

Preview text:
BAÛNG COÂNG THÖÙC ÑAÏO HAØM - NGUYEÂN HAØM
I. Caùc coâng thöùc tính ñaïo haøm. ' u u '.v u.v ' 1. (u v)' u ' v ' 2.( . u v)' u '.v . u v ' 3. 2 v v ' 1 v ' Heä Quaû: 1. ku ' k.u ' 2. 2 v v
II. Ñaïo haøm vaø nguyeân haøm caùc haøm soá sô caáp. Bảng đạo hàm Bảng nguyên hàm 1 1 x ' x x ax b u 1 ' .u'. u x dx , c
1 ax b 1 1 dx c . 1 a 1 1 sin x' sin
ax bdx cosax b cos x c
sinu' u'.cosu
sin xdx cos x c a 1 cosx' cos
ax bdx sinax b sin x c
cosu' u '.sin u
cos xdx sin x c a tan x 1 2 ' u'
1 tan x tanu' u'. 2 1 tan u 1 1 1 2 2 cos x cos u
dx tan x c
dx tan ax b c 2 cos x 2
cos ax b a u' 1 1 x 1 cot ' 2 1 cot x cotu' u'. 2 1 cot u 1
dx cot ax b c 2 2 sin x sin u
dx cot x c 2 sin ax b a 2 sin x 1 u ' log x ' log u ' a x lna a . u lna 1 dx 1 1 ln x c
dx ln ax b c u ' x ax 1 b a ln x ' ln u ' x u x x x ' x a a . lna u u a '
a .u '.lna x a x a a dx c a dx c ln a .ln a axb 1 x ' x e e u u axb
e ' u'.e x x
e dx e c e dx e c a Boå sung: dx 1 x dx 1 dx x dx arctan C x a 2 2 ln C arcsin C ln x x a C 2 2 x a a a 2 2 x a 2a x a 2 2 a 2 2 a x x a III. Vi phaân: dy y ' .dx VD: 1 d(ax b) adx dx d(ax
b) , d(sinx) cosxdx , d(cosx) sinxdx , a dx dx dx d(ln x) , d(tanx) ,d(cotx) . . . x 2 cos x 2 sin x
BAÛNG COÂNG THÖÙC MUÕõ - LOGARIT
I. Coâng thöùc haøm soá Muõ vaø Logarit. Haùm soá muõ Haøm soá Logarit log M x M x a 0 x, 0 a 1 a log 1 0 ; log a 1 ; log b log b a a a a 1 1 a log b log b ; log a ;a a a a a a a log . b c log b log c a a a a .a a ; a a b log log b log c a a a . a a a c log c log a log b b a c ; a a a a a.b a .b ; log b b b log b log . c log c b a a c log a c 1 log b a log a b a a 0 a 1 log log a a a 1 : a a a 1 : log log a a 0 a 1 : a a 0 a 1 : log log a a
II.Moät soá giôùi haïn thöôøng gaëp. 1 x a x 1 log 1 a x 1. lim 1 e . 3 lim ln a . 5 lim log e x0 a x0 x x x x 1 xa . 2 lim 1 1 x . 4 lim x e a x 0 x x