a  4a  4 , với a  2 . Khẳng định nào sau đây?
A. Q  5a  2 .
B. Q  3a  2 .
C. Q  3a  2 .
D. Q  5a  2 . x 1 1 x m
Câu 19. Kết quả rút gọn biểu thức A   
với x  0 , x  4 có dạng . x  4 x  2 x  2 x n
Tính giá trị của m n . A. m n  2  . B. m n  4  .
C. m n  4.
D. m n  2 . 1
Câu 20. Rút gọn biểu thức 2
Q  4(1 6x  9x ) với x   . 3 A. Q  2  (1 3x) . B. Q  2  (1 3x) .
C. Q  2(1 3x) .
D. Q  2(1 3x) .  a 1   1 2 
Câu 21. Kết quả rút gọn của biểu thức K     :    
 (với a  0 , a 1) a 1 a a
  a 1 a 1 ma n có dạng . Tính giá trị 2 2 m n . a A. 2 2
m n  10 . B. 2 2 m n  2 . C. 2 2 m n  1. D. 2 2 m n  5 . 225
Câu 22. Giá trị của biểu thức 49  bằng 16 13 13 43 43 A.  . B. . C.  . D. . 4 4 4 4 Trang 5
Câu 23. Đẳng thức nào dưới đây đúng? A. 2
x  7  (x  7)(x  7) . B. 2
x  7   7  x 7  x . C. 2
x  7  (7  x)(7  x) . D. 2
x  7   x  7  x  7  .
Câu 24. Tính M  4  16. A. M  6 . B. M  2 5 . C. M  5 2 . D. M  20 .
Câu 25. Điều kiện của x để 4  x có nghĩa là 1 1 A. x  4 . B. x  . C. x  . D. x  4 . 4 4
Câu 26. Tìm tất cả các giá trị của x để biểu thức x  2 có nghĩa. A. x  2 . B. x  2 . C. x  2 . D. x  0 .
Câu 27. Đẳng thức nào sau đây đúng với mọi x  0 ? A. 2 9x  3x . B. 2 9x  3  x . C. 2 9x  9x . D. 2 9x  9  x . Câu 28. Cho 2
P  4a  6a . Khẳng định nào dưới đây đúng. A. P  4  a . B. P  4  | a | .
C. P  2a  6 | a | .
D. P  2 | a | 6  a . 12
Câu 29. Tính M  . 3 A. M  4 . B. M  3. C. M  1 . D. M  2 .
Câu 30. Cho biểu thức P a 2 với a  0 . Khi đó biểu thức P bằng A. 2  a . B.  2  a . C. 2 2a . D. 2  2a .
Câu 31. Tính M  9. 4 . A. M  6 . B. M  5. C. M 13. D. M  36 . Câu 32. Cho 3 3 3 3
M  (a 1)  (a 1) . Khẳng định nào sau đây đúng? A. M  2a .
B. M 1 a . C. M a .
D. M a  2 . II. PHẦN TỰ LUẬN
Bài 1. Rút gọn các biểu thức sau Trang 6
a) A  9  4 5  9  4 5 ; b) 2 B
x 10x  25  x với x  0 . Bài 2. Tính 3 1 3  2 2 3 1
a) ( 8  18  5)( 50  5) ; b)   . 2 3 4 x
Bài 3. Giải phương trình 4 2 2  . 7 x  2 3  x 1 2   x 1 
Bài 4. Cho biểu thức P     :        . x x 1 2 2 x     a) Rút gọn . P
b) Tính giá trị của P khi x  3  2 2 .
c) Tìm x để P 1. 3  x x 1 1  x
Bài 5. Cho biểu thức P        . xx x x
x 1 x x 1 a) Rút gọn P .
b) Tìm các giá trị của x để P 10.
c) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Bài 6. [TS10 Hà Tĩnh, 2018-2019] Rút gọn biểu thức P  75  3 .
Bài 7. [TS10 Nghệ An, 2018-2019]
a) So sánh 2 3  27 và 74 .  1 1  x  4
b) Chứng minh đẳng thức    1  
, với x  0 và x  4 .  x  2 x  2  4
Bài 8. [TS10 Bắc Giang, 2018-2019] Tính giá trị của biểu thức A  5  20  5  1.
Bài 9. [TS10 Trà Vinh, 2018-2019] Rút gọn biểu thức 2 75  3 48  4 27.
Bài 10. [TS10 Phú Yên, 2018-2019] So sánh 5 và 2 6 .
Bài 11. [TS10 Quảng Trị, 2018-2019] Rút gọn biểu thức A  2 5  3 45 . a 3 a  2
Bài 12. [TS10 Hà Nam, 2018-2019] Cho biểu thức B   
với a  0, a  9 . a  3 a  3 a  9 Trang 7 a) Rút gọn B .
b) Tìm các số nguyên a để B nhận giá trị nguyên.
Bài 13. [TS10 Điện Biên, 2018-2019] Cho biểu thức  1 1  x 1 A   : x x     x x
x 1   x   , v?i 0, 1. 2 1
a) Rút gọn biểu thức A .
b) Tìm giá trị lớn nhất của biểu thức P A  9 x .
Bài 14. [TS10 Hà Nội, 2018-2019] x  4 3 x 1 2
Cho hai biểu thức A  và B   với x 0 … , x 1. x 1 x  2 x  3 x  3
a) Tính giá trị của biểu thức A khi x  9 . 1 b) Chứng minh B  . x 1 A x
c) Tìm tất cả giá trị của x để …  5. B 4
Bài 15. [TS10 Bình Thuận, 2018-2019] Rút gọn biểu thức A   6  2  2  16  12 .
Bài 16. [TS10 Thái Nguyên, 2018-2019] Không dùng máy tính cầm tay, tính giá trị của biểu thức 15  12 1 A   . 5  2 2  3 x 1  x x
Bài 17. [TS10 Thanh Hóa, 2018-2019] Cho biểu thức A  :    , với
x  4 x  4  x  2 x x  2  x  0 .
a) Rút gọn biểu thức A . 1
b) Tìm tất cả các giá trị của x để A  . 3 x
Bài 18. [TS10 Bắc Kạn, 2018-2019] Rút gọn biểu thức sau  1  x 1 1 B  2    
với x  0, x  1, x  . 
x 1  2 x 1 4 Trang 8 1
Bài 19. [TS10 Đà Nẵng, 2018-2019] Trục căn thức ở mẫu của biểu thức A  . 2  3 1
Bài 20. [TS10 Tiền Giang, 2018-2019] Tính giá trị của biểu thức A  4  2 3  12 . 2 a 2( a  2)
Bài 21. [TS10 Đà Nẵng, 2018-2019] Cho a  0, a  4. Chứng minh  1. a  2 a  4
Bài 22. [TS10 Lai Châu, 2018-2019] x 2 x 3x  9 Cho biểu thức A   
(với x  0 và x  9 ). x  3 x  3 x  9
a) Rút gọn biểu thức A .
b) Tìm giá trị lớn nhất của biểu thức A .  1  x 16
Bài 23. [TS10 Lạng Sơn, 2018-2019] Cho biểu thức Q   3    .  x  4  3 x 11
a) Tính Q khi x  25 .
b) Rút gọn biểu thức Q đã cho ở trên.
Bài 24. [TS10 Sóc Trăng, 2018-2019] Các đẳng thức sau đúng hay sai, giải thích? x y a) 2 ( 3  )  3  . b)
x y với x  0, y  0 . x y
Bài 25. [TS10 Đồng Tháp, 2018-2019] Tính H  81  16 .
Bài 26. [TS10 Đồng Tháp, 2018-2019] Tìm điều kiện của x để x  2 có nghĩa.
Bài 27. [TS10 Bắc Kạn, 2018-2019] Rút gọn biểu thức A  2 20  3 45  4 80 .
Bài 28. [TS10 Hòa Bình, 2018-2019] Rút gọn: A  12  3 .
Bài 29. [TS10 Lạng Sơn, 2018-2019] Tính giá trị của các biểu thức sau a) A  36  5 ; b) B    2 11 5  5 ;
c) C  3  3  2  3 . 1
Bài 30. [TS10 Cần Thơ, 2018-2019] Rút gọn biểu thức A  9  4 5  . 5  2
Bài 31. [TS10 Ninh Bình, 2018-2019] Rút gọn biểu thức: P  3 5  20 .
Bài 32. [TS10 Bình Phước, 2018-2019] Tính giá trị của các biểu thức Trang 9 a) M  36  25 . b) N    2 5 1  5 .
Bài 33. [TS10 Vĩnh Long, 2018-2019]
a) Tính giá trị biểu thức A  3 27  2 12  4 48 . 1
b) Rút gọn biểu thức B  7  4 3  . 2  3 1 1
Bài 34. [TS10 Hà Nam, 2018-2019] Rút gọn các biểu thức A  2  8  6  3 . 2 2
Bài 35. [TS10 Hưng Yên, 2018-2019] Rút gọn biểu thức P  3  12  3  27.
Bài 36. [TS10 Lào Cai, 2018-2019] Tính giá trị của các biểu thức sau:
a) A  16  9  2 . b) B    2 3 1 1.
Bài 37. [TS10 Bạc Liêu, 2018-2019] Rút gọn biểu thức a  2 a a  4
a) A  45  20  2 5 . b) B  
, (với a  0; a  4 ). a  2 a  2 12
Bài 38. [TS10 Vũng Tàu, 2018-2019] Rút gọn biểu thức 3 P  16  8  . 3  1 1  x
Bài 39. [TS10 Bình Định, 2018-2019] Cho biểu thức A      , với  x x
x 1 x  2 x 1 x  0 .
a) Rút gọn biểu thức A . 1
b) Tìm các giá trị của x để A  . 2
Bài 40. [TS10 Nam Định, 2018-2019]  4x x  2  x 1
Cho biểu thức M      
, với x  0 , x 1, x  4 . 2 x 1 x  3 x  2 x   a) Rút gọn M .
b) Tìm x để M  4 . x x
Bài 41. [TS10 Bình Phước, 2018-2019] Cho biểu thức P  1
, với x  0 và x 1. x 1 Trang 10
a) Rút gọn biểu thức P .
b) Tìm các giá trị của x , biết P  3. 1 x
Bài 42. [TS10 Thái Bình, 2018-2019] Cho biểu thức A   . x x 1 4
a) Tính giá trị biểu thức A với x  . 9
b) Tìm điều kiện để biểu thức A có nghĩa. 3
c) Tìm x để A  . 2
Bài 43. [TS10 Lào Cai, 2018-2019]  x  6 1 1 2 x  6 
Cho biểu thức P     :  
 với x  0 , x  9 . x  3 x x x  3 x 1  
a) Rút gọn biểu thức P .
b) Tìm x để P  1 .
Bài 44. [TS10 Đắk Lắk, 2018-2019] Tìm x biết 2 x  3.
Bài 45. [TS10 Long An, 2018-2019]
a) Rút gọn biểu thức T  3  27  4 3.  1 1  2 x
b) Rút gọn biểu thức A   :  
với x  0, x  16 .  x  4
x  4  x 16 c) Giải phương trình 2
x  8x 16  2 . --- HẾT --- Trang 11