Đề thi giữa học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT Bắc Ninh

Giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2020 – 2021 giúp bạn ôn tập, chuẩn bị tốt kì thi sắp tới. Mời bạn đọc đón xem.

SỞ GIÁO DỤC ĐÀO TẠO
BẮC NINH
(Đề có 02 trang)
ĐỀ KIỂM TRA GIỮA HỌC KÌ II
NĂM HỌC: 2020 - 2021
Môn: Toán - Lớp 9
Thời gian làm bài: 90 phút (không kể thời gian phát đề)
I. TRẮC NGHIỆM (3,0 điểm)
Chọn phương án trả lời đúng trong các câu sau:
Câu 1: Giá trị của biểu thức
2
(1 3)
bằng
A.
1 3.
B.
3 1.
C.
1 3.
D.
1 3.
Câu 2 : Các cặp số (x ; y) sau cặp nào là nghiệm của phương trình x + 2y = 3 ?
A. (3 ; -2). B. (0 ; 1). C. (1 ; 0). D. (1 ; 1).
Câu 3: Cặp số (x ; y) nào sau đây là nghiệm của hệ
A. (2 ; 1). B. (1 ; 2). C. (-2 ; 1). D. (1 ; -2).
Câu 4: Tọa độ giao điểm của hai đường thẳng y = 2x -3 và y = x -1 là
A. (-2 ; 1). B. (1 ; 2). C. (2 ; 1). D. (1 ; -2).
Câu 5 : Giá trị nào của a thì hệ
1ax y
x y a


vô số nghiệm?
A. -1. B. 1. C.
1
.
D. 2.
Câu 6: Hai tủ sách có 450 quyển sách, nếu chuyển 50 quyển từ tủ một sang tủ 2 thì hai tủ
có số sách bằng nhau. Số quyển sách của tủ một là:
A. 200. B. 250. C. 275. D. 300.
Câu 7: Giá trị nào của a thì đồ thị hàm số y = ax
2
đi qua điểm (-1 ; 2) ?
A. 2. B. -2. C.
1
4
. D.
1
4
.
Câu 8: Hàm số y = (m-1)x
2
đồng biến với x < 0 khi
A. m = 1. B. m > 1. C. m <1. D. m
1
.
Câu 9: Số giá trị nguyên của m để đồ thị hàm số y = (2- m
2
)x
2
nằm phía trên trục hoành là
A. 1. B. 2. C. 3. D. 4.
Câu 10: Hai điểm A, B
()O
sao cho
40AOB
số đo cung AB lớn là
A. 40
0
. B. 80
0
. C. 280
0
. D. 320
0
.
Câu 11: Tam giác ABC nội tiếp (O; 6cm),
30 ,BAC
60ABC
, độ dài AB là
A. 3cm. B. 6cm. C. 9cm. D. 12cm.
Câu 12: Điểm A thuộc nửa đường tròn tâm (O; 6cm) đường kính BC sao cho diện tích
tam giác ABC lớn nhất. Khi đó, số đo cung AC là
A. 120
0
.
B. 90
0
.
C. 60
0
. D. 45
0
.
II. TỰ LUẬN (7,0 điểm)
Câu 1. (2,5 điểm)
a) Rút gọn
2 2 4
( 0; 4)
4
22
x x x
P x x
x
xx


b) Vẽ đồ thị hàm số y = 2x
2
c) Cho hệ phương trình
1
3
ax by
ax by


. m a và b biết hệ có nghiệm duy nhất (x; y) = (1;1).
Câu 2. (1,5 điểm)
Hai tổ công nhân cùng sản xuất, trong tháng 1 hai tổ sản xuất được tất cả 900 chi tiết máy.
Trong tháng 2 tổ một vượt 15% tổ hai vượt 10% so với tháng 1 vậy hai tổ sản xuất
được tất cả 1010 chi tiết máy. Hỏi tháng 2 mỗi tsản xuất được bao nhiêu chi tiết máy?
Câu 3. (2,5 điểm)
Hai điểm B, C cùng thuộc nửa đường tròn tâm O đường kính AD (B thuộc cung AC),
AC và BD cắt nhau tại E. H là hình chiếu vuông góc của E xuống AD. Chứng minh rằng:
a) Tứ giác ABEH, DCEH nội tiếp;
b) E là tâm đường tròn nội tiếp tam giác BHC.
Câu 4. (0,5 điểm)
Cho a, b, c không âm thỏa mãn a + b + c =1 tìm giá trị nhỏ nhất của
7 9 7 9 7 9Q a b c
.
===== HẾT =====
SỞ GIÁO DỤC ĐÀO TẠO
BẮC NINH
HƯỚNG DẪN CHẤM
ĐỀ KIỂM TRA GIỮA HỌC KÌ II
NĂM HỌC: 2020 - 2021
Môn: Toán - Lớp 9
(Hướng dẫn chấm gồm 03 trang)
I. TRẮC NGHIỆM (3,0 điểm)
Mỗi câu trả lời đúng được 0,25 điểm
Câu
1
2
3
4
5
6
7
8
9
10
11
12
Đáp án
B
D
A
C
B
C
A
C
C
D
D
B
II. TỰ LUẬN (7,0 điểm)
Câu
Đáp án
Điểm
1 (2,5 điểm)
a, rút gọn
2 2 4
( 0; 4)
4
22
x x x
P x x
x
xx


1,00
22
( 2) ( 2) 4
( 2)( 2)
x x x
P
xx

0,25
4 8 4 ( 2) 4
( 2)( 2) ( 2)( 2) 2
x x x x x
P
x x x x x


0,5
Vậy
4
( 0, 4)
2
x
P x x
x
0,25
b, Vẽ đồ thị hàm số y = 2x
2
0,75
Ta có bảng một số giá trị tương ứng của x và y
x
-2
-1
0
1
2
y
8
2
0
2
8
0,25
Đồ thị hàm số y = 2x
2
parabol đi qua các điểm (-2;8), (-1;2), (0;0),
(1;2), (2;8)
0,25
0,25
c) Cho phương trình
1
3
ax by
ax by


. Tim a b biết hệ nghiệm duy
nhất
0,75
10
8
6
4
2
2
4
6
15
10
5
5
10
15
f
x
(
)
= 2
x
2
(x; y) = (1;1).
Do hệ
1
3
ax by
ax by


có nghiệm duy nhất (x;y) = (1;1) nên ta có
1
3
ab
ab


0,25
Gải hệ tìm được a = 2; b = 1 và trả lời.
0,5
Câu 2. (1,5 điểm)
Gọi số chi tiết máy tổ một tổ hai sản xuất được trong tháng 1 lần
lượt là x, y (chi tiết máy) (0 < x, y < 900)
Ta có phương trình: x + y = 900
0,5
Trong tháng 2 tổ một vượt 15%, tổ 2 vượt 10% so với tháng 1 ta
phương trình: 0,15x + 0,1y = 110
0,5
Giải hệ ta được: x = 400, y = 500.(Đều thoả mãn điều kiện)
Vậy schi tiết y tổ một tổ hai sản xuất được trong tháng 2 lần
lượt là 460, 550 chi tiết máy.
0,5
Câu 3 (2,5 điểm)
Vẽ hình ghi GT, KL
0,5
a) Tứ giác ABEH, DCEH nội tiếp
1,00
Ta
90ABD ACD
(góc nội tiếp chắn nửa đường tròn),
90 ( )EHA EHD gt
0,5
Tứ giác ABEH có
180ABE EHA
suy ra tứ giác ABEH nội tiếp
Tương tự tứ giác DCEH nội tiếp.
0,5
b)E là tâm đường tròn nội tiếp tam giác BHC.
1,00
Tứ giác ABEH nội tiếp
AHBE E H
(1)
0,5
H
E
O
A
D
B
C
Tứ giác ABCD nội tiếp
CBD CAD
(2)
Từ (1) và (2)
CBD HBD
Suy ra BE là tia phân giác của
CBH
(3)
Chứng minh tương tự ta được CE là tia phân của
BCH
(4)
Từ (3) và (4) suy ra E là tâm đường tròn nội tiếp ∆ BHC
0,5
Câu 4 (0,5 điểm)
a, b, c không âm thỏa mãn a + b + c =1
2
0 , , 1a b c a a
22
7 9 6 9 ( 3) 7 9 3a a a a a a
Tương tự
7 9 3; 7 9 3 9 10b b c c Q a b c
Dấu “=” xảy ra khi a = 1, b = c = 0 các hoán vị của suy ra giá
trị nhỏ nhất của Q là 10.
0,5
(Ghi chú: HS làm cách khác đúng vẫn cho điểm tối đa)
| 1/5

Preview text:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ KIỂM TRA GIỮA HỌC KÌ II BẮC NINH
NĂM HỌC: 2020 - 2021 Môn: Toán - Lớp 9 (Đề có 02 trang)
Thời gian làm bài: 90 phút (không kể thời gian phát đề)
I. TRẮC NGHIỆM (3,0 điểm)
Chọn phương án trả lời đúng trong các câu sau:
Câu 1: Giá trị của biểu thức 2 (1 3) bằng
A. 1 3. B. 3 1. C. 1   3. D. 1 3.
Câu 2 : Các cặp số (x ; y) sau cặp nào là nghiệm của phương trình x + 2y = 3 ? A. (3 ; -2). B. (0 ; 1). C. (1 ; 0). D. (1 ; 1).
x  3y  5
Câu 3: Cặp số (x ; y) nào sau đây là nghiệm của hệ 
2x y  3
A. (2 ; 1). B. (1 ; 2). C. (-2 ; 1). D. (1 ; -2).
Câu 4: Tọa độ giao điểm của hai đường thẳng y = 2x -3 và y = x -1 là
A. (-2 ; 1). B. (1 ; 2). C. (2 ; 1). D. (1 ; -2). ax y 1
Câu 5 : Giá trị nào của a thì hệ  vô số nghiệm?
x y a
A. -1. B. 1. C. 1. D. 2.
Câu 6: Hai tủ sách có 450 quyển sách, nếu chuyển 50 quyển từ tủ một sang tủ 2 thì hai tủ
có số sách bằng nhau. Số quyển sách của tủ một là:
A. 200. B. 250. C. 275. D. 300.
Câu 7: Giá trị nào của a thì đồ thị hàm số y = ax2 đi qua điểm (-1 ; 2) ? 1 1
A. 2. B. -2. C. . D.  . 4 4
Câu 8: Hàm số y = (m-1)x2 đồng biến với x < 0 khi
A. m = 1. B. m > 1. C. m <1. D. m  1.
Câu 9: Số giá trị nguyên của m để đồ thị hàm số y = (2- m2)x2 nằm phía trên trục hoành là
A. 1. B. 2. C. 3. D. 4.
Câu 10: Hai điểm A, B  (O) sao cho AOB 40 số đo cung AB lớn là
A. 400. B. 800. C. 2800. D. 3200.
Câu 11: Tam giác ABC nội tiếp (O; 6cm), BAC 30 , ABC 60 , độ dài AB là A. 3cm. B. 6cm.
C. 9cm. D. 12cm.
Câu 12: Điểm A thuộc nửa đường tròn tâm (O; 6cm) đường kính BC sao cho diện tích
tam giác ABC lớn nhất. Khi đó, số đo cung AC là
A. 1200. B. 900. C. 600. D. 450.
II. TỰ LUẬN (7,0 điểm)
Câu 1. (2,5 điểm) x x x a) Rút gọn 2 2 4 P   
(x  0; x  4) x  2 x  2 4  x
b) Vẽ đồ thị hàm số y = 2x2
ax by 1
c) Cho hệ phương trình 
. Tìm a và b biết hệ có nghiệm duy nhất (x; y) = (1;1).
ax by  3
Câu 2. (1,5 điểm)
Hai tổ công nhân cùng sản xuất, trong tháng 1 hai tổ sản xuất được tất cả 900 chi tiết máy.
Trong tháng 2 tổ một vượt 15% và tổ hai vượt 10% so với tháng 1 vì vậy hai tổ sản xuất
được tất cả 1010 chi tiết máy. Hỏi tháng 2 mỗi tổ sản xuất được bao nhiêu chi tiết máy?
Câu 3. (2,5 điểm)
Hai điểm B, C cùng thuộc nửa đường tròn tâm O đường kính AD (B thuộc cung AC),
AC và BD cắt nhau tại E. H là hình chiếu vuông góc của E xuống AD. Chứng minh rằng:
a) Tứ giác ABEH, DCEH nội tiếp;
b) E là tâm đường tròn nội tiếp tam giác BHC.
Câu 4. (0,5 điểm)
Cho a, b, c không âm thỏa mãn a + b + c =1 tìm giá trị nhỏ nhất của
Q  7a  9  7b  9  7c  9 . ===== HẾT =====
SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẤM BẮC NINH
ĐỀ KIỂM TRA GIỮA HỌC KÌ II
NĂM HỌC: 2020 - 2021 Môn: Toán - Lớp 9
(Hướng dẫn chấm gồm 03 trang)
I. TRẮC NGHIỆM (3,0 điểm)
Mỗi câu trả lời đúng được 0,25 điểm Câu 1 2 3 4 5 6 7 8 9 10 11 12 Đáp án B D A C B C A C C D D B
II. TỰ LUẬN (7,0 điểm) Câu Đáp án Điểm 1 (2,5 điểm) x x x 1,00 a, rút gọn 2 2 4 P   
(x  0; x  4) x  2 x  2 4  x 2 2
( x  2)  ( x  2)  4x 0,25 P
( x  2)( x  2) 4x  8 x 4 x ( x  2) 4 x 0,5 P   
( x  2)( x  2)
( x  2)( x  2) x  2 0,25 Vậy 4 x P
(x  0, x  4) x  2
b, Vẽ đồ thị hàm số y = 2x2 0,75
Ta có bảng một số giá trị tương ứng của x và y x -2 -1 0 1 2 0,25 y 8 2 0 2 8
Đồ thị hàm số y = 2x2 là parabol đi qua các điểm (-2;8), (-1;2), (0;0), (1;2), (2;8) 0,25 10 0,25 f x ( ) = 2∙x2 8 6 4 2 15 10 5 5 10 15 2 4 6
ax by 1 0,75 c) Cho phương trình 
. Tim a và b biết hệ có nghiệm duy
ax by  3 nhất (x; y) = (1;1).    0,25 Do hệ ax by 1 
có nghiệm duy nhất (x;y) = (1;1) nên ta có
ax by  3 a b  1  a b  3
Gải hệ tìm được a = 2; b = 1 và trả lời. 0,5 Câu 2. (1,5 điểm)
Gọi số chi tiết máy tổ một và tổ hai sản xuất được trong tháng 1 lần 0,5
lượt là x, y (chi tiết máy) (0 < x, y < 900)
Ta có phương trình: x + y = 900
Trong tháng 2 tổ một vượt 15%, tổ 2 vượt 10% so với tháng 1 ta có 0,5
phương trình: 0,15x + 0,1y = 110
Giải hệ ta được: x = 400, y = 500.(Đều thoả mãn điều kiện) 0,5
Vậy số chi tiết máy tổ một và tổ hai sản xuất được trong tháng 2 lần
lượt là 460, 550 chi tiết máy. Câu 3 (2,5 điểm) 0,5 C B E A H O D Vẽ hình ghi GT, KL
a) Tứ giác ABEH, DCEH nội tiếp 1,00 0,5
Ta có ABD ACD  90 (góc nội tiếp chắn nửa đường tròn),
EHA EHD  90 (  gt)
Tứ giác ABEH có ABE EHA 180 suy ra tứ giác ABEH nội tiếp 0,5
Tương tự tứ giác DCEH nội tiếp.
b)E là tâm đường tròn nội tiếp tam giác BHC. 1,00
Tứ giác ABEH nội tiếp HBE  A E H (1) 0,5
Tứ giác ABCD nội tiếp CBD CAD (2)
Từ (1) và (2) CBD HBD
Suy ra BE là tia phân giác của CBH (3)
Chứng minh tương tự ta được CE là tia phân của BCH (4) 0,5
Từ (3) và (4) suy ra E là tâm đường tròn nội tiếp ∆ BHC Câu 4 (0,5 điểm)
a, b, c không âm thỏa mãn a + b + c =1 2  0 , a ,
b c  1 a a 0,5 2 2
 7a  9  a  6a  9  (a  3)  7a  9  a  3
Tương tự 7b  9  b  3;
7c  9  c  3  Q a b c  9  10
Dấu “=” xảy ra khi a = 1, b = c = 0 và các hoán vị của nó suy ra giá
trị nhỏ nhất của Q là 10.
(Ghi chú: HS làm cách khác đúng vẫn cho điểm tối đa)