Chapter 2: Stress andstrains | Tài liệu môn Vật lý Trường đại học sư phạm kỹ thuật TP. Hồ Chí Minh

Stress: Stress can be classified broadly in three types as described below: 1. Tensile stress: It is illustrated in Fig. 2.1 where a tensile load W is applied to a uni form rod fixed at one end. Compressive stress: As shown in Fig. 2.2 when load W tends to compress a rod of cross-section area A, then compressive stress = W/A. 3. Shear stress: If two plates are joined together with rivet as shown in Fig. 2.3. Tài liệu giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem!

CHAPTER 2
STRESS AND STRAINS
Stress
Stress can be classified broadly in three types as described below:
1. Tensile stress: It is illustrated in Fig. 2.1
where a tensile load W is applied to a uni-
form rod fixed at one end.
l
W
dl
Figure 2.1
Tensile stress,
σ
=
W
Cross-sectional area of rod
=
W
A
unit is N
/mm
2
or MN/m
2
,
σ
(Greek letter sigma).
2. Compressive stress: As shown in Fig. 2.2
when load W tends to compress a rod
of cross-section area A, then compressive
stress =
W
A
.
W
Figure 2.2
3. Shear stress: If two plates are joined
together with rivet as shown in Fig. 2.3.
The stress in rivet is known as shear stress,
it is denoted by
τ
(Greek letter tau), shear
stress in rivet,
τ
=
F
A
.
F
F
Figure 2.3
6 Strength of Materials
It may be noted that point A is the limit of proportionality and B is the elastic limit. Between point
A Band it is a curve thus not linear relationship. Therefore, actually E is constant within the limit
of proportionality, though in Hooke’s law, we had mentioned, within ‘elastic limit’, because andA
B are very close to each other. Let us name the important points on the graph:
A: Limit of proportionality
B: Elastic limit: It may be noted that on removal of load up to elastic limits, specimen comes
back to its original dimension.
C: Higher yield point: This is the point where yielding of the material begins.
C
: Lower yield point: The stress associated with the lower yield point is known as yield strength.
D: Maximum stress: Here the stress is maximum because due to plastic behaviour of the mate-
rial, area of cross section is very low.
E: Point of fracture: At this point ‘waisting occurs’ as shown in Fig. 2.5.
Waisting
Cap
Cone
Figure 2.5
If the material is loaded beyond the elastic limit and then load is removed, a permanent extension
remains, called .permanent set
Proof Stress: For engineering purposes it is desirable to know the stress to which a highly
ductile material such as aluminium can be loaded safely before a permanent extension takes place.
This stress is known as the proof stress or offset stress and is defined as the stress at which
a specified permanent extension has taken place in the tensile test. Proof stress is found from the
stress-strain curve as given in Fig. 2.6. The extension specified is usually 0.1, 0.2 or 0.5 per cent of
gauge length.
0
0.1%
Proof
stress
Strain
Stress
0.001
Figure 2.6
Stress and Strains 7
The proof stress here is found on the basis of 0.1 per cent strain.
Procedure: Draw a line parallel to the initial slope of the curve. The stress at the point where this
line cuts the curve is the 0.1% proo f stress. The 0.2 per cent proof stress is also found in the same
manner.
Note: Though we define Hooke’s law to be taken without elastic limit, but strictly speaking it is
applicable up to the point of proportionality B in Fig. 2.4.
Brittle Materials: Fig. 2.6 shows that the stress-strain graph for brittle materials such as cast iron.
The metal is almost elastic and up to fracture but does not obey Hooke’s law. A material such as
this which has little plasticity or ductility and does not neck down before fracture is termed ‘brittle’.
The modulus of elasticity for cast iron is not constant but depends on the portion of the curve from
which it is calculated.
Stress
Fracture
Strain
Figure 2.7 Cast iron in tension
The following table is very useful for mechanical properties:
Percentage Yield stress 0.1% proof stress Ultimate tensile stress
Material
elongation MN/m MN MN
2
/m
2
/m
2
Copper annealed 60 60 220
Copper hard 4 320 400
Aluminium soft 35 30 90
Aluminium hard 5 140 150
Black mild steel 25–26
Bright mild steel 14–17
Structural steel 20 220–250 430–500
Cast iron
Spheroidal
Graphite
Cast iron (annealed)
280–340
Stainless steel 60 230 600
8 Strength of Materials
Now
E =
stress
strain
Let F, L, ,A dl be the force, length, area of cross section, and extension or contraction
respectively,
then
E =
F.L
A dl.
EXAMPLE 2.1: A bar of mild steel has an overall length of 2.1 m. The diameter up to 700 mm
length is 56 mm, the diameter of the remaining 1.4 m is 35 mm. Calculate the extension of the bar
due to a tensile load of 55 kN.
E
= 200 GN/m
2
.
SOLUTION:
Remember 1 GN/m
2
= 1 kN/mm
2
E = 200 kN/mm
2
We know
E =
Fl
Adl
dl =
F.l
A E.
Therefore, for portion of 700 mm,
the extension
dl
1
=
55000 × 700 4× 7 ×
200000
× 22 56× × 56
=
5
64
mm = 0.0178 mm
Now dl
2
for 1400 mm length of 35 mm dia,
dl
2
=
55000 × 1400 4× 7 ×
200000
× 22 35× × 35
= 0.4 mm
Total extension = dl
1
+ dl
2
= =0.0178 + 0.4 0.4178 mm
Compound bars: When two or more materials (members) are rigidly fixed together so that they
share the same load and extend or compress by same amount, the two members form compound
bar. Let us say that in Fig. 2.7 we have to find stress in each material and amount of compression.
l
P Material A
of E
S
Material B
of E
B
Let the outer tube of material A has outside
dia as d
1
and inside dia as d
2
and inner tube of
material B has outside dia as d
3
and inside dia
as d
4
. Both ends are joined rigidly to make com-
pound bar of length .l
10 Strength of Materials
Hence
, d
2
= 5630 mm
2
or d = 75 mm
EXAMPLE 2.3: A steel bar of 20 mm diameter and 400 mm long is placed concentrically inside
a gunmetal tube (Fig. 2.9). The tube has inside diameter 22 mm and thickness 4 mm. The length of
the tube exceeds the length of the steel bar by 0.12 mm. Rigid plates are placed on the compound
assembly. Find: a) the load which will just make tube and bar of same length and b) the stresses in
the steel and gunmetal when a load of 50 kN is applied.
E for steel = 213 GN/m
2
, E for gunmetal =
100 GN
/m
2
.
SOLUTION:
0.12 mm
P
Figure 2.9
Area of gunmetal tube, A
g
=
π
4
(0.03
2
0.022
2
)
=
0.000327 m
2
Area of steel bar A
s
=
π
4
(0.02)
2
= 0.0003142 m
2
a) For tube to compress 0.12 mm:
strain
=
0.12
400
= 0.0003 Let,
σ
1
be the stress in the tube
σ
1
E
g
= 0.0003,
σ
1
100
= 0.0003
σ
1
= =0.0003 × 100 0.03 GN/m
2
= 30000 kN/m
2
Hence, load = 30000 × 0.000327 = 9.81 kN
b) Load available to compress bar and tube as a compound bar is given by, let
σ
2
be the addi-
tional stress produced in the gunmetal tube due to this load and
σ
s
be the corresponding stress
in the steel bar, then
Load on compound bar = 50 9.81 = 40.19 kN
P =
σ
2
A
g
+
σ
s
A
s
40.19 =
σ
2
× 0.000327 +
σ
3
× 0.0003142 (i)
Stress and Strains 11
Also
σ
2
E
g
=
σ
s
E
s
,
σ
2
=
100
2100
σ
s
(ii)
From Eqns. (i) and (ii)
σ
2
= 40 m,600 kN/
2
= 40 m.6 MN/
2
σ
s
= 85300 kN/m 85 m
2
= .3 MN/
2
Final stress in gunmetal =
σ
1
+
σ
2
= =
40600 + 30000 70 m, 600 kN/
2
=
70 m.6 MN/
2
Deformation of a Body Due to Self Weight
B
A
l
x
dx
Figure 2.10
Let us consider a bar AB which is hanging freely under its
own weight (see Fig. 2.10)
Let w = specific weight of the bar material
Now consider a small section dx at a distance x from .A
Weight of the bar for a length = w× volume
= wAx (A is cross section of the bar)
Now elongation of the elementry length dx due to weight of the bar for length x,(wAx)
=
pl
A
.E
=
(wAx dx)
A
.E
=
wx dx.
E
Total elongation =
l
0
wxdx
E
=
w
E
l
0
x.dx
=
w
E
x
2
2
l
0
elongation, dl =
wl
2
2E
Because total weight of bar, W = wA.l.
Now elongation
dl can be written as
wAl l.
2AE
Hence,
dl =
W l
2AE
12 Strength of Materials
This result also proves that the extension due to own weight is half if same weight is applied at
the end (of course neglecting extension due to self weight).
E
XAMPLE 2.4: A steel bar ABC 18 m long is having cross-sectional area 4 mm
2
weighs 22.5 N
(Refer Fig. 2.11). If modulus of elasticity of wire is 210 GN
/m
2
, find the deflections at C and .B
A
B
9 m
9 m
C
Figure 2.11
Deflection at C due to self weight of wire AC = dl
c
dl
c
=
W l
2
AE
=
22.5 × 18000
2
× 4 × 210000
= 0.241 mm
Deflection at B:
Now deflection at B is due to two reasons: i) due to self
weight of AB and ii) due to weight of BC.
dl
B
=
W / /2 × l 2
2
AE
+
W /2 × l/2
A E.
dl
B
=
W / /2 × l 2
AE
1
2
+ 1
=
22.5 × 9000
2 4
× × 210000
(1 5 0. ) = .181 mm
Sometimes a machine member is a acted upon by a number of forces, some acting at outer edges
while some are acting inside the body. In such cases in order to find out the total extension or
contraction, the principle of superposition is applied. This has been very well made clear by the
following examples:
EXAMPLE 2.5: A steel bar ABC of 400 mm length and 20 mm diameter is subjected to a point
load as shown in Fig. 2.12. Determine the total change in the length of bar. Take E = 200 GPa.
A
60 kN 40 kN
CB
20 kN
200 mm200 mm
Figure 2.12
Stress and Strains 13
SOLUTION:
For simplification split it into two parts as under:
A C
400 mm
40 kN
40 kN
A CB
200 mm
20 kN
20 kN
δ =
Pl
AE
A =
π
4
(20)
2
= 314 mm
2
δ
AC
=
40 × 10
3
× 400
314
× 200000
= 0.255 mm
δ
AB
=
20 × 10
3
× 200
314
× 200000
= 0.064 mm
Total
δ
= 0.255 + 0.064 = 0.319 mm Ans.
E
XAMPLE 2.6: A copper rod ABCD of 800 mm
2
cross-sectional area and 7.5 m long is subjected
to forces as shown in Fig. 2.13. Find the total elongation of the bar. Take E = 100 GPa
A
40 kN 50 kN
C DB
20 kN
30 kN
2.5 m3.5 m 1.5 m
2.5 m
3.5 m
1.5 m
SOLUTION:
Splitting into three figures as shown below:
A D
7.5 m
40 kN
40 kN
B
C
1.5 m
20 kN
20 kN
DB
4 m
10 kN
10 kN
Figure 2.13
Stress and Strains 15
Hence, cross-sectional area at distance
x from larger end A
=
π
d
2
4
=
π
4
(d
1
kx)
2
Stress at this section,
σ
=
P
A
=
4P
π
(
d kx
1
)
2
Strain =
ε
=
σ
E
=
4P
π
E
(d kx
1
)
2
Extension of elementary length dx =
ε
dx =
4P dx
π
E
(d kx
1
)
2
Total extention of the bar =
δ
=
4P
π
E
l
0
dx
(
d kx
1
)
2
=
4P
π
E
(d
l
kx)
1
1 × k
l
o
=
4P
π
Ek
1
d
1
kx
l
0
=
4P
π
Ek
1
d kl
1
1
d
1
but k =
d
1
d
2
l
=
4P
π
E
(d
1
d
2
)
1
d
1
d
1
+ d
2
1
d
1
=
4Pl
π
E
(d
1
d
2
)
1
d
2
1
d
1
=
4Pl
π
E
(d
1
d
2
)
·
d
1
d
2
d d
1 2
δ
=
4Pl
π
Ed d
1 2
If both the diameters are equal to .d
Then
δ
=
4Pl
π
Ed
2
EXAMPLE 2.7: A round steel rod of different cross-sections is loaded as shown in Fig. 2.15. Find
the maximum stress induced in the rod and its deformations. Take E = 210 GPa.
Stress and Strains 17
Extension of Tapered Rectangular Strip
P
P
b
t
xx
x
x
dx
a
Figure 2.16
Consider any section x x distant x from the bigger end
Width of the section = t
Area of the section =
P
t(a kx)
Extension of an elemental length dx =
Pdx
t(a kx E)
Total extension of the rod =
δ
=
P
tE
l
0
dx
a kx
=
P
tE
·
1
k
log
e
[(a kx)]
l
0
=
P
tE
[log
e
(a kl) log
e
a]
=
P
tkE
a
a
k
But
k =
a b
l
δ
=
P.l
Et
(a b)
log e
a
b
18 Strength of Materials
EXAMPLE 2.8: A straight bar of steel rectangular in section is 3 m long and of thickness of 12 mm.
The width of rod varies uniformly from 110 mm or one end to 35 mm at the other end. If the rod is
subjected to an axial load (tensile) of 25 kN, find the extension of the rod. Take
E = 200000 N/mm
2
.
Extension of the rod,
δ
=
Pl
Et
(a b)
log e
a
b
P = 25000 N, l = 3000 mm, t = 12 mm
a
= 110 mm, ab = 35 mm & E = 200000 N/mm
2
δ
=
25000 3000×
2
× 10 12 35
5
× (110 )
log
e
110
35
=
25000 3000×
2
× 10
5
× 12 75×
× 1.1452
= 0.477 mm Ans
EXAMPLE 2.9: A rigid bar AB is attached to two vertical rods as shown in Fig. 2.17 is horizontal
before the load is applied. Determine the vertical movement of P if it is of magnitude 60 kN.
Aluminium
Steel
A
For aluminium
L = 3 m
A
= 500 mm
2
E = 75 GPa
For steel
L = 4 m
A
= 300 mm
2
E = 210 GPa
C
B
60 kN
3.5 m 2.5 m
Figure 2.17
Stress and Strains 19
SOLUTION:
For Al M,
B
= 0 6, P
Al
= 2.5 × 60
P
A
=
2.5 × 60
6
= 25 kN = 25000 N
δ
Al
=
PL
A
.E
=
25000 3000×
500
× 75000
= 2 mm
For steel
M
A
= 0 gives
P
st
= 3.5 × 60
P
st
=
3.5 × 60
6
= 35 kN
σ
ST
=
35000 1000× 4 ×
300
× 200000
= 2.33 mm
C
2.33 mm
2 mm
Y
A
C
1
A
1
C
2
B
2
B
1
B
Figure 2.18
Now from similar triangles A
1
C
1
C
2
and A
1
, B
1
, B
2
Y
A C
1 1
=
B
1
B
2
A B
1 1
;
Y
3
.5
=
2.33 2
6
Y = 0.1925 mm
Now vertical movement of
P = CC
2
= CC Y
1
+
= =2 + 0.1925 2.1995 mm Ans
20 Strength of Materials
Bar of Uniform Strength
As we have seen earlier that the stress due to self weight is not constant. It increases with the
increase of distance from the lower end.
We wish to find the shape of the bar of which the self weight is considered and is having uniform
stress on all sections when subjected to an axial P. Figure 2.19 shows such a bar of uniform stress
in which the area increases from the lower end to the upper end.
x
dx
A dA
A
A
2
Area A
1
Area A
1
σ( )A+dA
σ
A
+wAdx
Area A
2
P
(a) (b)
L
Figure 2.19
Let L be the length of bar, having area A
1
, and area A
2
be cross-sectional areas of the bar at top
and bottom, respectively.
Let w be the specific weight of the bar material (1.2. weight per unit volume of the bar).
The forces acting on the elementary stripe are:
i) Weight of the strip acting downward and is equal to volume of strip.w×
ii) Force on section AB due to uniform stress is equal to
σ
× A. This is acting downward. isA
area of elementary stripe.
iii) Force on section CD due to uniform (
σ
) is equal to
σ
( )A + dA . This is acting upwards.
Total force acting upwards = Total force acting downwards
σ
(A + dA) =
σ
× A + wA dx
σ
A
+
σ
dA =
σ
A + wA dx.
or
dA
A
=
w
σ
dx
22 Strength of Materials
Using equation,
A
1
= A
2
e
wL
σ
A e
1
= 450
0.000075 22000×
1777
.8
= 450e
9.28 10×
4
A
1
= 450.4 mm
2
Ans
EXAMPLE 2.11: A steel rod of 25 mm dia passes centrally through a copper tube of 30 mm inside
diameter and 40 mm outside diameter. Copper tube is 850 mm long and is closed by rigid washers of
negligible thickness, which are fastened by nut threaded on the rod as shown in Fig. 2.20. The nuts
are tightened till the load on the assembly is 20 kN. Calculate: i) the initial stresses on the copper
tube and steel rod and ii) also calculate increase in the stresses, when one nut is tightened by one-
quarter of a turn relative to the other. Take pitch of the thread as 1.5 mm. E for copper = 100 GPa,
E for steel = 100 GPa
SOLUTION:
Steel rod
Washer
on each side
Copper tube
Figure 2.20
Let
σ
s
= Stress in steel rod
σ
c
= Stress in copper rod
i)
A
s
=
π
4
(D
s
)
2
=
π
4
(25)
2
= 156 25.
π
mm
2
A
c
=
π
4
(D
2
d
2
) =
π
4
(40
2
30
2
) = 175
π
mm
2
Tensile rod on steel = Compressive load on copper tube
σ
s
=
A
c
A
s
×
σ
c
=
175
π
156 25.
π
×
σ
c
24 Strength of Materials
Brass Brass
10 Nk
Steel
Figure 2.21
SOLUTION:
σ
s
× 100 100+
σ
b
+ 100
σ
b
(i)
100
σ
s
+ 200
σ
b
= 10000
σ
s
+ 2
σ
b
= 100 N/mm (ii)
2
σ
s
200
× 10
3
=
σ
b
100
× 10
3
σ
s
= 2
σ
b
(iii)
substituting for
σ
s
in (ii)
2
σ
b
+ 2
σ
b
= 100;
σ
b
=
100
4
= 25 MPa Ans.
σ
s
= =2 × 25 50 MPa Ans.
EXAMPLE 2.13: Two steel rods and one copper rod each of 20 mm diameter together support a
load of 50 kN as shown in Fig. 2.22. Find the stress in each rod. Take E
s
= 200 GPa, E
b
= 100 GPa
50 Nk
2 m
1.5 m
Brass
Brass
Copper
Figure 2.22
Stress and Strains 25
A
c
= A
s
=
π
4
(20)
2
= 314 mm
2
Total area of steel
A
s + 314 × 2 = 628 mm
2
σ
s
A
s
+
σ
c
A
c
= 50000
628
σ
s
+ 314
σ
c
= 50000
2
σ
s
+
σ
c
= 159.24 (i)
σ
s
l
s
E
s
=
σ
c
l
c
E
c
;
σ
s
× 2000
200000
=
σ
c
× 1500
100000
σ
s
= 1.5
σ
c
(ii)
Substituting for
σ
s
from Eqn. (ii) in Eqn. (i)
2 × 1.5
σ
c
+
σ
c
= 159 24.
σ
c
= 39.81 MPa Ans.
σ
s
= 1.5 × 39 59.81 = .7 MPa Ans.
EXAMPLE 2.14: A uniform bar ABCD has built-in ends A&D. It is subjected to two point loads
P
1
and P
2
equal to 80 kN and 40 kN at B and C as shown in Fig. 2.23. Find values of reactions at
A and D.
A B C D
P
1
500 mm 500 mm1000 mm
P
2
SOLUTION:
A
R
A
R
A
B
500 mm
R
B
R
B
R R
C C
500 mm
1000 mm
Figure 2.23
28 Strength of Materials
2.10 Figure 2.26 shows a rigid bar ABC hinged at A and suspended at two points B and C by two
bars BD and CE, made of aluminium and steel, respectively. The bar carries a load of 20 kN
midway between
B and C. The cross-sectional area of aluminium bar BD is 3 mm
2
and that
of steel bar
CE is 2 mm
2
. Determine the loads taken by the two bars BD and .CE
1000 mm
500 mm
20 kN
1000 mm1000 mm
D
B
C
E
Figure 2.26 [Ans P
a
= 3.481 kN, P
s
= 13.26 kN]
| 1/17

Preview text:

CHAPTER 2 STRESS AND STRAINS Stress
Stress can be classified broadly in three types as described below: l dl
1. Tensile stress: It is illustrated in Fig. 2.1
where a tensile load W is applied to a uni- W form rod fixed at one end. Figure 2.1 W W
Tensile stress, σ = Cross-sectional area of rod = A
unit is N/mm2 or MN/m2, σ (Greek letter sigma).
2. Compressive stress: As shown in Fig. 2.2 W
when load W tends to compress a rod
of cross-section area A, then compressive W stress = . A Figure 2.2
3. Shear stress: If two plates are joined
together with rivet as shown in Fig. 2.3. F
The stress in rivet is known as shear stress,
it is denoted by τ (Greek letter tau), shear F F stress in rivet, τ = . A Figure 2.3 6Strength of Materials
It may be noted that point A is the limit of proportionality and B is the elastic limit. Between point
A and B it is a curve thus not linear relationship. Therefore, actually E is constant within the limit
of proportionality, though in Hooke’s law, we had mentioned, within ‘elastic limit’, because A and
B are very close to each other. Let us name the important points on the graph: A: Limit of proportionality
B: Elastic limit: It may be noted that on removal of load up to elastic limits, specimen comes
back to its original dimension.
C: Higher yield point: This is the point where yielding of the material begins.
C�: Lower yield point: The stress associated with the lower yield point is known as yield strength.
D: Maximum stress: Here the stress is maximum because due to plastic behaviour of the mate-
rial, area of cross section is very low.
E: Point of fracture: At this point ‘waisting occurs’ as shown in Fig. 2.5. Cone Waisting Cap Figure 2.5
If the material is loaded beyond the elastic limit and then load is removed, a permanent extension
remains, called permanent set.
Proof Stress: For engineering purposes it is desirable to know the stress to which a highly
ductile material such as aluminium can be loaded safely before a permanent extension takes place.
This stress is known as the proof stress or offset stress and is defined as the stress at which
a specified permanent extension has taken place in the tensile test. Proof stress is found from the
stress-strain curve as given in Fig. 2.6. The extension specified is usually 0.1, 0.2 or 0.5 per cent of gauge length. 0.1% Proof stress tress S 0 0.001 Strain Figure 2.6 Stress and Strains7
The proof stress here is found on the basis of 0.1 per cent strain.
Procedure: Draw a line parallel to the initial slope of the curve. The stress at the point where this
line cuts the curve is the 0.1% proo f stress. The 0.2 per cent proof stress is also found in the same manner.
Note: Though we define Hooke’s law to be taken without elastic limit, but strictly speaking it is
applicable up to the point of proportionality B in Fig. 2.4.
Brittle Materials: Fig. 2.6 shows that the stress-strain graph for brittle materials such as cast iron.
The metal is almost elastic and up to fracture but does not obey Hooke’s law. A material such as
this which has little plasticity or ductility and does not neck down before fracture is termed ‘brittle’.
The modulus of elasticity for cast iron is not constant but depends on the portion of the curve from which it is calculated. Fracture Stress Strain
Figure 2.7 Cast iron in tension
The following table is very useful for mechanical properties: Percentage Yield stress 0.1% proof stress Ultimate tensile stress Material elongation MN/m2 MN/m2 MN/m2 Copper annealed 60 − 60 220 Copper hard 4 − 320 400 Aluminium soft 35 − 30 90 Aluminium hard 5 − 140 150 Black mild steel 25–26 Bright mild steel 14–17 Structural steel 20 220–250 − 430–500  Cast iron  −    Spheroidal Graphite     Cast iron (annealed) − − − 280–340 Stainless steel 60 230 – 600 8Strength of Materials stress Now E = strain
Let F, L, A, dl be the force, length, area of cross section, and extension or contraction respectively, F.L
then E = A.dl
EXAMPLE 2.1: A bar of mild steel has an overall length of 2.1 m. The diameter up to 700 mm
length is 56 mm, the diameter of the remaining 1.4 m is 35 mm. Calculate the extension of the bar
due to a tensile load of 55 kN. E = 200 GN/m2. SOLUTION: ∴ Remember 1 GN/m2 = 1 kN/mm2 ∴ E = 200 kN/mm2 Fl F.l We know E = ∴ dl = Adl A.E
Therefore, for portion of 700 mm, 55000 × 700 × 7 × 4 5 the extension dl1 = = mm = 0.0178 mm 200000 × 22 × 56 × 56 64
Now dl2 for 1400 mm length of 35 mm dia, 55000 × 1400 × 7 × 4 dl2 = = 0.4 mm 200000 × 22 × 35 × 35
Total extension = dl1 + dl2 = 0.0178 + 0.4 = 0.4178 mm
Compound bars: When two or more materials (members) are rigidly fixed together so that they
share the same load and extend or compress by same amount, the two members form compound
bar. Let us say that in Fig. 2.7 we have to find stress in each material and amount of compression. P Material A of ES
Let the outer tube of material A has outside
dia as d1 and inside dia as d2 and inner tube of
material B has outside dia as d3 and inside dia
as d4. Both ends are joined rigidly to make com- Material B pound bar of length l. l of EB 10Strength of Materials Hence, d 2 = 5630 mm2 or d = 75 mm
EXAMPLE 2.3: A steel bar of 20 mm diameter and 400 mm long is placed concentrically inside
a gunmetal tube (Fig. 2.9). The tube has inside diameter 22 mm and thickness 4 mm. The length of
the tube exceeds the length of the steel bar by 0.12 mm. Rigid plates are placed on the compound
assembly. Find: a) the load which will just make tube and bar of same length and b) the stresses in
the steel and gunmetal when a load of 50 kN is applied. E for steel = 213 GN/m2, E for gunmetal = 100 GN/m2. SOLUTION: P π 0.12 mm
Area of gunmetal tube, Ag = (0.032 − 0.0222) 4 = 0.000327 m2 π Area of steel bar As = (0.02)2 = 0.0003142 m2 4 Figure 2.9
a) For tube to compress 0.12 mm: 0.12 strain = = 0.0003,
Let σ1 be the stress in the tube 400 σ1 σ = 1 0.0003, = 0.0003 Eg 100 ∴
σ1 = 0.0003 × 100 = 0.03 GN/m2 = 30000 kN/m2
Hence, load = 30000 × 0.000327 = 9.81 kN
b) Load available to compress bar and tube as a compound bar is given by, let σ2 be the addi-
tional stress produced in the gunmetal tube due to this load and σs be the corresponding stress in the steel bar, then
Load on compound bar = 50 − 9.81 = 40.19 kN
P = σ2Ag + σsAs
40.19 = σ2 × 0.000327 + σ3 × 0.0003142 (i) Stress and Strains11 Also σ2 σ 100 = s , ∴ σ 2 = σs (ii) Eg Es 2100 From Eqns. (i) and (ii) 2 2 σ2 = 40, 600 kN/m = 40.6 MN/m 2 2
σs = 85300 kN/m = 85.3 MN/m
Final stress in gunmetal = σ1 + σ2
= 40600 + 30000 = 70, 600 kN/m2 = 70.6 MN/m2
Deformation of a Body Due to Self Weight B
Let us consider a bar AB which is hanging freely under its own weight (see Fig. 2.10) l dx
Let w = specific weight of the bar material x
Now consider a small section dx at a distance x from A. A
Weight of the bar for a length = w× volume Figure 2.10 = wAx
(A is cross section of the bar)
Now elongation of the elementry length dx due to weight of the bar for length x, (wAx) pl (wAx) dx wx.dx = = = A.E A.E E l lwxdx w  Total elongation = = x.dx E E 0 0
w x2 l = E 2 0 wl2 ∴
elongation, dl = 2E
Because total weight of bar, W = wA.l. wAl.l
Now elongation dl can be written as 2AE W l Hence, dl = 2AE 12Strength of Materials
This result also proves that the extension due to own weight is half if same weight is applied at
the end (of course neglecting extension due to self weight).
EXAMPLE 2.4: A steel bar ABC 18 m long is having cross-sectional area 4 mm2 weighs 22.5 N
(Refer Fig. 2.11). If modulus of elasticity of wire is 210 GN/m2, find the deflections at C and B.
Deflection at C due to self weight of wire AC = dl A c 9 m W l 22.5 × 18000 dlc = = = 0.241 mm 2AE 2 × 4 × 210000 B Deflection at B:
Now deflection at B is due to two reasons: i) due to self 9 m
weight of AB and ii) due to weight of BC. C W /2 × l/2 W /2 × l/2 dlB = + Figure 2.11 2AE A.E W /2   × l/2 1 ∴ dlB = + 1 AE 2 22.5 = × 9000 (1.5) = 0.181 mm 2 × 4 × 210000
Sometimes a machine member is a acted upon by a number of forces, some acting at outer edges
while some are acting inside the body. In such cases in order to find out the total extension or
contraction, the principle of superposition is applied. This has been very well made clear by the following examples:
EXAMPLE 2.5: A steel bar ABC of 400 mm length and 20 mm diameter is subjected to a point
load as shown in Fig. 2.12. Determine the total change in the length of bar. Take E = 200 GPa. A B C 60 kN 20 kN 40 kN 200 mm 200 mm Figure 2.12 Stress and Strains13 SOLUTION:
For simplification split it into two parts as under: A C 40 kN 40 kN 400 mm A B C 20 kN 20 kN Pl δ = AE 200 mm π A = (20)2 = 314 mm2 4 40 × 103 × 400 δAC = = 0 255 mm 314 . × 200000 20 δ × 103 × 200 AB = = 0 064 mm 314 . × 200000 Total
δ = 0 255 + 0 064 = 0 319 mm Ans . . . .
EXAMPLE 2.6: A copper rod ABCD of 800 mm2 cross-sectional area and 7.5 m long is subjected
to forces as shown in Fig. 2.13. Find the total elongation of the bar. Take E = 100 GPa 3.5 m 1.5 m 2.5 m A B C D 40 kN 30 kN 20 kN 50 kN 3.5 m 1.5 m 2.5 m SOLUTION:
Splitting into three figures as shown below: A D 40 kN 40 kN 7.5 m B C 20 kN 20 kN 1.5 m B D 10 kN 10 kN 4 m Figure 2.13 Stress and Strains15 πd�2 π
Hence, cross-sectional area at distance x from larger end A� = = (d1 − kx)2 4 4 P 4P Stress at this section σ� = = , A� π (d1 − kx)2 σ � 4P ∴ Strain = ε� = = E
π E(d1 − kx)2 4P dx Extension of elementary length
dx = ε �dx = πE(d1 −kx)2 l 4P   dx 4P (dl l kx)−1
Total extention of the bar = δ = = πE (d π 1 − kx)2 E −1 × −k o 0 4P  1 l
= πEk d1 −kx 0 4P  1 1  d = 1 − d2 − but k = πEk d1 − kl d1 l 4P  1 1  ∴ = −
πE(d1 − d2) d1 − d1 + d2 d1 4Pl  1 1  = π −
E(d1 − d2) d2 d1 4Pl d = 1 − d2 ·
πE(d1 − d2) d1d2 4Pl ∴ δ = πEd1d2
If both the diameters are equal to d. 4Pl Then δ = πEd2
EXAMPLE 2.7: A round steel rod of different cross-sections is loaded as shown in Fig. 2.15. Find
the maximum stress induced in the rod and its deformations. Take E = 210 GPa. Stress and Strains17
Extension of Tapered Rectangular Strip x P a P b x dx x t Figure 2.16
Consider any section x x distant x from the bigger end
Width of the section = t P
Area of the section = t(akx) Pdx
Extension of an elemental length dx = t(akx)E l P dx
Total extension of the rod = δ = tE akx 0 P 1 = − · − log tE k
e [(a kx)]l0 P = − [log tE
e(a kl) − loge a] P a  = tkE ak a b But k = l P l a δ = . log e
Et(a b) b 18Strength of Materials
EXAMPLE 2.8: A straight bar of steel rectangular in section is 3 m long and of thickness of 12 mm.
The width of rod varies uniformly from 110 mm or one end to 35 mm at the other end. If the rod is
subjected to an axial load (tensile) of 25 kN, find the extension of the rod. Take E = 200000 N/mm2. Pl a Extension of the rod, δ = log e
Et(a b) b
P = 25000 N, l = 3000 mm, t = 12 mm
a = 110 mm, ab = 35 mm & E = 200000 N/mm2 25000 × 3000 110 ∴ δ = log 2 e × 105 × 12(110 − 35) 35 25000 × 3000 = × 1.1452 2 × 105 × 12 × 75 = 0.477 mm Ans
EXAMPLE 2.9: A rigid bar AB is attached to two vertical rods as shown in Fig. 2.17 is horizontal
before the load is applied. Determine the vertical movement of P if it is of magnitude 60 kN. Steel Aluminium For aluminium For steel C A L = 3 m B L = 4 m A = 500 mm2 A = 300 mm2 E = 75 GPa E = 210 GPa 3.5 m 2.5 m 60 kN Figure 2.17 Stress and Strains19 SOLUTION: For Al P 5 ,
MB = 0, 6 Al = 2. × 60 2 5 . × 60 ∴ PA = = 25 kN = 25000 N 6 PL 25000 × 3000 δAl = = = 2 mm A E 500 × 75000 .
For steel ∑ MA = 0 gives Pst = 3 5 . × 60 3 5 . × 60 Pst = = 35 kN 6 35000 × 4 × 1000 σST = = 2 33 mm 300 . × 200000 A C B 2 mm C B 1 1 2.33 mm A Y 1 C2 B2 Figure 2.18
Now from similar triangles A1 C1 C2 and A1 B B , 1, 2 Y B1B2 Y 2 33 − 2 . = ; = A1C1 A1B1 3 5 6 . ∴ Y = 0 1925 mm . Now vertical movement of P = CC2 = CC1 +Y = 2 + 0 1925 = 2 1995 mm Ans . . 20Strength of Materials Bar of Uniform Strength
As we have seen earlier that the stress due to self weight is not constant. It increases with the
increase of distance from the lower end.
We wish to find the shape of the bar of which the self weight is considered and is having uniform
stress on all sections when subjected to an axial P. Figure 2.19 shows such a bar of uniform stress
in which the area increases from the lower end to the upper end. Area A1 σ (A+dA) Area A1 A dA dx L A x σ +wAdx A A 2 Area A2 P (a) (b) Figure 2.19
Let L be the length of bar, having area A1, and area A2 be cross-sectional areas of the bar at top and bottom, respectively.
Let w be the specific weight of the bar material (1.2. weight per unit volume of the bar).
The forces acting on the elementary stripe are:
i) Weight of the strip acting downward and is equal to w× volume of strip.
ii) Force on section AB due to uniform stress is equal to σ × A. This is acting downward. A is area of elementary stripe.
iii) Force on section CD due to uniform (σ ) is equal to σ(A + dA). This is acting upwards.
Total force acting upwards = Total force acting downwards
σ (A + dA) = σ × A + wA dx
σ A + σdA = σ A + wA dx . dA w or = dx A σ 22Strength of Materials Using equation, wL
A1 = A2e σ 0 000075 × 22000 . −4 A 28×10 1 = 450 e 1777 8 = 450e9. . A1 = 450 4 mm2 Ans .
EXAMPLE 2.11: A steel rod of 25 mm dia passes centrally through a copper tube of 30 mm inside
diameter and 40 mm outside diameter. Copper tube is 850 mm long and is closed by rigid washers of
negligible thickness, which are fastened by nut threaded on the rod as shown in Fig. 2.20. The nuts
are tightened till the load on the assembly is 20 kN. Calculate: i) the initial stresses on the copper
tube and steel rod and ii) also calculate increase in the stresses, when one nut is tightened by one-
quarter of a turn relative to the other. Take pitch of the thread as 1.5 mm. E for copper = 100 GPa, E for steel = 100 GPa SOLUTION: Washer Steel rod on each side Copper tube Figure 2.20 Let
σ s = Stress in steel rod
σ c = Stress in copper rod i) π π As = (D (25)2 = 156 25π mm2 4 s)2 = 4 . π π Ac =
(D2 − d2) = (402 − 302) = 175 π mm2 4 4
Tensile rod on steel = Compressive load on copper tube Ac 175π σs = × σ ×σc A c = s 156 25π . 24Strength of Materials Steel Brass Brass 10 N k Figure 2.21 SOLUTION:
σ s × 100 + 100σb + 100σb (i)
100σs + 200σb = 10000 2
σs + 2σb = 100 N/mm (ii) σs σb = 200 × 103 100 × 103 ∴ σs = 2σb (iii)
substituting for σs in (ii)
b + 2σb = 100; 100 σb = = 25 MPa Ans. 4 σs = 2 = × 25 50 MPa Ans.
EXAMPLE 2.13: Two steel rods and one copper rod each of 20 mm diameter together support a
load of 50 kN as shown in Fig. 2.22. Find the stress in each rod. Take Es = 200 GPa, Eb = 100 GPa 50 N k Copper 1.5 m 2 m Brass Brass Figure 2.22 Stress and Strains25 π Ac = As = (20)2 = 314 mm2 4
Total area of steel As + 314 × 2 = 628 mm2
σsAs cAc = 50000
628σs + 314σc = 50000
s + σc = 159 24 (i) . σ sls σ = clc ; Es Ec σs × 2000 σ = c × 1500 200000 100000 σs = 1 5σ . c (ii)
Substituting for σs from Eqn. (ii) in Eqn. (i) 2 × 1 5σ . c c = 159 24 . ∴ σ c = 39 81 MPa Ans . . σs = 1 5 81 = 7 MPa Ans . × 39 59 . . .
EXAMPLE 2.14: A uniform bar ABCD has built-in ends A&D. It is subjected to two point loads
P1 and P2 equal to 80 kN and 40 kN at B and C as shown in Fig. 2.23. Find values of reactions at A and D. A B C D P P 1 2 500 mm 1000 mm 500 mm SOLUTION: A B R R A A 500 mm R R B B 1000 mm R R C C 500 mm Figure 2.23 28Strength of Materials
2.10 Figure 2.26 shows a rigid bar ABC hinged at A and suspended at two points B and C by two
bars BD and CE , made of aluminium and steel, respectively. The bar carries a load of 20 kN
midway between B and C. The cross-sectional area of aluminium bar BD is 3 mm2 and that
of steel bar CE is 2 mm2. Determine the loads taken by the two bars BD and CE . D E 1000 mm B C 500 mm 1000 mm 1000 mm 20 kN Figure 2.26 [Ans Pa = 3 481 kN P 26 kN] . , s = 13.