Lý thuyết chương 1: ứng dụng kinh tế hàm một biến | Môn toán cao cấp

Giá trị hiện tại + trong lại của triền.Bài toán: Gửi số tiền A vào ngân hàng, lãi suất () 1 chu kỳ. Hỏi sau n chu kì có cả gốc và lãi là bao nhiêu? gtrị cận biên Lý là gtrị cận biêu của x tại xo 7. Tại A, nếu biếu x 11 đvị thế biểu ý sẽ v 1 lượng = 1(xo) đvị. Tài liệu giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem !

lOMoARcPSD| 49519085
STT 39
lOMoARcPSD| 49519085
Changof. Ling dung kind tohain a blen
& Gia' hietai +trong laicia er.
tai:Guiisen
A
varugain hang,
lai
sud't
u
Bai
) 1-dueke. Hai saw a cheekie' od give valid bar
alieve? +r".
=>A= An Ctrn
Baind:Not thing qui ngainlng wtr, v =12% rain.
Saw 42 thing co'bar nhien?
lOMoARcPSD| 49519085
tre-
x
=
voi daie tui
a Gid tee carbien. 4 =xC) < y = Bintan
limt- +)Cx0) =-'Cx0) = f(xo+1)-fCx)
Ax-
>
0
X
f'(xo):gtre can bien Syla gtei can be diax tal 40). -
>
Tai Yo
,
nil bie
n
x=dv the bienyse
w
Long = 13C40)
/
dvc.
VD Q
=
100 1.5. MPPL12022)
=?
-
lOMoARcPSD| 49519085
of
noocLoisfoarrain
.
Tai
this dimmeic s
dung
law do
ng
tang them scalltun,
sai long thing I'll sai plain.
3
Quy lot loi ich can
bien
grandi.
· FCX) nghich bien voi x llion.
·
F"(x)
s0 vai
x
dillion.
UD: Q=100.16 =>0= 1001.1
Q" =100 = (d-1). 18-2
lOMoARcPSD| 49519085
24 He is'co gian It.x. (9)
He
is
'co
gian clay the
x
taixo. -> T
a
& ian
to,
new blew
x
1%
the
bienyse they
do
I
long bring 121%
UD. Hair cai D= Gp-DF. Hay me his soco gian aid caie the gtes tai milc gid $4.
Cp+P=ga
.p
=
-
oop
=> 24 =(%1
> Tai muic gid $4
,
nil
thing girl bain them 4% the c
ases
gran 140.
5 Toi
vin
ham a bien.
chingsNext sis van tomis ring ham + bi.ie
lOMoARcPSD| 49519085
K.
lOMoARcPSD| 49519085
AL
-
Choy = 7Cx) cs do ha
ir
caps a thi (a, b).
*= (a, b).
FCx) =
EcxoTEcxoscicos,incx0)
(x-401" +..
· (x-XS"; x -
X
<Dang Peono).
-
RnCx)
=
7
fri(Y (x-Xo)"h <Dang
logranges
in
Chung3:Tien plan.
Ving dungch plan along
point.
F'(x)
=
f(x)
lOMoARcPSD| 49519085
the the this
gran
CtER). lamic dai tait.
kleongpliailu now ching
not voin.
---> #
ECt
#SICt) Ot => Neil isgrid that K(t) =10 the hig
&
c
dvoic xonh
=>
KC+)
drocxns.
SIC
dt
=Sloot"sdt
-
nor
is+c
- ot" -a
K) (0) =200.015+c =55 =>c = 05.
Vay: KCt) =200t15 + 85.
lOMoARcPSD| 49519085
12
xns him ng
the
bit
him
can bless.
U2,
Cho MR
=
10-4.. Vaius
hair cir TR.
A
R
=
SC10-40) do
R (0) = C =0 =)
=>
Ving dung de plan xnk.
Hamcai QD =D(P), bill dien long can the p. =>P=D"(E).
Hamclurges =3(P). - lung-- ->P=SH(0)·
G
= Daig Ni =SP" CR3de-Po.Qo CS Eqtri
>
Ps = - Ns
x
= 10.00
-
* 5"Cada
2
Choham cauctai P35eo.G => G=4...in
lOMoARcPSD| 49519085
CS
=
9" (35-42 dCK) - 4.29 ·
IsroloOilHI
-
Tiel
plan say song.
D cho laim s'<x) yor dinh tree (ai +0).
+C
· SECXdx= EECXdx (t> a).
Chong4. Hm alive bein
Gioi has kep
-
AN:
Cho EMnCXnc Yn)3+8 n=1.
#Acab neil: mAMn=
3Mn1;t33tn= 1
va
ACoil).
AMn =CLE-12
lOMoARcPSD| 49519085
In
aintno
it*memimra
m
ammen
s
o
:
UClim 2x3
+
=>
M011;3).
x -> 1
-3
Lay day them tayy'MrCxniyn) saw cho lim Mn = Mo (123].
=>Slim xn= 1
lim yn = 3
lOMoARcPSD| 49519085
vs
limit. Muchin), lmMn =0(oi0).
Y -> 0
mECMn = ==0 lim moC1)
Lay NCIifC"IPo, LinECNG = lim Eni =
->
limy khing
co
gio; han
kee
& =
7Cxy) xdinhtren D, Mo (40,yo) ED.
·
Fl
(oigo) = m y)-E(xoiy c
Ax
·Eycxoiyss=m Ey-Es(xino
Ay
lOMoARcPSD| 49519085
1 FCx,y) =244+
y;
M1273).
-E12is
25: Fx12i3 = m is
#X-0
-O -132-2.2.srsn
=
lim
Ax #X
- lim
#x->0
- him FIAT
-s
Eccis Laic:
Fg12is)
=
Luma -
=---
m RTC
= lim C4Ay +253 =25
Alto
lOMoARcPSD| 49519085
8
=0l.=o.KOLO.K=
0
.
29 =
0.8
=
>
Neil (190
+
voi coust
->
51018%.
# aic tel.
If Chic
tee
this do.
Cho z=F(x,y) = 7CM), MCX, Y).
(m)
lOMoARcPSD| 49519085
SCMocr) = GM: MMo<rl
5
CMo.r)
=
GM: MMoxr] Cding)
·
Mo
(40%) dioe goil diemonic dai ni Fr
>0 saw
cho:
FCM) > FCM) FSCMoirs (CM3
Mo
(40%) dioe goita diemecanell Fr
>0 sa0
cho:
FCM)
<
FCM) FSCMoirs (CM3 dii: Mo ladin doing.
an
=
7'x[Mo), and =F
=
xy (Mos D=/a"
=>
=
Flya
(MO),
ac2
Fip (Mo)
l
New
a
=
to
being loaictei.
AC0DO
=>
No tadicac. Tan <0=>-> Motcricdai
an
70
No laarcon.
)=0 -> sir dung #L de'check.
X U = n0X+42-6xy-24x
~
AK can:
UI
=
c0x-by-24
=Cy - 6X =0
lOMoARcPSD| 49519085
=>
MC12; 36) too" ding
- AR di:Vixz =c0
Hyx =- 6
=>
D=/- )
=
430
->
Mo radicicter.
Ma
au
= 2030 => Mo lad'
are
tell.
#Neel free tap D haim soas I cicon Mo va khong ascic dai now theham si
'
dat GTNN1D tai gial' tri = 0.
t
-BK can:L= ECxcys + x (D-g(xcys).
otactantlyCMOs = 1, CMOs = 0
A
o
'ding
-AK ai: No lad' diving:hi =L"x2 (Mo) G2= Y" CMos
21
=
L"yx (Mos Lzz
=
v"Y2(Mos
9=g'x (Mo) 92 = gy CMos
M
lOMoARcPSD| 49519085
a.
ge
a) - =>
> #
-
0
10
ano-a
10 Mo-ct
x"+y=
+
x (12-3x-44)
x
=
36125
(
F
I
=
40125 x
=
2125
**
=
13s I =
-
50 <0=> Molact.
| 1/17

Preview text:

lOMoAR cPSD| 49519085 STT 39 lOMoAR cPSD| 49519085
Changof. Ling dung kind tohain a blen
& Gia' ti hietai +trong laicia tier.
tai:Guiistien A varugain hang, lai sud't u Bai ↳) 1dueke. Hai -
saw a cheekie' od give valid bar alieve? +r". =>A= An Ctrn
Baind:Not thing qui ngainlng wtr, v 12% rain. = Saw 42 thing co'bar nhien? lOMoAR cPSD| 49519085 tre- x voi daie tui =
a Gid tee carbien. 4 xC) < y Bintan = = limt+)Cx0) -'Cx0) = f(xo+1)-fCx) - = Ax-> 0 X
f'(xo):gtre can bien Syla gtei can be diax tal 40). -> Tai Yo, nil bien x=dv the bienyse w ↑ Long = 13C40) / dvc. VD Q= 100 1.5. MPPL12022) =? - lOMoAR cPSD| 49519085 of noocLoisfoarrain .
Tai this dimmeic s dung law dong tang them scalltun,
sai long thing I'll sai plain.
3 Quy lot loi ich can bien grandi.
FCX) nghich bien voi x tillion. · · F"(x) s0 vai x dillion. UD: Q=100.16 =>0= 1001.1 Q" 100 = (d-1). 18-2 = lOMoAR cPSD| 49519085 It 24 He .x. is'co gian (9) 'co He is gian clay a
the x taixo. -> T itian to, new blew & x
↑ 1% the bienyse they do I long bring 121%
UD. Hair cai D= Gp-DF. Hay time his soco gian aid caie the gtes tai milc gid $4. Cp+P=ga .p oop =- => 24 (%1 = nil > Tai muic gid $4, thing girl
bain them 4% the cases gran 140. 5 Toi vin ham a bien.
chingsNext sis van tomis ring ham + bi.ie lOMoAR cPSD| 49519085 K. lOMoAR cPSD| 49519085 AL Choy -
= 7Cx) cs do hair caps a thi (a, b). *= (a, b). FCx) = EcxoTEcxoscicos,incx0) (x-401" .. + X · (x-XS"; x - - RnCx) = 7 fri(Y (x-Xo)"h Chung3:Tien plan.
① Ving dungtich plan along point. F'(x) f(x) = lOMoAR cPSD| 49519085
the the this gran CtER). lamic dai titait. kleongpliailu now ching not voin. -> # -- ECt
#SICt) Ot => Neil isgrid that K(t) 10 the hig = &c dvoic xotinh => KC+) drocxtins. SIC dt Sloot"sdt = nor is+c - ot" - a -
K) (0) 200.015+c 55 =>c = 05. = = Vay: KCt) 200t15 + 85. = lOMoAR cPSD| 49519085
12 xtins him ting the bit him can bless. U2, Cho MR 10-4.. Vaius = hair cir TR. A R SC10-40) do = R (0) = C 0 =) = => ② Ving dung tide plan xtink.
Hamcai QD D(P), bill dien long can the p. =>P=D"(E). = Hamclurges 3(P). - lung-- ->P=SH(0)· = G
Daig Ni SP" CR3de-Po.Qo CS Eqtri = = >Ps - Nsx 10.00- * 5"Cada = = 2
Choham cauctai P35eo.G => G=4...in lOMoAR cPSD| 49519085 9" CS (35-42 dCK) 4.29 · = - IsroloOilHI- ⑤ Tiel plan say song. D cho laim s'+ + C SECXdx= EECXdx (t> a). · Chong4. Hm alive bein ① Gioi has kep - AN:Cho EMnCXnc Yn)3+8 n=1. # Acab neil: timAMn= 3Mn1;t33tn= 1 va ACoil). AMn CLE-12 = lOMoAR cPSD| 49519085 aintno In it*memimra m s: ammen o UClim 2x3 + => M011;3). x -> 1 -3
Lay day them tayy'MrCxniyn) saw cho lim Mn = Mo (123]. Slim => xn= 1 lim yn 3 = lOMoAR cPSD| 49519085
vs limit. Muchin), lmMn =0(oi0). Y -> 0 = timECMn 0 lim timoC1) = = Lay NCIifC"IPo, Eni LinECNG = lim = -> limy khing co gio; han kee & =
7Cxy) xdinhtren D, Mo (40,yo) ED. Fl (oigo) tim y)-E(xoiy c · = Ax Eycxoiyss=tim Ey-Es(xino · Ay lOMoAR cPSD| 49519085 1 FCx,y) 244+ = y; M1273). -E12is 25: Fx12i3 tim is = #X-0 -1 -O 32-2.2.srsn lim = Ax #X - lim #x->0 him FIAT-s - Eccis Laic: Fg12is) Luma - = =--- tim RTC = lim C4Ay 253 25 + = Alto lOMoAR cPSD| 49519085 8=0l.=o.KOLO.K=0. 29 =
0.8 => Neil (190 + voi coust -> 51018%. # aic tel. If Chic teethis do. Cho z=F(x,y) = 7CM), MCX, Y). (m) lOMoAR cPSD| 49519085 SCMocr) GM: MMo= 5 CMo.r) GM: MMoxr] Cding) =
Mo (40%) dioe goil diemonic dai ni Fr · >0 saw cho: FCM) > FCM) FSCMoirs (CM3
Mo (40%) dioe goita diemectianell Fr>0 sa0 cho: FCM) < FCM) FSCMoirs (CM3 dii: Mo ladin doing. an 7'x[Mo), and Fxy (Mos D=/a" = = = = => Flya (MO), ac2 Fip (Mo) l New to = being loaictei. a
AC0DO => No tadicatic. Tan <0=>Motcricdai > - 70 an No laarction.
)0 -> sir dung #L de'check. = X U = n0X+42-6xy-24x ~AK can: UI =c0x-by-24 =Cy 6X 0 - = lOMoAR cPSD| 49519085 MC12; 36) too" ding => AR di:Vixz c0 - = Hyx 6 =-
=>D=/- ) = 430 -> Mo radicicter.
Ma au = 2030 => Mo lad' are tell. #Neel '
free tap D haim soas I ciction Mo va khong dat ascic dai now theham si GTNN1D tai gial' tri 0. = t ECxcys -BK can:L= + x (D-g(xcys). M otactantlyCMOs 1, CMOs 0 = = o A 'ding
AK ai: No lad' diving:hi L"x2 (Mo) G2= Y" CMos - = = 21 L"yx (Mos Lzz v"Y2(Mos = 9=g'x (Mo) 92 gy CMos = lOMoAR cPSD| 49519085 a.ge a) - => > # - 010 ano-a 10 Mo-ct x"+y= x (12-3x-44) + x= 36125 ( FI = 40125 x= 2125 13s I **= =- 50 <0=> Molact.