Lý thuyết tường quan và hàm hồi qui | Môn Xác suất Thống kê | Trường đại học sư phạm kỹ thuật TP. Hồ Chí Minh

Khi khảo sát hai đại lượng ngẫu nhiên X,Y ta thấy giữa chúng có thể có một số quan hệ sau: X, Y độc lập với nhau, tức là việc nhận giá trị của các đại lượng ngẫu nhiên này không ảnh hưởng đến việc nhận giá trị của đại lượng ngẫu nhiên kia. X,Y có mối phụ thuộc hàm số Y. X, Y có sự phụ thuộc tương quan và phụ thuộc không tương quan. Tài liệu giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem!

Ch u ong 6
L
´
Y THUY
´
ˆ
ET T
U
ONG QUAN V
`
A H
`
AM H
`
ˆ
OI QUI
1.
M
´
ˆ
OI QUAN H
ˆ
E
.
GI
˜
UA HAI D
¯
A
.
I L
U
.
ONG NG
˜
ˆ
AU NHI
ˆ
EN
Khi kh
ao at hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X, Y ta th
´
ˆay gi
˜
ua ch´ung o th
ˆe o o
.
t s
´
ˆo
quan e
.
sau:
i) X v`a Y ¯o
.
c a
.
p v
´
oi nhau, t
´
uc l`a viˆe
.
c nhˆa
.
n gi´a tri
.
c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen n`ay
khˆong
anh h
ii) X v`a Y o m
´
ˆoi phu
.
thuˆo
.
c h`am s
´
ˆo Y = ϕ( ).X
iii) X v`a Y o s
u
.
phu
.
thuˆo
.
c t
u
ong quan v`a phu
.
thuˆo
.
c khˆong t
u
ong quan.
2.
H
ˆ
E
.
S
´
ˆ
O T
U
ONG QUAN
2.1 Moment t
u
ong quan (Covarian)
D
¯
i
.
nh ngh
˜
ia 1
* Moment t
u
ong quan (hiˆe
.
p ph
u
ong sai) c
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y, k´ı
hiˆe
.
u cov µ(X, Y ) hay
XY
, l`a s
´
ˆo ¯d
u
o
.
c ac ¯di
.
nh nh
u sau
* N
´
ˆeu cov(X, Y ) = 0 th`ı ta oi hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y khˆong t
u
ong quan.
Ch´u ´y
cov .E(X, Y ) = E(XY ) E(X) (Y )
Thˆa
.
t a
.
y, ta o
cov X.E Y.E .E(XY ) = E{X.Y (Y ) (X) + E(X) (Y )
= E( ) ( ( ( )XY ) E(X .E Y ) E X).E(Y ) + E X).E(Y
= E( ) ( )XY ) E(X .E Y
99
CuuDuongThanCong.com https://fb.com/tailieudientucntt
100
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
Nhˆa
.
n et 1
* N
´
ˆeu (
X, Y ) r
`
oi ra
.
c th`ı
cov(X, Y ) =
n
X
i=1
m
X
j=1
x x
i
y
j
P (
i
, y
j
) E(X)E(Y )
* N
´
ˆeu (X, Y ) liˆen tu
.
c th`ı
cov(X, Y ) =
+
Z
−∞
+
Z
−∞
xyf (x, y)dxdy E(X)E(Y )
Nhˆa
.
n et
i) N
´
ˆeu X v`a Y l`a hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen ¯o
.
c a
.
p th`ı ch´ung khˆong t
u
ong quan.
ii) Cov(X,X)=Var(X).
2.2 e
.
s
´
ˆo t
u
ong quan
D
¯
i
.
nh ngh
˜
ia 2 e
.
s
´
ˆo t
u
ong quan c
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y, k´ı hiˆe
.
u r
XY
,
l`a s
´
ˆo ¯d
u
o
.
c ac ¯di
.
n
r
XY
=
cov( )X, Y
S
X
.S
Y
v
´
oi S
x
, S
Y
l`a ¯o
.
e
.
ch tiˆeu chu
ˆan c
ua .X, Y
´
Y ngh
˜
ia c
ua e
.
s
´
ˆo t
u
ong quan
e
.
s
´
ˆo t
u
ong quan ¯do m
´
uc ¯o
.
phu
.
thuˆo
.
c tuy
´
ˆen t´ınh gi
˜
ua X v`a Y . Khi |r
XY
| c`ang
g
`
ˆan 1 th`ı m
´
ˆoi quan hˆe
.
tuy
´
ˆen t´ınh c`ang ch
˘
a
.
t, khi |r
XY
| c`ang g
`
ˆan 0 th`ı quan e
.
tuy
´
ˆen
t´ınh c`ang ”l
ong l
eo”.
2.3
U
´
oc l
u
o
.
ng e
.
s
´
ˆo t
u
ong quan
a
.
p m
˜
ˆau ng
˜
ˆa
D
¯
ˆe
u
´
oc l
u
o
.
ng e
.
s
´
ˆo t
u
ong quan
r
XY
=
E(XY ) E( ) )X .E(Y
S
X
.S
Y
ta d`ung th
´
ˆong e
R
=
XY X.Y
S .S
X Y
trong ¯o
X
=
1
n
n
X
i=1
X
i
, Y =
1
n
n
X
i=1
Y
i
, XY =
1
n
n
X
i=1
X Y
i i
S
2
X
=
1
n
n
X
i=1
(
X
i
X)
2
, S
2
Y
=
1
n
n
X
i=1
(
Y
i
Y )
2
CuuDuongThanCong.com https://fb.com/tailieudientucntt
2. e s
´
ˆo t
u
ong quan 101
V
´
oi m
˜
ˆau cu
.
th
ˆe, ta t´ınh ¯d
u
o
.
c gi´a tri
.
c
ua R l`a
r
XY
=
xy x.y
s
x
.s
y
trong ¯o
x
=
1
n
n
X
i=1
x
i
, y =
1
n
n
X
i=1
y
i
, xy =
1
n
n
X
i=1
x
i
y
i
s
2
x
=
1
n
n
X
i=1
x
2
i
(x)
2
, s
2
y
=
1
n
n
X
i=1
y
2
i
(y)
2
Ta o
r
XY
=
n
P
xy (
P
x)(
P
y)
q q
n(
P
x
2
) (
P
x)
2
. n(
P
y
2
) (
P
y)
2
2.4 T´ın
e
.
s
´
ˆo t
u
ong quan
r =
xy x.y
s
x
.s
y
¯d
u
o
.
c d`ung ¯d
ˆe ¯anh gi´a m
´
uc ¯o
.
ch
˘
a
.
t ch
e c
ua s
u
.
phu
.
thuˆo
.
c t
u
ong quan tuy
´
ˆen t´ınh gi
˜
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y , o o ac t´ınh
ch
´
ˆat sau ¯ay:
i) 1.|r|
ii) N
´
ˆeu |r| = 1 th`ı X v`a Y o quan e
.
tuy
´
ˆen t´ınh.
iii) N
´
ˆer
|r| c`ang l
´
on th`ı s
u
.
phu
.
thuˆo
.
c t
u
ong quan tuy
´
ˆen t´ınh gi
˜
ua X v`a Y c`ang ch
˘
a
.
t
ch
e.
iv) N
´
ˆeu
|r| = 0 th`ı gi
˜
ua X v`a Y khˆong o phu
.
thuˆo
.
c tuy
´
ˆen t´ınh t
u
ong quan.
v) N
´
ˆeu r
). N
´
ˆeu r < 0 th`ı
X v`a Y o t
u
ong quan nghi
.
ch (X gi
am th`ı Y gi
am).
V´ı du
.
1 T
`
u s
´
ˆo liˆe
.
u ¯d
u
o
.
c cho b
oi b
ang sau, h˜ay ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan c
ua Y v`a
X
X 1 3 4 6 8 9 11 14
Y 1 2 4 4 5 7 8 9
Gi
ai
Ta a
.
p b
ang sau
CuuDuongThanCong.com https://fb.com/tailieudientucntt
102
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
x x
i
y
i
2
i
x
i
y
i
y
2
i
1 1 1 1 1
3 2 9 6 4
4 4 16 16 16
6 4 36 24 16
8 5 64 40 25
9 7 81 63 49
11 8 121 88 64
14 9 196 126 81
P P
x = 56
P P
y = 40 x
2
= 524
P
xy = 364 y
2
= 256
e
.
s
´
ˆo t
u
ong quan c
ua X v`a Y l`a
r
XY
=
n
P
xy (
P
x)( )
P
y
q q
n(
P
x
2
) (
P
x)
2
. n(
P
y
2
) (
P
y)
2
=
8 (56) (40).364 .
q
8 (56).524
2
.
q
8 (40).256
2
=
672
687
, 81
= 0 977,
2.5 T
y s
´
ˆo t
u
ong quan
D
¯
ˆe ¯anh gi´a m
´
uc ¯o
.
ch
˘
a
.
t ch
e c
ua s
u
.
phu
.
thuˆo
.
c t
u
ong quan phi tuy
´
ˆen, ng
u
`
oi ta d`ung
t
y s
´
ˆo t
u
ong quan:
η
Y/X
=
s
y
s
y
trong ¯o
s
y
=
s
1
n
X
n
i
.(y
x
i
y)
2
; s
y
=
s
1
n
X
m
j
. y(
j
y)
2
T
y s
´
ˆo t
u
ong quan o ac t´ınh ch
´
ˆat sau:
i) 0 1. η
Y/X
ii)
η
Y/X
= 0 k
. .
iii)
η
Y/X
= 1 khi v`a ch
i khi Y v`a phuX
.
thuˆo
.
c h`am s
´
ˆo.
iv) .η
Y/X
|r|
N
´
ˆeu η
Y/X
= |r| th`ı s
u
.
phu
.
thuˆo
.
c t
u
ong quan c
ua Y v`a X o da
.
ng tuy
´
ˆen t´ınh.
2.6 e
.
s
´
ˆo ac ¯di
.
nh m
˜
ˆau
Trong th
´
ˆong e, ¯d
ˆe ¯anh gi´a ch
´
ˆat l
u
o
.
ng c
ua o h`ınh tuy
´
ˆen t´ınh ng
u
`
ot ta c`on et
e
.
s
´
ˆo ac ¯di
.
nh m
˜
ˆau
β = r
2
v
´
oi r l`a e
.
s
´
ˆo t
u
ong quan. Ta o 0 1. β
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 103
3.
H
`
ˆ
OI QUI
3.1 K`y vo
.
ng o ¯di
`
ˆeu kiˆe
.
n
i) D
¯
a
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen r
`
oi ra
.
c
* K`y vo
.
ng o ¯di
`
ˆeu kiˆe
.
n c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen r
`
oi ra
.
c Y v
´
oi ¯di
`
ˆeu kiˆe
.
n X = x l`a
E(Y/x) =
m
X
j=1
y y
j
P (X = x, Y =
j
)
* T
u
ong t
u
.
, k`y vo
.
ng o ¯di
`
ˆeu kiˆe
.
n c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen r
`
oi ra
.
c X v
´
oi ¯di
`
ˆeu kiˆe
.
n
Y = y l`a
E(X/y) =
n
X
i=1
x x
i
P (X =
i
, Y = y)
ii) D
¯
a
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen liˆen tu
.
c
E(Y/x) =
+
R
−∞
yf y/x dy( )
−∞
trong ¯o
f
(y/x) = f(x, y) v
´
oi x khˆong ¯d
ˆoi
f
(x/y) = f(x, y) v
´
oi y khˆong ¯d
ˆoi
3.2 H`am h
`
ˆoi qui
* H`am h
`
ˆoi qui c
ua Y ¯d
´
ˆoi v
´
oi X l`a f ( ( ).x) = E Y /x
* H`am h
`
ˆoi qui c
ua X ¯d
´
ˆoi v
´
oi Y l`a f( ( ).y) = E X/y
Trong th
u
.
c t
´
ˆe ta th
u
`
ong g
˘
a
.
p hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen
X, Y o m
´
ˆoi liˆen e
.
v
´
oi nhau,
trong ¯o viˆe
.
˜
khˆong th
ˆe kh
ao
at ¯d
u
o
.
c. Ng
bi
´
ˆet
X ta o th
ˆe
d
u
.
¯do´an ¯d
u
o
.
c Y .
Gi
a s
u bi
´
ˆet
X, n
´
ˆeu d
u
.
¯do´an Y b
`
˘
ang
ϕ(X) th`ı sai s
´
ˆo pha
.
m ph
ai l`a
E[ )] .Y ϕ(X
2
V
´
ˆan ¯d
`
ˆe ¯d
u
o
.
c ¯d
˘
a
.
t ra l`a t`ım ϕ(X) nh
u th
´
ˆe n`ao ¯d
ˆe
E[ )]Y ϕ(X
2
l`a nh
o nh
´
ˆat.
Ta s˜e ch
´
ung minh khi cho
.
n ϕ(X) = E(Y/X) (v
´
oi
ϕ(x) = E(Y /x)) th`ı E[Y ϕ( )]X
2
e nh
o nh
´
ˆat.
Thˆa
.
t a
.
y, ta o
E
[Y Y ϕ(X)]
2
= E{([ E E(Y/X)] + [ (Y/X) ϕ(X)])
2
}
=
E E{[Y ( )] [ ( ( )]Y/X
2
} + E{ E Y /X) ϕ X
2
}
+2 ( )][ ( ( )]E{[Y E Y /X E Y/X) ϕ X }
CuuDuongThanCong.com https://fb.com/tailieudientucntt
104
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
Ta th
´
ˆay
E(Y/X) ch
i phu
.
thuˆo
.
c v`ao X en o th
ˆe ¯d
˘
a
.
t T (X) = E(Y /X) ϕ(X).
V`ı E[ ( ) ( (E Y/X T X)] = E[Y T X)] en
2 [ ( )][ ( ( [ ( )] ( )E Y E Y /X E Y/X) ϕ X)] = 2E{ Y E Y/X T X }
= 2E[Y T ( 2 [ ( ) (X)] E E Y/X T X)] = 0
Do ¯o
E E
{[Y Y ϕ(X)]
2
} = E{[ E E( )]Y/X
2
} + { (Y/X) ϕ(X)]
2
nh
o nh
´
ˆat khi
E
{[(Y/X) ϕ(X)]
2
= 0
Ta ch
i c
`
ˆan cho
.
n
ϕ Y/X(X) = E( ) (6.1)
Ph
u
ong tr`ınh (6.1) ¯d
u
o
.
c go
.
i l`a ph
u
ong tr`ınh t
u
ong quan hay ph
u
ong tr`ınh h
`
ˆoi qui.
3.3 ac ¯di
.
nh h`am h
`
ˆoi qui
a) Tr
u
`
ong h
o
.
p ´ı
Gi
a s
u gi
˜
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y o t
u
ong quan tuy
´
ˆen t´ınh, t
´
uc l`a
E(Y/X) = AX + B.
D
u
.
a v`ao n c
˘
a
.
p gi´a tri
.
(x x x
1
, x
2
), (
2
, y , . . . ,
2
) (
n
, y
n
) c
ua (X, Y ) ta t`ım h`am
y
x
= y = ax + b ( )
¯d
ˆe
u
´
oc l
u
o
.
ng h`am Y = AX + B.
(*) ¯d
u
o
.
c go
.
i l`a h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau.
V`ı ac c
˘
a
.
p gi´a tri
.
trˆen l`a tri
.
x
´
ˆap x
i c
ua
x v`a y nˆen th
oa (*) o
.
t ach x
´
ˆap x
i.
Do ¯o y
i
= ax
i
+ +b ε
i
hay .ε
i
= y
i
ax
i
b
Ta t`ım
a, b sa
h`am
S(a, b) =
n
X
i=1
( )
y
i
ax
i
b
2
¯da
.
t c
u
.
c ti
ˆeu. Ph
u
ong ph´ap t`ım n`ay ¯d
u
o
.
c go
.
i l`a ph
u
ong ph´ap b`ınh ph
u
ong e nh
´
ˆat.
Ta th
´
ˆay S e ¯da
.
t gi´a tri
.
nh
o nh
´
ˆat ta
.
i ¯di
ˆem d
`
ung th
oa m˜an
0 =
S
a
= 2
n
X
i=1
x
i
(y ax b
i
i
)
0 =
S
b
= 2
n
X
i=1
( )y
i
ax
i
b
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 105
hay
n
X
i=1
x
2
i
!
.a +
n
X
i=1
x
i
!
.b =
n
X
i=1
x
i
y
i
n
X
i=1
x
i
!
.a + nb =
n
X
i=1
y
i
(6.2)
e
.
trˆen o ¯di
.
nh th
´
uc
D
=
P
n
i
=1
x
2
i
P
n
i
=1
x
i
P
n
i
=1
x
i
n
= n
n
X
i=1
x
2
i
n
X
i=1
x
i
!
2
V`ı ac
x
i
kh´ac nhau en theo b
´
ˆat ¯d
˘
ang th
´
uc Bunhiakovsky ta o (
P
n
i
=1
x
i
)
2
<
n
P
n
i
=1
x
2
i
. Do ¯o D > 0. Suy ra e
.
trˆen o nghiˆe
.
m duy nh
´
ˆat
a
=
n
P
n
i
=1
x
i
y
i
(
P
n
i
=1
x
i
) (
P
n
i
=1
y
i
)
n
P
n
i
=1
x
2
i
(
P
n
i
=1
x
i
)
2
b
=
(
P
n
i
=1
x
2
i
) (
P
n
i
=1
y
i
) (
P
n
i
=1
x
i
) (
P
n
i
=1
x
i
y
i
)
n
P
n
i
=1
x
2
i
(
P
n
i
=1
x
i
)
2
N
´
ˆeu ¯d
˘
a
.
t
n
i=1
i
n
i=1
i
n
i=1
i i
n
n
X
i=1
x
2
i
th`ı nghiˆe
.
m c
ua e
.
o th
ˆe vi
´
ˆet la
.
i d
u
´
oi da
.
ng
a
=
xy x.y
x
2
(x)
2
=
xy x.y
s
2
x
;
b =
x
2
.y x.xy
x
2
(x)
2
=
x
2
.y x.xy
s
2
x
om la
.
i, ta o th
ˆe t`ım h`am
y
x
= ax + b t
`
u ac ong th
´
uc
a
=
xy x.y
s
2
x
=
n(
P
xy) ( )( )
P
x
P
y
n
(
P
x x
2
) (
P
)
2
b = y a.x
Ch´u ´y
-bb-erro
c ¯di
ˆem (x
1
, y
1
),
(x
2
, y
2
) , . . . , (x
n
, y
n
) ¯d
u
o
.
c go
.
i l`a ¯d
u
`
ong h
`
ˆoi
qui th
u
.
c nghiˆe
.
m.
D
¯
u
`
ong th
˘
ang y = ax + b nhˆa
.
n ¯d
u
o
.
c b
oi
ong th
´
uc b`ınh ph
u
ong e nh
´
ˆat khˆong ¯di qua
¯d
u
o
.
c t
´
ˆat c
a ac ¯di
ˆem nh
ung l`a ¯d
u
`
ong th
˘
ang
”g
`
ˆan” ac ¯di
ˆem ¯o nh
´
ˆat ¯d
u
o
.
c go
.
i l`a ¯d
u
`
ong
th
˘
ang h
`
ˆoi qui v`a th
u tu
.
c l`am th´ıch h
o
.
p ¯d
u
`
ong
th
˘
ang thˆong qua ac ¯di
ˆem d
˜
u liˆe
.
u cho tr
u
´
oc
¯d
u
o
.
c go
.
i l`a h
`
ˆoi qui tuy
´
ˆen t´ınh.
Theo trˆen ta o
b = y a.x, do ¯o ¯di
ˆem (
x, y) luˆon n
`
˘
am trˆen ¯d
u
`
ong th
˘
ang h
`
ˆoi qui.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
106
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
V´ı du
.
2
U
´
oc l
u
o
.
ng h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau x
ua Y theo X trˆen c
o s
o b
ang t
u
ong
quan c
˘
a
.
p sau
X 15 38 23 16 16 13 20 24
Y 145 228 150 130 160 114 142 265
Gi
ai
Ta a
.
p b
ang sau
x x
i
y
i
2
i
x
i
y
i
15 145 225 3175
38 228 1444 8664
23 150 529 3450
16 130 256 2080
13 114 169 1482
20 142 400 2840
24 265 576 6360
P P P
x = 165 y = 1334
P
x
2
= 3855 xy = 29611
Ta o
a
=
n( )( )
P
xy) (
P
x
P
y
n
(
P
x x
2
) (
P
)
2
=
8(19611) (165)(1334)
8(3855)(1
16778
b
= y ax =
1334
8
16778
3615
165
8
= 71
a
.
y h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= 4, 64x + 71.
V´ı du
.
3 D
¯
ˆo
.
ˆam c
ua khˆong kh´ı
anh h
u
ong ¯d
´
ˆen s
u
.
bay h
oi c
ua n
u
´
oc trong s
on khi
phun ra. Ng
u
`
oi ta ti
´
ˆen h`anh nghiˆen c
´
uu m
´
ˆoi liˆen e
.
gi
˜
ua ¯o
.
ˆam c
ua khˆong kh´ı X v`a ¯o
.
bay h
oi Y . S
u
.
hi
ˆeu bi
´
ˆet v
`
ˆe m
´
ˆoi quan e
.
n`ay s˜e gi´up ta ti
´
ˆet kiˆe
.
m ¯d
u
o
.
c l
u
o
.
ng s
on b
`
˘ang
ach ch
inh ung phun s
on o
.
t ach th´ıch h
o
.
p. Ti
´
ˆen h`anh 25 quan at ta ¯d
u
o
.
c ac s
´
ˆo
liˆe
.
u sau:
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 107
Quan at D
¯
ˆo
.
ˆam D
¯
ˆo
.
bay h
oi Quan at D
¯
ˆo
.
ˆam D
¯
ˆo
.
bay h
oi
(%) (%) (%) (%)
1 35,3 11,0 14 39,1 9,6
2 29,7 11,1 15 46,8 10,9
3 30,8 12,5 16 48,5 9,6
4 58,8 8,4 17 59,3 10,1
5 61,4 9,3 18 70,0 8,1
6 71,3 8,7 19 70,0 6,8
7 74,4 6,4 20 74,4 8,9
8 76,7 8,5 21 72,1 7,7
9 70,7 7,8 22 58,1 8,5
10 57,5 9,1 23 44,6 8,9
11 46,4 8,2 24 33,4 10,4
12 28,9 12,2 25 28,6 11,1
13 28,1 11,9
H˜ay t`ım h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau .y
x
= ax + b
Gi
ai
Ta o
n
= 25
X
x = 1314, 9
X
y = 235, 7
X
x
2
= 76308, 53
X
y
2
= 2286 07,
X
xy = 11824 44,
Do ¯o
a
=
n( )( )
P
xy) (
P
x
P
y
n
(
P
x x
2
) (
P
)
2
=
25 × 11824 (1314 235 7), 44 , 9 × ,
25
× 76308 (1314 9), 53 ,
2
= 0 08,
b = y ax = 9, 43 (0, 08) × 52, 6 = 13, 64
a
.
y h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= 0, 08x + 13, 64
b) Tr
u
`
ong h
o
.
p nhi
`
ˆeu s
´
ˆo liˆe
.
u (t
u
ong quan b
ang)
Gi
a s
u
X nhˆa
.
n ac gi´a tri
.
x
i
v
´
oi t
`
ˆan su
´
ˆat n
i
i = 1 ,, k
Y nhˆa
.
n ac gi´a tri
.
y
j
v
´
oi t
`
ˆan su
´
ˆat m
j
j = 1 ,, h
XY nhˆa
.
n ac gi´a tri
.
x
i
y
j
v
´
oi t
`
ˆan su
´
ˆat n
ij
i = 1, k, j = 1 ,, h
Ta t`ım h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b trong tr
u
`
ong h
o
.
p o nhi
`
ˆeu s
´
ˆo liˆe
.
u. Theo
(6.2) ta o
CuuDuongThanCong.com https://fb.com/tailieudientucntt
108
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
k
X
i=1
n
i
x
2
i
!
.a +
k
X
i=1
n
i
x
i
!
.b =
k
X
i=1
h
X
j=1
n
ij
x
i
y
j
k
X
i=1
n
i
x
i
!
.a + nb =
h
X
j=1
m
j
y
j
(6.3)
Thay
k
X
i=1
n
i
x
i
= nx,
h
X
j=1
m
j
y
j
= ny,
k
X
i=1
n
i
x
2
i
= nx
2
,
h
X
j=1
m
j
y
2
j
= ny
2
,
k
X
i=1
h
X
j=1
n
ij
x
i
y
j
= nxy v`ao (6.3) ta ¯d
u
o
.
c
x
2
.a + x.b = xy (i)
x.a + nb = y ( )ii
T
`
u (ii) ta o b = y a.x
Thay b v`ao y
x
= ax + b ta suy ra
y
x
y = a(x x) (6.4)
Ta t`ım a b
oi
a
=
P
k
i
=1
h
j
=1
n
ij
x
i
y
j
(
k
i
=1
n
i
x
i
)(
h
j
=1
m
j
y
j
)
n
P
k
i
=1
n
i
x
2
i
(
P
k
i
=1
n
i
x
i
)
2
=
n
2
xy nx.ny
n.nx nx
2
( )
2
=
xy x.y
x x
2
( )
2
=
xy x.y
s
2
x
om la
.
i, ta t`ım h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau
y
x
= ax + b v
´
oi
a =
xy x.y
s
2
x
, b = y ax .
Ch´u ´y
i) Ta bi
´
ˆet e
.
s
´
ˆo t
u
ong quan
r
XY
=
xy xy
s .s
x y
en a = r
XY
s
y
s
x
Thay a v`ao (6
x XY
s
x
hay
y
x
y
s
y
= r
XY
(x x)
s
x
T
`
u ph
u
ong tr`ınh n`ay ta o th
ˆe suy ra ph
u
ong tr`ınh h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax b+
o
.
t ach thuˆa
.
n l
o
.
i h
on v`ı thˆong qua viˆe
.
c t`ım r
XY
ta ¯d˜a t´ınh .s
x
, s
y
ii) Khi ac gi´a tri
.
c
ua
X, Y kh´a l
´
on, ta o th
ˆe d`ung ph´ep ¯d
ˆoi bi
´
ˆen
u
i
=
x
i
x
0
h
x
(
i = 1, k); v
j
=
y
j
y
0
h
y
(j = 1 ), h
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 109
trong ¯o
*
x
0
, y
0
l`a nh
˜
ung gi´a tri
.
t`uy ´y (th
u
`
ong cho
.
n x
0
, y
0
l`a gi´a tri
.
c
ua X, Y
´
ung v
´
oi t
`
ˆan s
´
ˆo
n
ij
l
´
on nh
´
ˆat trong b
ang t
u
ong quan th
u
.
c nghiˆe
.
m),
* h
x
, h
y
l`a ac gi´a tri
.
t`uy ´y (th
u
`
ong cho
.
n h
x
, h
y
l`a kho
ang ach ac gi´a tri
.
k
´
ˆe ti
´
ˆep
nhau c
ua X, Y).
a
.
p b
ang t
u
ong quan ¯d
´
ˆoi v
´
oi ac bi
´
ˆen m
´
oi U, V v`a t´ınh to´an ac gi´a tri
.
c
`
ˆan thi
´
ˆet ta
t`ım ¯d
u
o
.
c h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau
v
u
= a
0
.u + b
0
trong ¯o
a
0
=
uv u.v
s
2
u
, b
0
= v a .u
0
Khi ¯o ta suy ra h`am
y
x
= ax + b v
´
oi a, b ¯d
u
o
.
c t`ım b
oi ong th
´
uc
a = a
0
h
y
h
x
, b
= y
0
+ b
0
.h
y
a
0
.
h
y
h
x
.x
0
V´ı du
.
4 ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan v`a h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b c
ua
ac ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen X v`a Y cho b
oi b
ang t
u
ong quan th
u
.
c nghiˆe
.
m sau:
X 1 2 3
Y
10 20
20 30 1
30 1 48
Gi
ai
Ta a
.
p b
ang sau
X 1 2 3
m m
j j
y
j
m
j
y
2
j
Y
10 200 20 200 2000
|20
20 1200 60 31 620 12400
| |30 1
30 60 4320 49 1470 44100
| |1 48
n
i
20 31 49 n=100
P
y = 2290
P
y
2
= 58500
n
i
x
i
20 62 147
P
x = 229
n
i
x
2
i
20 124 441
P
x
2
= 585
P
xy = 5840
CuuDuongThanCong.com https://fb.com/tailieudientucntt
110
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
X
xy = 200 + 1200 + 60 + 60 + 4320 = 5840
Ph
`
ˆan trˆen oc tr´ai c
ua ˆo ghi ac t´ıch n
ij
x
i
y
j
. Ta o
x
=
229
100
= 2, 29; y =
2290
100
= 22 9;,
x
2
=
585
100
= 5, 58; y
2
=
58500
100
= 585 xy =
5840
100
= 58 4;,
s
2
x
= x
2
(x)
2
= 5, 85 (2 29),
2
0, 6059 = s
x
0 78,
s
y
=
q
y
2
(y) (22
2
=
q
585 , 9) 7
2
, 78
Do ¯o
a
=
xy x.y
s
2
x
=
58 2 22 9, 4 , 29 × ,
0
, 6059
= 9 835,
b = y a.x = 22, 9 9, 835 × 2, 29 = 0, 378
H`am h
`
ˆoi qui t
e
.
s
´
ˆo t
u
ong quan l`a
r
xy
=
xy x.y
s .s
x y
=
58 2 22 9, 4 , 29 × ,
0 7
, 78 × , 78
0 982,
4.
B
`
AI T
ˆ
A
.
P
1. Cho ac gi´a tri
.
quan at c
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y
o b
ang sau:
X 5 10 10 10 15 15 15 20 20 20
Y 20 20 30 30 30 40 50 50 60 60
Gi
a s
u X v`a
´
i qui tuy
´
ˆen
t´ınh m
˜
ˆau: y
x
2. Ng
u
`
oi ta ¯do chi
`
ˆeu d`ai a
.
t ¯d´uc v`a khon th`ı th
´
ˆay ch´ung e
.
ch kh
oi qui ¯di
.
nh nh
usau:
X 0.90 1,22 1,32 0,77 1,30 1,20 1,32 0,95 0,45 1,30 1,20
Y -0,30 0,10 0,70 -0,28 0,25 0,02 0,37 -0,70 0,55 0,35 0,32
Trong ¯o X, Y l`a ac ¯o
.
e
.
ch.
ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan.
3. S
´
ˆo liˆe
.
u th
´
ˆong e nh
`
˘
am nghiˆen c
´
uu quan e
.
gi
˜
ua t
ˆong s
an ph
ˆam ong nghiˆe
.
p Y v
´
oi
t
ˆong gi´a tri
.
t`ai s
an c
´
ˆo ¯di
.
nh X c
ua 10 ong tra
.
i (t´ınh trˆen 100 ha) nh
u sau:
CuuDuongThanCong.com https://fb.com/tailieudientucntt
4. B`ai t
.
ˆap 111
X 11,3 12,9 13,6 16,8 18,8 20,0 22,2 23,7 26,6 27,5
Y 13,2 15,6 17,2 18,8 20,2 23,9 22,4 23,0 24,4 24,6
ac ¯di
.
nh ¯d
u
`
ong h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b. Sau ¯o t`ım ph
u
ong sai sai
s
´
ˆo th
u
.
c nghiˆe
.
m v`a kho
ang tin a
.
y 95% cho e
.
s
´
ˆo oc c
ua ¯d
u
`
ong h
`
ˆoi qui trˆen.
4. D
¯
o chi
`
ˆeu cao X (cm) v`a tro
.
ng l
u
o
.
ng Y (kg) c
ua 100 ho
.
c sinh, ta ¯d
u
o
.
c k
´
ˆet qu
a sau:
X 145 150 150 155 155 160 160 165 165 170
Y
35 40 3
40 45 5 10
45 50 14 20 6
50 55 15 12 5
55 60 6 4
Gi
a thuy
´
ˆet X v`a Y o m
´
ˆo phu
.
thuˆo
.
c t
u
ong quan tuy
´
ˆen t´ınh. T`ım ac h`am h
`
ˆoi qui
a) y
x
= ax + b;
b) x
y
=
5. Theo d˜oi l
u
o
.
ng phˆan on v`a n
˘
ang su
´
ˆat l´ua c
ua 100 hecta ua
o o
.
t v`ung, ta thu
¯d
u
o
.
c b
ang s
´
ˆo liˆe
.
u sau:
X 120 140 160 180 200
Y
2,2 2
2,6 5 3
3,0 11 8 4
3,4 15 17
3,8 10 6 7
4,2 12
Trong ¯o X l`a phˆan on (kg/ha) v`a Y l`a n
˘
ang su
´
ˆat ua (t
´
ˆan/ha).
a) H˜ay
u
´
oc l
u
o
.
ng e
.
s
´
ˆo t
u
ong quan tuy
´
ˆen t´ınh .r
b) T`ım ph
u
ong tr`ınh t
u
ong quan tuy
´
ˆen t´ınh: .y
x
= ax + b
6. D
¯
o chi
`
ˆeu cao v`a ¯d
u
`
ong k´ınh c
ua o
.
t loa
.
i ay, ta ¯d
u
o
.
c k
´
ˆet qu
a cho b
o b
ang sau:
X 6 8 10 12 14
Y
30 2 17 9 3
35 10 17 9
40 3 24 16 13
45 6 24 12
50 2 11 22
CuuDuongThanCong.com https://fb.com/tailieudientucntt
112
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
Trong ¯o X l`a ¯d
u
`
ong k´ınh (cm) v`a Y l`a chi
`
ˆeu cao (m).
a) ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan tuy
´
ˆen t´ınh m
˜
ˆau .r
b) T`ım ac ph
u
ong tr`ınh h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau.
c) ac ph
u
ong tr`ınh trˆen s˜e thay ¯d
ˆoi nh
u th
´
ˆe n`ao n
´
ˆeu X ¯d
u
o
.
c t´ınh theo ¯d
on vi
.
l`a
et (m)?
TR
A L
`
OI B
`
AI T
ˆ
A
.
P
1.
x = 14, y = 39, y
x
=
8
3
x +
5
3
.
2. r = 0 3096.,
3.
y
x
= 0, 67x + 7, ,18, σ
2
= 1, 126, (0 6280 ; 0, 7176).
4. a) y
x
= 0 = 0, 7018 61x , 5537, b) x
y
, 91y + 112 96.,
5. r = 0, 8165; y
x
= 0, 017x + 0 5622.,
6. a) r = 0 = 0 = 2, 69, b) y
x
, 218x + 2, 434, x
y
, 18y + 15 87.,
c)
y
x
= 21 = 0, 8x
+ 2, 434, x
y
, 0218y
+ 0 1587.,
CuuDuongThanCong.com https://fb.com/tailieudientucntt
| 1/14

Preview text:

Ch ’u ’ong 6 L ´ Y THUY ´ ˆ ET T ’ U ’ ONG QUAN V ` A H ` AM H ` ˆ OI QUI 1. M ´ ˆ OI QUAN H ˆ E ’ . GI ˜’ UA HAI D ¯ A . I L ’ U . ONG NG ˜ ˆ AU NHI ˆ EN Khi kh ’ao s´at hai ¯ da.i l ’
u ’o.ng ng ˜ˆau nhiˆen X, Y ta th ´ ˆay gi ˜’ ua ch´ ung c´o th ’ ˆe c´o mˆo.t s ´ ˆo quan hˆe. sau: i) X v`a Y ¯ dˆo.c lˆa.p v´’ oi nhau, t ´’
uc l`a viˆe.c nhˆa.n gi´a tri. c’ua ¯da.i l ’u ’o.ng ng ˜ˆau nhiˆen n`ay khˆong ’anh h ii) X v`a Y c´o m ´
ˆoi phu. thuˆo.c h`am s ´ˆo Y = ϕ(X).
iii) X v`a Y c´o s ’u. phu. thuˆo.c t ’u ’ong quan v`a phu. thuˆo.c khˆong t ’u ’ong quan. 2. H ˆ E . S ´ ˆ O T ’ U ’ ONG QUAN 2.1 Moment t ’ u ’ ong quan (Covarian) ✷ D ¯ i.nh ngh˜ ia 1 * Moment t ’u ’ ong quan (hiˆe . p ph ’u ’ ong sai) c ’ua hai ¯
da.i l ’u ’o.ng ng ˜ˆau nhiˆen X v`a Y, k´ı hiˆe . u cov(X, Y ) hay µXY , l` a s ´ ˆ o ¯ d ’
u ’o.c x´ac ¯di.nh nh ’u sau * N ´
ˆeu cov(X, Y ) = 0 th`ı ta n´oi hai ¯ da . i l ’ u ’ o.ng ng ˜ ˆ au nhiˆen X v` a Y khˆong t ’u ’ ong quan. ⊙ Ch´ u ´ y
cov(X, Y ) = E(XY ) − E(X).E(Y ) Thˆa.t vˆa.y, ta c´o
cov(XY ) = E{X.Y − X.E(Y ) − Y.E(X) + E(X).E(Y )
= E(XY ) − E(X).E(Y ) − E(X).E(Y ) + E(X).E(Y ) = E(XY ) − E(X).E(Y ) 99 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 100 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . ⊕ Nhˆ a.n x´et 1 * N ´ ˆeu (X, Y ) r`’ oi ra.c th`ı n m
cov(X, Y ) = X X xiyjP (xi, yj) − E(X)E(Y ) i=1 j=1 * N ´ ˆeu (X, Y ) liˆen tu.c th`ı +∞ +∞ Z Z cov(X, Y ) = xyf (x, y)dxdy − E(X)E(Y ) −∞ −∞ ⊕ Nhˆ a.n x´et i) N ´ ˆeu X v`a Y l`a hai ¯ da.i l ’u ’ o.ng ng ˜ ˆau nhiˆen ¯
dˆo.c lˆa.p th`ı ch´ung khˆong t ’ u ’ong quan. ii) Cov(X,X)=Var(X). 2.2 Hˆ e. s ´ˆo t ’u ’ong quan ✷ D ¯ i.nh ngh˜ ia 2 Hˆe. s ´ ˆ o t ’ u ’ong quan c ’ua hai ¯ da.i l ’u ’o.ng ng ˜ ˆ
au nhiˆen X v`a Y, k´ı hiˆe.u rXY , l` a s ´ ˆ o ¯ d ’ u ’o.c x´ac ¯di.n cov(X, Y ) rXY = SX.SY v ´’ oi Sx, SY l`a ¯
dˆo. lˆe.ch tiˆeu chu ’ˆan c’ua X, Y . • ´ Y ngh˜ ia c ’ua hˆ e. s ´ ˆ o t ’u ’ ong quan Hˆe. s ´ ˆo t ’ u ’ ong quan ¯ do m´’ uc ¯ dˆo. phu. thuˆo.c tuy ´ ˆen t´ınh gi˜’ ua X v`a Y . Khi |rXY | c`ang g ` ˆan 1 th`ı m ´ ˆoi quan hˆe. tuy ´ ˆen t´ınh c`ang ch˘ a.t, khi |rXY | c`ang g `
ˆan 0 th`ı quan hˆe. tuy ´ˆen
t´ınh c`ang ”l ’ong l ’ eo”. 2.3 ’ U´’ oc l ’u ’ o.ng hˆe. s ´ ˆ o t ’u ’ong quan Lˆa.p m ˜ˆau ng ˜ ˆa E(XY ) − E(X).E(Y ) D ’ ¯ ˆe ’u´’ oc l ’u ’o.ng hˆe. s ´ ˆo t ’ u ’ong quan rXY = ta d` ung th ´ ˆong kˆe SX.SY XY − X.Y R = SX.SY trong ¯ d´o 1 n 1 n 1 n X = X X X X i, Y = Yi, XY = XiY n n n i i=1 i=1 i=1 1 n 1 n S2 = X( = X( X X Y n i − X )2, S2Y n i − Y )2 i=1 i=1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 2. Hˆ e s ´ ˆ o t ’ u ’ ong quan 101 V´’oi m ˜ ˆau cu . th ’ˆe, ta t´ınh ¯ d ’
u ’o.c gi´a tri. c’ua R l`a xy − x.y rXY = sx.sy trong ¯ d´o 1 n 1 n 1 n x = X x X X i, y = yi, xy = x n n n iyi i=1 i=1 i=1 1 n 1 n s2 = X = X x x2 − (x)2, s2 y2 − (y)2 n i y n i i=1 i=1 Ta c´o n P xy − (P x)(P y) rXY = q q
n(P x2) − (P x)2. n(P y2) − (P y)2 2.4 T´ın xy − x.y Hˆe. s ´ ˆo t ’ u ’ ong quan r = ¯ d ’u ’ o s . c d` ung ¯ d ’ ˆe ¯ d´anh gi´a m ´’ uc ¯
dˆo. ch˘a.t ch ’e c’ua s ’u. x.sy
phu. thuˆo.c t ’u ’ong quan tuy ´ˆen t´ınh gi˜’ua hai ¯da.i l ’u ’o.ng ng ˜
ˆau nhiˆen X v`a Y , n´o c´o c´ac t´ınh ch ´ ˆat sau ¯ dˆay: i) |r| ≤ 1. ii) N ´
ˆeu |r| = 1 th`ı X v`a Y c´o quan hˆe. tuy ´ ˆen t´ınh. iii) N ´ ˆer |r| c`ang l´’ on th`ı s ’ u . phu. thuˆo.c t ’u ’ ong quan tuy ´ ˆen t´ınh gi˜’ ua X v`a Y c`ang ch˘ a.t ch ’e. iv) N ´ ˆeu |r| = 0 th`ı gi˜’
ua X v`a Y khˆong c´o phu. thuˆo.c tuy ´ ˆen t´ınh t ’u ’ ong quan. v) N ´ ˆeu r ). N ´ ˆeu r < 0 th`ı X v`a Y c´o t ’
u ’ong quan nghi.ch (X gi ’am th`ı Y gi ’am). • V´ı du. 1 T`’u s ´ ˆ
o liˆe.u ¯d ’u ’o.c cho b’oi b ’ang sau, h˜ay x´ac ¯di.nh hˆe. s ´ˆ o t ’ u ’ ong quan c ’ua Y v` a X X 1 3 4 6 8 9 11 14 Y 1 2 4 4 5 7 8 9 Gi ’ ai Ta lˆa.p b ’ang sau CuuDuongThanCong.com
https://fb.com/tailieudientucntt 102 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . x 2 i yi x x i iyi y2i 1 1 1 1 1 3 2 9 6 4 4 4 16 16 16 6 4 36 24 16 8 5 64 40 25 9 7 81 63 49 11 8 121 88 64 14 9 196 126 81 P P x = 56 P P y = 40 x2 = 524 P xy = 364 y2 = 256
Hˆe. s ´ˆo t ’u ’ong quan c’ua X v`a Y l`a n P xy − (P x)(P y) rXY = q q
n(P x2) − (P x)2. n(P y2) − (P y)2 8.364 − (56).(40) 672 = = = 0, 977 q q
8.524 − (56)2. 8.256 − (40)2 687, 81 2.5 T ’y s ´ ˆ o t ’ u ’ ong quan D ’ ¯ ˆe ¯ d´ anh gi´a m ´’ uc ¯
dˆo. ch˘a.t ch ’e c’ua s ’u. phu. thuˆo.c t ’u ’ong quan phi tuy ´ ˆen, ng ’ u`’oi ta d`ung t ’y s ´ ˆ o t ’u ’ ong quan: ηY/X = sy sy trong ¯ d´o s 1 s 1 s X X y = n − y)2; s m ( n i.(yxi y = n j . yj − y)2 T ’y s ´ ˆo t ’ u ’
ong quan c´o c´ac t´ınh ch ´ ˆat sau: i) 0 ≤ ηY/X ≤ 1. ii) ηY/X = 0 k . . ’ ’
iii) ηY/X = 1 khi v`a ch ’i khi Y v`a X phu. thuˆo.c h`am s ´ ˆo. iv) ηY/X ≥ |r|. N ´ ˆeu ηY/X = |r| th`ı s ’
u. phu. thuˆo.c t ’u ’ong quan c’ua Y v`a X c´o da.ng tuy ´ ˆen t´ınh. 2.6 Hˆ e. s ´ˆo x´ac ¯ di.nh m ˜ ˆ au Trong th ´ ˆong kˆe, ¯ d ’ ˆe ¯ d´anh gi´a ch ´ ˆat l ’u ’
o.ng c’ua mˆo h`ınh tuy ´ˆen t´ınh ng ’u`’ot ta c`on x´et hˆe. s ´ ˆ o x´ac ¯ di.nh m ˜ ˆ au β = r2 v´’ oi r l`a hˆe. s ´ ˆo t ’
u ’ong quan. Ta c´o 0 ≤ β ≤ 1. CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 103 3. H ` ˆ OI QUI 3.1 K` y vo.ng c´o ¯di ` ˆ eu kiˆ e.n i) D ¯ a.i l ’
u ’o.ng ng ˜ˆau nhiˆen r`’oi ra.c * K`y vo.ng c´o ¯di `
ˆeu kiˆe.n c’ua ¯da.i l ’u ’o.ng ng ˜ˆau nhiˆen r`’oi ra.c Y v´’ oi ¯ di ` ˆeu kiˆe.n X = x l`a m
E(Y /x) = X yjP (X = x, Y = yj) j=1 * T ’u ’ong t ’ u., k`y vo.ng c´o ¯di `
ˆeu kiˆe.n c’ua ¯da.i l ’u ’o.ng ng ˜ ˆau nhiˆen r`’ oi ra.c X v´’ oi ¯ di ` ˆeu kiˆe.n Y = y l`a n E(X/y) = XxiP (X = xi, Y = y) i=1 ii) D ¯ a.i l ’
u ’o.ng ng ˜ˆau nhiˆen liˆen tu.c +∞ E(Y /x) = R yf (y/x)dy −∞ −∞ trong ¯ d´o f (y/x) = f (x, y) v ´’ oi x khˆong ¯ d ’ˆoi f (x/y) = f (x, y) v ´’ oi y khˆong ¯ d ’ˆoi 3.2 H` am h ` ˆ oi qui * H`am h ` ˆoi qui c ’ua Y ¯ d ´ ˆoi v´’ oi X l`a f (x) = E(Y /x). * H`am h ` ˆoi qui c ’ua X ¯ d ´ ˆoi v´’ oi Y l`a f (y) = E(X/y).
Trong th ’u.c t ´ˆeta th ’u`’ong g˘a.p hai ¯da.i l ’u ’o.ng ng ˜ ˆau nhiˆen X, Y c´o m ´
ˆoi liˆen hˆe. v´’oi nhau, trong ¯ d´o viˆe . ˜ khˆong th ’ ˆe kh ’ao s´at ¯ d ’ u ’ o.c. Ng bi ´ ˆet X ta c´o th ’ ˆe d ’
u. ¯do´an ¯d ’u ’o.c Y . Gi ’a s ’’ u bi ´ ˆet X, n ´ ˆeu d ’ u 2 . ¯ do´an Y b` ˘
ang ϕ(X) th`ı sai s ´ˆo pha.m ph ’ai l`a E[Y − ϕ(X)] . V ´ ˆan ¯ d ` ˆe ¯ d ’ u ’o 2 . c ¯
d˘a.t ra l`a t`ım ϕ(X) nh ’ u th ´ ˆe n`ao ¯ d ’ ˆe E[Y − ϕ(X)] l`a nh ’ o nh ´ ˆat. Ta s˜ e ch´’ ung minh khi cho 2 . n ϕ(X) = E(Y /X) (v ´’
oi ϕ(x) = E(Y /x)) th`ı E[Y − ϕ(X)] s˜ e nh ’o nh ´ ˆat. Thˆa.t vˆa.y, ta c´o
E[Y − ϕ(X)]2 = E{([Y − E(Y /X)] + [E(Y /X) − ϕ(X)])2}
= E{[Y − E(Y /X)]2} + E{[E(Y /X) − ϕ(X)]2}
+2E{[Y − E(Y /X)][E(Y /X) − ϕ(X)]} CuuDuongThanCong.com
https://fb.com/tailieudientucntt 104 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . Ta th ´ ˆay E(Y /X) ch ’
i phu. thuˆo.c v`ao X nˆen c´o th ’ ˆe ¯
d˘a.t T (X) = E(Y/X) − ϕ(X).
V`ı E[E(Y /X)T (X)] = E[Y T (X)] nˆen
2E[Y − E(Y /X)][E(Y /X) − ϕ(X)] = 2E{[Y − E(Y /X)]T (X)}
= 2E[Y T (X)] − 2E[E(Y /X)T (X)] = 0 Do ¯ d´o
E{[Y − ϕ(X)]2} = E{[Y − E(Y /X)]2} + E{E(Y /X) − ϕ(X)]2 nh ’o nh ´ ˆat khi E{[(Y /X) − ϕ(X)]2 = 0 Ta ch ’i c ` ˆan cho.n ϕ(X) = E(Y /X) (6.1) Ph ’u ’ ong tr`ınh (6.1) ¯ d ’
u ’o.c go.i l`a ph ’u ’ong tr`ınh t ’u ’ong quan hay ph ’u ’ong tr`ınh h ` ˆ oi qui. 3.3 X´ ac ¯ di.nh h`am h ` ˆ oi qui a) Tr ’ u`’ ong h ’ o.p ´ı Gi ’ a s ’’u gi˜’ ua hai ¯ da.i l ’u ’ o.ng ng ˜
ˆau nhiˆen X v`a Y c´o t ’ u ’ ong quan tuy ´ ˆen t´ınh, t ´’ uc l`a E(Y /X) = AX + B. D ’
u.a v`ao n c˘a.p gi´a tri. (x1, x2), (x2, y2), . . . , (xn, yn) c’ua (X, Y ) ta t`ım h`am yx = y = ax + b (∗) ¯ d ’ ˆe ’u´’
oc l ’u ’o.ng h`am Y = AX + B. (*) ¯ d ’ u ’o.c go.i l`a h ` ˆ oi qui tuy ´ ˆen t´ınh m ˜ ˆ au. V`ı c´ac c˘
a.p gi´a tri. trˆen l`a tri. x ´
ˆap x ’i c ’ua x v`a y nˆen th ’oa (*) mˆo.t c´ach x ´ ˆap x ’i. Do ¯
d´o yi = axi + b + εi hay εi = yi − axi − b. Ta t`ım a, b sa h`am n S(a, b) = X(y 2 i − axi − b) i=1 ¯ da.t c ’ u.c ti ’ ˆeu. Ph ’ u ’ ong ph´ap t`ım n`ay ¯ d ’u ’ o.c go.i l`a ph ’ u ’ ong ph´ ap b`ınh ph ’ u ’ ong b´e nh ´ ˆ at. Ta th ´ ˆay S s˜ e ¯ da.t gi´a tri. nh ’o nh ´ ˆat ta.i ¯di ’ˆem d`’ ung th ’oa m˜ an ∂S n 0 = = −2 X x ) ∂a i(yi − axi − b i=1 ∂S n 0 = = −2 X(yi − axi − b) ∂b i=1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 105 hay n ! n ! n X x2 .a + X X i xi .b = xiyi i=1 i=1 i=1 n ! n (6.2) X x X i .a + nb = yi i=1 i=1
Hˆe. trˆen c´o ¯di.nh th´’ uc   !2 Pn Pn n n  x2 x  D = i i X X  i=1 i=1  = n x2 − x  Pn x i  i  i=1 i n  i=1 i=1
V`ı c´ac xi kh´ac nhau nˆen theo b ´ ˆat ¯ d ’˘ang th´’ uc Bunhiakovsky ta c´o (Pn x i=1 i)2 < n Pn x2 i . Do ¯ d´o D > 0. Suy ra hˆe =1 i
. trˆen c´o nghiˆe.m duy nh ´ ˆat n Pn x x y a = i=1 iyi − (Pn i=1 i) (Pn i=1 i) n Pni x2 x =1 i − (Pni=1 i)2 (Pn x2 y x x b = i=1 i ) (Pni=1 i) − (Pn i=1 i) (Pn i=1 iyi) n Pni x2 x =1 i − (Pn i=1 i)2 N ´ ˆeu ¯ d˘a.t n X x2 n i n i n i i n i i=1 i=1 i=1 i=1
th`ı nghiˆe.m c’ua hˆe. c´o th ’ˆe vi ´ ˆet la.i d ’u´’ oi da.ng xy − x.y xy − x.y x2.y − x.xy x2.y − x.xy a = = ; b = = x2 − (x)2 s2x x2 − (x)2 s2x
T´om la.i, ta c´o th ’ˆe t`ım h`am yx = ax + b t`’u c´ac cˆong th´’ uc xy − x.y n(P xy) − (P x)(P y) a = = s2 2) − (P )2 x n(P x x b = y − a.x ⊙ Ch´ u ´ y -bb-erro c ¯ di ’ ˆem (x1, y1), (x2, y2) , . . . , (xn, yn) ¯ d ’u ’ o.c go.i l`a ¯d ’u`’ ong h ` ˆ oi qui th ’ u.c nghiˆe.m. D ¯ ’u`’
ong th ’˘ang y = ax + b nhˆa.n ¯ d ’ u ’o.c b ’oi cˆong th´’ uc b`ınh ph ’ u ’ong b´e nh ´ ˆat khˆong ¯ di qua ¯ d ’ u ’ o.c t ´ ˆat c ’a c´ ac ¯ di ’ˆem nh ’ ung l` a ¯ d ’ u`’ong th ’˘ang ”g ` ˆan” c´ac ¯ di ’ ˆem ¯ d´o nh ´ ˆat ¯ d ’
u ’o.c go.i l`a ¯d ’u`’ong th ’˘ang h ` ˆ
oi qui v`a th ’u tu.c l`am th´ıch h ’o.p ¯d ’u`’ong th ’˘ ang thˆong qua c´ac ¯ di ’ˆem d˜’ u liˆe.u cho tr ’u´’ oc ¯ d ’ u ’ o.c go.i l`a h ` ˆ oi qui tuy ´ ˆen t´ınh.
Theo trˆen ta c´o b = y − a.x, do ¯ d´o ¯ di ’ ˆem (x, y) luˆon n` ˘am trˆen ¯ d ’u`’ ong th ’˘ang h ` ˆoi qui. CuuDuongThanCong.com
https://fb.com/tailieudientucntt 106 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . • V´ı du. 2 ’ U´’ oc l ’ u ’ o. ng h`am h ` ˆ oi qui tuy ´ ˆen t´ınh m ˜ ˆ
au x ’ua Y theo X trˆen c ’ o s ’’ o b ’ang t ’u ’ong quan c˘ a. p sau X 15 38 23 16 16 13 20 24
Y 145 228 150 130 160 114 142 265 Gi ’ ai Ta lˆa.p b ’ang sau x 2 i yi xi xiyi 15 145 225 3175 38 228 1444 8664 23 150 529 3450 16 130 256 2080 13 114 169 1482 20 142 400 2840 24 265 576 6360 P P P x = 165 y = 1334 P x2 = 3855 xy = 29611 Ta c´o n(P xy) − (P x)(P y) a = n(P x2) − (P x)2 8(19611) − (165)(1334) 16778 = 8(3855)(1 1334  16778  165 b = y − ax = − = 71 8 3615 8 Vˆa.y h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau l`a yx = 4, 64x + 71. • V´ı du. 3 D ¯ ˆ o. ’ ˆ am c ’ua khˆ ong kh´ı ’ anh h ’u ’ong ¯ d ´ ˆen s ’
u. bay h ’oi c’ua n ’u´’oc trong s ’on khi phun ra. Ng ’ u`’oi ta ti ´ ˆen h`anh nghiˆen c ´’ uu m ´ ˆ oi liˆen hˆe. gi˜’ ua ¯ dˆ o . ’ ˆ am c ’ua khˆ ong kh´ı X v` a ¯ dˆ o. bay h ’ oi Y . S ’ u . hi ’ ˆeu bi ´ ˆet v ` ˆe m ´ ˆ oi quan hˆe . n` ay s˜ e gi´up ta ti ´ ˆet kiˆe . m ¯ d ’ u ’
o.c l ’u ’o.ng s ’on b`˘ang c´ ach ch ’ inh s´ ung phun s ’ on mˆ
o.t c´ach th´ıch h ’o.p. Ti ´ˆen h`anh 25 quan s´at ta ¯d ’u ’o.c c´ac s ´ˆo liˆe . u sau: CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 107 Quan s´ at D ’ ’ ¯ ˆ o . ˆ am D ¯ ˆ o. bay h ’ oi Quan s´ at D ¯ ˆ o . ˆ am D ¯ ˆ o . bay h ’ oi (%) (%) (%) (%) 1 35,3 11,0 14 39,1 9,6 2 29,7 11,1 15 46,8 10,9 3 30,8 12,5 16 48,5 9,6 4 58,8 8,4 17 59,3 10,1 5 61,4 9,3 18 70,0 8,1 6 71,3 8,7 19 70,0 6,8 7 74,4 6,4 20 74,4 8,9 8 76,7 8,5 21 72,1 7,7 9 70,7 7,8 22 58,1 8,5 10 57,5 9,1 23 44,6 8,9 11 46,4 8,2 24 33,4 10,4 12 28,9 12,2 25 28,6 11,1 13 28,1 11,9 H˜ ay t`ım h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax + b. Gi ’ ai Ta c´o n = 25 X x = 1314, 9 X y = 235, 7 X x2 = 76308, 53 X y2 = 2286, 07 X xy = 11824, 44 Do ¯ d´o n(P xy) − (P x)(P y)
25 × 11824, 44 − (1314, 9 × 235, 7) a = = = −0, 08 n(P x2) − (P x)2 25 × 76308, 53 − (1314, 9)2
b = y − ax = 9, 43 − (−0, 08) × 52, 6 = 13, 64 Vˆa.y h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜
ˆau l`a yx = −0, 08x + 13, 64 b) Tr ’ u`’ ong h ’ o.p nhi ` ˆ eu s ´ ˆ o liˆ e.u (t ’ u ’ ong quan b ’ ang) Gi ’a s ’’u
X nhˆa.n c´ac gi´a tri. xi v´’ oi t ` ˆan su ´ ˆat ni i = 1, k,
Y nhˆa.n c´ac gi´a tri. yj v´’oi t ` ˆan su ´ ˆat mj j = 1, h,
XY nhˆa.n c´ac gi´a tri. xiyj v´’ oi t ` ˆan su ´ ˆat nij i = 1, k, j = 1, h, Ta t`ım h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax + b trong tr ’ u`’ong h ’ o.p c´o nhi ` ˆeu s ´ ˆo liˆe.u. Theo (6.2) ta c´o CuuDuongThanCong.com
https://fb.com/tailieudientucntt 108 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . k ! k ! k h X n X X X ix2 i .a + nixi .b = nijxiyj i=1 i=1 i=1 j=1 (6.3) k ! h X n X ixi .a + nb = mjyj i=1 j=1 k h k h Thay X n X X X ixi = nx, mjyj = ny, nix2i = nx2, mjy2j = ny2, i=1 j=1 i=1 j=1 k h
X X nijxiyj = nxy v`ao (6.3) ta ¯ d ’ u ’o.c i=1 j=1 x2.a + x.b = xy (i) x.a + nb = y (ii)
T`’u (ii) ta c´o b = y − a.x
Thay b v`ao yx = ax + b ta suy ra yx − y = a(x − x) (6.4) Ta t`ım a b ’oi Pk h n n m n2xy − nx.ny a = i=1 j=1 ij xiyj − ( ki=1 ixi)( hj=1 jyj) = n Pk 2 i n n.nx − (nx)2 =1 ix2 n i − (Pki=1 ixi)2 xy − x.y xy − x.y = = x2 − (x)2 s2x xy − x.y T´om la.i, ta t`ım h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax + b v´’ oi a = , b = y − ax . s2x ⊙ Ch´ u ´ y xy − xy s i) Ta bi ´ ˆet hˆe y . s ´ ˆo t ’ u ’ong quan rXY = nˆen a = r s XY x.sy sx Thay a v`ao (6 x XY sx hay yx − y (x − x) = r s XY y sx T`’u ph ’
u ’ong tr`ınh n`ay ta c´o th ’ ˆe suy ra ph ’ u ’ ong tr`ınh h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax+b
mˆo.t c´ach thuˆa.n l ’o.i h ’on v`ı thˆong qua viˆe.c t`ım rXY ta ¯d˜a t´ınh sx, sy.
ii) Khi c´ac gi´a tri. c’ua X, Y kh´a l´’ on, ta c´o th ’ ˆe d` ung ph´ep ¯ d ’ˆoi bi ´ ˆen x y u i − x0 j − y0 i = (∀i = 1, k); vj = (∀j = 1, h) hx hy CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 109 trong ¯ d´o
* x0, y0 l`a nh˜’ung gi´a tri. t`uy ´y (th ’u`’ong cho.n x0, y0 l`a gi´a tri. c’ua X, Y ´’ung v´’ oi t ` ˆan s ´ ˆo nij l´’ on nh ´ ˆat trong b ’ ang t ’ u ’ong quan th ’ u.c nghiˆe.m),
* hx, hy l`a c´ac gi´a tri. t`uy ´y (th ’u`’ong cho.n hx, hy l`a kho ’ang c´ach c´ac gi´a tri. k ´ ˆe ti ´ ˆep nhau c ’ua X, Y).
Lˆa.p b ’ang t ’u ’ong quan ¯d ´ ˆoi v´’ oi c´ac bi ´ ˆen m´’
oi U, V v`a t´ınh to´an c´ac gi´a tri. c ` ˆan thi ´ ˆet ta t`ım ¯ d ’ u ’ o.c h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau vu = a0.u + b0 trong ¯ d´o uv − u.v a0 = , b0 = v − a0.u s2u Khi ¯
d´o ta suy ra h`am yx = ax + b v´’oi a, b ¯ d ’
u ’o.c t`ım b’’oi cˆong th´’uc h h a = a y y 0 , b = y0 + b0.hy − a0. .x0 hx hx
• V´ı du. 4 X´ac ¯di.nh hˆe. s ´ ˆ o t ’u ’ ong quan v`a h`am h ` ˆ oi qui tuy ´ ˆen t´ınh m ˜ ˆ au yx = ax + b c ’ua c´ ac ¯ da.i l ’ u ’ong ng ˜ ˆ
au nhiˆen X v`a Y cho b ’oi b ’ang t ’u ’ ong quan th ’u . c nghiˆe.m sau: X 1 2 3 Y 10 20 20 30 1 30 1 48 Gi ’ ai Ta lˆa.p b ’ang sau X 1 2 3 mj mjyj mjy2j Y 10 200 20 200 2000 |20 20 1200 60 31 620 12400 |30 |1 30 60 4320 49 1470 44100 |1 |48 ni 20 31 49 n=100 P y = 2290 P y2 = 58500 nixi 20 62 147 P x = 229 nix2i 20 124 441 P x2 = 585 P xy = 5840 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 110 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui .
X xy = 200 + 1200 + 60 + 60 + 4320 = 5840 Ph `
ˆan trˆen g´oc tr´ai c ’ua ˆo ghi c´ac t´ıch nijxiyj. Ta c´o 229 2290 x = = 2, 29; y = = 22, 9; 100 100 585 58500 5840 x2 = = 5, 58; y2 = = 585 xy = = 58, 4; 100 100 100 s2 2
x = x2 − (x)2 = 5, 85 − (2, 29) ≈ 0, 6059 =⇒ sx ≈ 0, 78 q q s 2 2 y = y2 − (y) = 585 − (22, 9) ≈ 7, 78 Do ¯ d´o xy − x.y 58, 4 − 2, 29 × 22, 9 a = = = 9, 835 s2 0, 6059 x
b = y − a.x = 22, 9 − 9, 835 × 2, 29 = 0, 378 H`am h ` ˆoi qui t Hˆe. s ´ ˆo t ’u ’ ong quan l`a xy − x.y 58, 4 − 2, 29 × 22, 9 rxy = = ≈ 0, 982 sx.sy 0, 78 × 7, 78 4. B ` AI T ˆ A . P
1. Cho c´ac gi´a tri. quan s´at c’ua hai ¯da.i l ’u ’ o.ng ng ˜
ˆau nhiˆen X v`a Y ’’o b ’ang sau: X 5 10 10 10 15 15 15 20 20 20 Y 20 20 30 30 30 40 50 50 60 60 Gi ’a s ’’ u X v`a ´ i qui tuy ´ ˆen t´ınh m ˜ ˆau: yx 2. Ng ’ u`’ oi ta ¯ do chi ` ˆeu d`ai vˆa . t ¯ d´ uc v`a khuˆon th`ı th ´ ˆay ch´
ung lˆe.ch kh ’oi qui ¯di.nh nh ’usau: X 0.90 1,22 1,32 0,77 1,30 1,20 1,32 0,95 0,45 1,30 1,20 Y -0,30 0,10 0,70 -0,28 0,25 0,02 0,37 -0,70 0,55 0,35 0,32 Trong ¯ d´o X, Y l`a c´ac ¯ dˆo. lˆe.ch. X´ac ¯ di.nh hˆe. s ´ ˆo t ’u ’ ong quan. 3. S ´ ˆo liˆe.u th ´
ˆong kˆe nh`˘am nghiˆen c´’
uu quan hˆe. gi˜’ua t ’ˆong s ’an ph ’ˆam nˆong nghiˆe.p Y v´’oi t ’
ˆong gi´a tri. t`ai s ’an c ´ ˆo ¯
di.nh X c’ua 10 nˆong tra.i (t´ınh trˆen 100 ha) nh ’u sau: CuuDuongThanCong.com
https://fb.com/tailieudientucntt 4. B` ai t.ˆ ap 111 X 11,3 12,9 13,6 16,8 18,8 20,0 22,2 23,7 26,6 27,5 Y 13,2 15,6 17,2 18,8 20,2 23,9 22,4 23,0 24,4 24,6 X´ac ¯ di.nh ¯d ’u`’ong h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau y = ax + b. Sau ¯ d´o t`ım ph x ’ u ’ ong sai sai s ´ ˆo th ’
u.c nghiˆe.m v`a kho ’ang tin cˆa.y 95% cho hˆe. s ´ ˆo g´oc c ’ua ¯ d ’ u`’ ong h ` ˆoi qui trˆen. 4. D ¯ o chi `
ˆeu cao X (cm) v`a tro.ng l ’u ’o.ng Y (kg) c’ua 100 ho.c sinh, ta ¯d ’u ’o.c k ´ ˆet qu ’a sau: X 145 − 150 150 − 155 155 − 160 160 − 165 165 − 170 Y 35 − 40 3 40 − 45 5 10 45 − 50 14 20 6 50 − 55 15 12 5 55 − 60 6 4 Gi ’a thuy ´ ˆet X v`a Y c´o m ´
ˆo phu. thuˆo.c t ’u ’ong quan tuy ´
ˆen t´ınh. T`ım c´ac h`am h ` ˆoi qui a) y = ax + b; x b) xy = 5. Theo d˜ oi l ’ u ’
o.ng phˆan b´on v`a n˘ang su ´ ˆat l´
ua c ’ua 100 hecta l´ua ’’ o mˆo.t v`ung, ta thu ¯ d ’ u ’o.c b ’ang s ´ ˆo liˆe.u sau: X 120 140 160 180 200 Y 2,2 2 2,6 5 3 3,0 11 8 4 3,4 15 17 3,8 10 6 7 4,2 12 Trong ¯
d´o X l`a phˆan b´on (kg/ha) v`a Y l`a n˘ ang su ´ ˆat l´ ua (t ´ ˆan/ha). a) H˜ ay ’ u´’ oc l ’u ’o.ng hˆe. s ´ ˆo t ’ u ’ ong quan tuy ´ ˆen t´ınh r. b) T`ım ph ’ u ’ ong tr`ınh t ’ u ’ong quan tuy ´ ˆen t´ınh: y = ax + b. x 6. D ¯ o chi ` ˆeu cao v`a ¯ d ’
u`’ong k´ınh c ’ua mˆo.t loa.i cˆay, ta ¯d ’u ’o.c k ´
ˆet qu ’a cho b ’’o b ’ang sau: X 6 8 10 12 14 Y 30 2 17 9 3 35 10 17 9 40 3 24 16 13 45 6 24 12 50 2 11 22 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 112 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . Trong ¯ d´o X l`a ¯ d ’ u`’
ong k´ınh (cm) v`a Y l`a chi ` ˆeu cao (m). a) X´ac ¯ di.nh hˆe. s ´ˆo t ’ u ’ ong quan tuy ´ ˆen t´ınh m ˜ ˆau r. b) T`ım c´ac ph ’ u ’ong tr`ınh h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau. c) C´ac ph ’u ’ ong tr`ınh trˆen s˜ e thay ¯ d ’ ˆoi nh ’ u th ´ ˆe n`ao n ´ ˆeu X ¯ d ’ u ’
o.c t´ınh theo ¯d ’on vi. l`a m´et (m)? • ✷ TR ’ A L `’ OI B ` AI T ˆ A . P 1. x = 14, y = 39, y = 8 . x x + 5 3 3 2. r = −0, 3096.
3. y = 0, 67x + 7, 18, σ2 = 1, 126, (0, 6280 ; 0, 7176). x
4. a) y = 0, 7018x − 61, 5537, b) xy = 0, 91y + 112, 96. x
5. r = 0, 8165; y = 0, 017x + 0, 5622. x
6. a) r = 0, 69, b) y = 0, 218x + 2, 434, xy = 2, 18y + 15, 87. x
c) y = 21, 8x′ + 2, 434, xy = 0, 0218y′ + 0, 1587. x′ CuuDuongThanCong.com
https://fb.com/tailieudientucntt