BAÛNG COÂNG THÖÙC ÑAÏO HAØM - NGUYEÂN HAØM
I. Caùc coâng thöùc tính ñaïo haøm.
1.
( )' ' 'u v u v
2.
( . )' '. . 'u v u v u v
3.
'
2
'. . 'u u v u v
v
v
Heä Quaû: 1.
' . 'ku k u
2.
'
2
1'v
v
v
II. Ñaïo haøm vaø nguyeân haøm caùc haøm soá sô caáp.
Bảng đạo hàm
Bảng nguyên hàm
1
'xx
1
' . '.

u u u
1
,1
1
x
x dx c
1
1
.
1
ax b
ax b dx c
a
sin ' cosxx
sin ' '.cosu u u
sin cosxdx x c
1
sin cosax b dx ax b c
a
cos ' sinxx
cos ' '.sinu u u
cos sinxdx x c
1
cos sinax b dx ax b c
a
2
2
1
tan ' 1 tan
cos
xx
x
2
2
'
tan ' '. 1 tan
cos
u
u u u
u
2
1
tan
cos
dx x c
x

2
11
tan
cos
dx ax b c
ax b a
2
2
1
cot ' 1 cot
sin
xx
x
2
2
'
cot ' '. 1 cot
sin
u
u u u
u
2
1
cot
sin
dx x c
x
2
11
cot
sin
dx ax b c
ax b a
1
log '
ln
a
x
xa
'
log '
.ln
a
u
u
ua
1
lndx x c
x

11
lndx ax b c
ax b a
1
ln ' x
x
'
ln '
u
u
u
' .ln
xx
a a a
' . '.ln
uu
a a u a
ln
x
x
a
a dx c
a

.ln



x
x
a
a dx c
a
'
xx
ee
' '.
uu
e u e
xx
e dx e c
1
ax b ax b
e dx e c
a


Boå sung:
22
1
arctan
dx x
C
aa
xa
22
1
2
ln
dx x a
C
a x a
xa
22
arcsin
dx x
C
a
ax
22
22
ln
dx
x x a C
xa
III. Vi phaân:
'.dy y dx
VD:
1
( ) ( )d ax b adx dx d ax b
a
,
(sin ) cosd x xdx
,
(cos ) sind x xdx
,
(ln )
dx
dx
x
,
2
(tan )
cos
dx
dx
x
,
2
(cot )
sin
dx
dx
x
. . .
BAÛNG COÂNG THÖÙC MUÕõ - LOGARIT
I. Coâng thöùc haøm soá Muõ vaø Logarit.
Haùm soá muõ
Haøm soá Logarit
1
a
a
;
aa
.a a a
;

a
a
a

.
a a a

..a b a b
;
aa
b
b
0 0 1log ,
M
a
x M x a x a
10log
a
;
1log
a
a
;
log log
aa
bb
1
log log
a
a
bb
;
log
a
a
log . log log
a a a
b c b c
log log log
a a a
b
bc
c
log log
bb
ca
ac
;
log
a
a
log
log log .log
log
c
a a c
c
b
b c b
a
1
log
log
a
b
b
a
0 1

a a a
log log
aa
1


:a a a
0 1


:a a a
1
: log log
aa
a
01
: log log
aa
a
II.Moät soá giôùi haïn thöôøng gaëp.
1
11. lim
x
x
e
x
ex
x
x
1
1lim.2
a
x
a
x
x
ln
1
lim.3
0
a
x
x
a
x
1
lim.4
0
e
x
x
a
a
x
log
1log
lim.5
0

Preview text:

BAÛNG COÂNG THÖÙC ÑAÏO HAØM - NGUYEÂN HAØM
I. Caùc coâng thöùc tính ñaïo haøm. ' u u '.v u.v ' 1. (u v)' u ' v ' 2.( . u v)' u '.v . u v ' 3. 2 v v ' 1 v ' Heä Quaû: 1. ku ' k.u ' 2. 2 v v
II. Ñaïo haøm vaø nguyeân haøm caùc haøm soá sô caáp. Bảng đạo hàm Bảng nguyên hàm  1      1 x ' xxax b  u   1 ' .u'.   u x dx   , c     
1 ax b   1 1 dx   c  . 1 a  1 1 sin x' sin
 ax bdx   cosax b  cos xc
sinu'  u'.cosu
sin xdx  cos x ca 1 cosx' cos
 ax bdx  sinax b  sin xc
cosu'  u  '.sin u
cos xdx  sin x ca tan x 1 2 ' u' 
 1 tan x tanu'   u'. 2 1 tan u 1 1 1 2  2 cos x cos u
dx  tan x c
dx  tan ax b c  2 cos x 2
cos ax b   a  u' 1 1 x 1 cot '     2 1 cot x cotu'   u'. 2 1 cot u 1
dx   cot ax b c  2  2  sin x sin u
dx   cot x c  2 sin ax b a 2 sin x     1 u ' log x ' log u ' a x lna a . u lna 1 dx 1 1  ln x c
dx  ln ax b c u ' xax 1  b a ln x ' ln u ' x u xx x ' x a a . lna u u a '
a .u '.lna x ax a  a dx   ca dx   c ln a  .ln a axb 1 x ' x e e u u axb
e '  u'.e x x
e dx e ce dx eca Boå sung: dx 1 x dx 1 dx x dx arctan C x a 2 2 ln C arcsin C ln x x a C 2 2 x a a a 2 2 x a 2a x a 2 2 a 2 2 a x x a III. Vi phaân: dy y ' .dx VD: 1 d(ax b) adx dx d(ax
b) , d(sinx) cosxdx , d(cosx) sinxdx , a dx dx dx d(ln x) , d(tanx) ,d(cotx) . . . x 2 cos x 2 sin x
BAÛNG COÂNG THÖÙC MUÕõ - LOGARIT
I. Coâng thöùc haøm soá Muõ vaø Logarit. Haùm soá muõ Haøm soá Logarit log M x M x a 0 x, 0 a 1 a log 1 0 ; log a 1 ;  log b  log b a a a a  1  1 a    log b log b ;  log a   ;a a a aa aa log . b c log b log c     a a a a .a a ;   aa b log log b log c   a a a .   a a a c log c log a log b b a c ;  a a     a a   a.b a .b ; log bb b log b log . c log c b a a c log a c 1 log b a log a b   a a   0 a 1 log  log    a a a 1   : a a   a 1 : log  log    a a 0 a 1   : a a   0 a 1 : log  log    a a
II.Moät soá giôùi haïn thöôøng gaëp. 1 x a x 1 log 1 a x 1. lim 1 e . 3 lim  ln a . 5 lim  log e x0 a x0 x x x x 1 xa . 2 lim   1 1 x . 4 lim  xe a x 0 x x