Ch u ong 6
L
´
Y THUY
´
ˆ
ET T
U
ONG QUAN V
`
A H
`
AM H
`
ˆ
OI QUI
1.
M
´
ˆ
OI QUAN H
ˆ
E
.
GI
˜
UA HAI D
¯
A
.
I L
U
.
ONG NG
˜
ˆ
AU NHI
ˆ
EN
Khi kh
ao at hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X, Y ta th
´
ˆay gi
˜
ua ch´ung o th
ˆe o o
.
t s
´
ˆo
quan e
.
sau:
i) X v`a Y ¯o
.
c a
.
p v
´
oi nhau, t
´
uc l`a viˆe
.
c nhˆa
.
n gi´a tri
.
c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen n`ay
khˆong
anh h
ii) X v`a Y o m
´
ˆoi phu
.
thuˆo
.
c h`am s
´
ˆo Y = ϕ( ).X
iii) X v`a Y o s
u
.
phu
.
thuˆo
.
c t
u
ong quan v`a phu
.
thuˆo
.
c khˆong t
u
ong quan.
2.
H
ˆ
E
.
S
´
ˆ
O T
U
ONG QUAN
2.1 Moment t
u
ong quan (Covarian)
D
¯
i
.
nh ngh
˜
ia 1
* Moment t
u
ong quan (hiˆe
.
p ph
u
ong sai) c
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y, k´ı
hiˆe
.
u cov µ(X, Y ) hay
XY
, l`a s
´
ˆo ¯d
u
o
.
c ac ¯di
.
nh nh
u sau
* N
´
ˆeu cov(X, Y ) = 0 th`ı ta oi hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y khˆong t
u
ong quan.
Ch´u ´y
cov .E(X, Y ) = E(XY ) E(X) (Y )
Thˆa
.
t a
.
y, ta o
cov X.E Y.E .E(XY ) = E{X.Y (Y ) (X) + E(X) (Y )
= E( ) ( ( ( )XY ) E(X .E Y ) E X).E(Y ) + E X).E(Y
= E( ) ( )XY ) E(X .E Y
99
CuuDuongThanCong.com https://fb.com/tailieudientucntt
100
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
Nhˆa
.
n et 1
* N
´
ˆeu (
X, Y ) r
`
oi ra
.
c th`ı
cov(X, Y ) =
n
X
i=1
m
X
j=1
x x
i
y
j
P (
i
, y
j
) E(X)E(Y )
* N
´
ˆeu (X, Y ) liˆen tu
.
c th`ı
cov(X, Y ) =
+
Z
−∞
+
Z
−∞
xyf (x, y)dxdy E(X)E(Y )
Nhˆa
.
n et
i) N
´
ˆeu X v`a Y l`a hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen ¯o
.
c a
.
p th`ı ch´ung khˆong t
u
ong quan.
ii) Cov(X,X)=Var(X).
2.2 e
.
s
´
ˆo t
u
ong quan
D
¯
i
.
nh ngh
˜
ia 2 e
.
s
´
ˆo t
u
ong quan c
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y, k´ı hiˆe
.
u r
XY
,
l`a s
´
ˆo ¯d
u
o
.
c ac ¯di
.
n
r
XY
=
cov( )X, Y
S
X
.S
Y
v
´
oi S
x
, S
Y
l`a ¯o
.
e
.
ch tiˆeu chu
ˆan c
ua .X, Y
´
Y ngh
˜
ia c
ua e
.
s
´
ˆo t
u
ong quan
e
.
s
´
ˆo t
u
ong quan ¯do m
´
uc ¯o
.
phu
.
thuˆo
.
c tuy
´
ˆen t´ınh gi
˜
ua X v`a Y . Khi |r
XY
| c`ang
g
`
ˆan 1 th`ı m
´
ˆoi quan hˆe
.
tuy
´
ˆen t´ınh c`ang ch
˘
a
.
t, khi |r
XY
| c`ang g
`
ˆan 0 th`ı quan e
.
tuy
´
ˆen
t´ınh c`ang ”l
ong l
eo”.
2.3
U
´
oc l
u
o
.
ng e
.
s
´
ˆo t
u
ong quan
a
.
p m
˜
ˆau ng
˜
ˆa
D
¯
ˆe
u
´
oc l
u
o
.
ng e
.
s
´
ˆo t
u
ong quan
r
XY
=
E(XY ) E( ) )X .E(Y
S
X
.S
Y
ta d`ung th
´
ˆong e
R
=
XY X.Y
S .S
X Y
trong ¯o
X
=
1
n
n
X
i=1
X
i
, Y =
1
n
n
X
i=1
Y
i
, XY =
1
n
n
X
i=1
X Y
i i
S
2
X
=
1
n
n
X
i=1
(
X
i
X)
2
, S
2
Y
=
1
n
n
X
i=1
(
Y
i
Y )
2
CuuDuongThanCong.com https://fb.com/tailieudientucntt
2. e s
´
ˆo t
u
ong quan 101
V
´
oi m
˜
ˆau cu
.
th
ˆe, ta t´ınh ¯d
u
o
.
c gi´a tri
.
c
ua R l`a
r
XY
=
xy x.y
s
x
.s
y
trong ¯o
x
=
1
n
n
X
i=1
x
i
, y =
1
n
n
X
i=1
y
i
, xy =
1
n
n
X
i=1
x
i
y
i
s
2
x
=
1
n
n
X
i=1
x
2
i
(x)
2
, s
2
y
=
1
n
n
X
i=1
y
2
i
(y)
2
Ta o
r
XY
=
n
P
xy (
P
x)(
P
y)
q q
n(
P
x
2
) (
P
x)
2
. n(
P
y
2
) (
P
y)
2
2.4 T´ın
e
.
s
´
ˆo t
u
ong quan
r =
xy x.y
s
x
.s
y
¯d
u
o
.
c d`ung ¯d
ˆe ¯anh gi´a m
´
uc ¯o
.
ch
˘
a
.
t ch
e c
ua s
u
.
phu
.
thuˆo
.
c t
u
ong quan tuy
´
ˆen t´ınh gi
˜
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y , o o ac t´ınh
ch
´
ˆat sau ¯ay:
i) 1.|r|
ii) N
´
ˆeu |r| = 1 th`ı X v`a Y o quan e
.
tuy
´
ˆen t´ınh.
iii) N
´
ˆer
|r| c`ang l
´
on th`ı s
u
.
phu
.
thuˆo
.
c t
u
ong quan tuy
´
ˆen t´ınh gi
˜
ua X v`a Y c`ang ch
˘
a
.
t
ch
e.
iv) N
´
ˆeu
|r| = 0 th`ı gi
˜
ua X v`a Y khˆong o phu
.
thuˆo
.
c tuy
´
ˆen t´ınh t
u
ong quan.
v) N
´
ˆeu r
). N
´
ˆeu r < 0 th`ı
X v`a Y o t
u
ong quan nghi
.
ch (X gi
am th`ı Y gi
am).
V´ı du
.
1 T
`
u s
´
ˆo liˆe
.
u ¯d
u
o
.
c cho b
oi b
ang sau, h˜ay ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan c
ua Y v`a
X
X 1 3 4 6 8 9 11 14
Y 1 2 4 4 5 7 8 9
Gi
ai
Ta a
.
p b
ang sau
CuuDuongThanCong.com https://fb.com/tailieudientucntt
102
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
x x
i
y
i
2
i
x
i
y
i
y
2
i
1 1 1 1 1
3 2 9 6 4
4 4 16 16 16
6 4 36 24 16
8 5 64 40 25
9 7 81 63 49
11 8 121 88 64
14 9 196 126 81
P P
x = 56
P P
y = 40 x
2
= 524
P
xy = 364 y
2
= 256
e
.
s
´
ˆo t
u
ong quan c
ua X v`a Y l`a
r
XY
=
n
P
xy (
P
x)( )
P
y
q q
n(
P
x
2
) (
P
x)
2
. n(
P
y
2
) (
P
y)
2
=
8 (56) (40).364 .
q
8 (56).524
2
.
q
8 (40).256
2
=
672
687
, 81
= 0 977,
2.5 T
y s
´
ˆo t
u
ong quan
D
¯
ˆe ¯anh gi´a m
´
uc ¯o
.
ch
˘
a
.
t ch
e c
ua s
u
.
phu
.
thuˆo
.
c t
u
ong quan phi tuy
´
ˆen, ng
u
`
oi ta d`ung
t
y s
´
ˆo t
u
ong quan:
η
Y/X
=
s
y
s
y
trong ¯o
s
y
=
s
1
n
X
n
i
.(y
x
i
y)
2
; s
y
=
s
1
n
X
m
j
. y(
j
y)
2
T
y s
´
ˆo t
u
ong quan o ac t´ınh ch
´
ˆat sau:
i) 0 1. η
Y/X
ii)
η
Y/X
= 0 k
. .
iii)
η
Y/X
= 1 khi v`a ch
i khi Y v`a phuX
.
thuˆo
.
c h`am s
´
ˆo.
iv) .η
Y/X
|r|
N
´
ˆeu η
Y/X
= |r| th`ı s
u
.
phu
.
thuˆo
.
c t
u
ong quan c
ua Y v`a X o da
.
ng tuy
´
ˆen t´ınh.
2.6 e
.
s
´
ˆo ac ¯di
.
nh m
˜
ˆau
Trong th
´
ˆong e, ¯d
ˆe ¯anh gi´a ch
´
ˆat l
u
o
.
ng c
ua o h`ınh tuy
´
ˆen t´ınh ng
u
`
ot ta c`on et
e
.
s
´
ˆo ac ¯di
.
nh m
˜
ˆau
β = r
2
v
´
oi r l`a e
.
s
´
ˆo t
u
ong quan. Ta o 0 1. β
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 103
3.
H
`
ˆ
OI QUI
3.1 K`y vo
.
ng o ¯di
`
ˆeu kiˆe
.
n
i) D
¯
a
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen r
`
oi ra
.
c
* K`y vo
.
ng o ¯di
`
ˆeu kiˆe
.
n c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen r
`
oi ra
.
c Y v
´
oi ¯di
`
ˆeu kiˆe
.
n X = x l`a
E(Y/x) =
m
X
j=1
y y
j
P (X = x, Y =
j
)
* T
u
ong t
u
.
, k`y vo
.
ng o ¯di
`
ˆeu kiˆe
.
n c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen r
`
oi ra
.
c X v
´
oi ¯di
`
ˆeu kiˆe
.
n
Y = y l`a
E(X/y) =
n
X
i=1
x x
i
P (X =
i
, Y = y)
ii) D
¯
a
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen liˆen tu
.
c
E(Y/x) =
+
R
−∞
yf y/x dy( )
−∞
trong ¯o
f
(y/x) = f(x, y) v
´
oi x khˆong ¯d
ˆoi
f
(x/y) = f(x, y) v
´
oi y khˆong ¯d
ˆoi
3.2 H`am h
`
ˆoi qui
* H`am h
`
ˆoi qui c
ua Y ¯d
´
ˆoi v
´
oi X l`a f ( ( ).x) = E Y /x
* H`am h
`
ˆoi qui c
ua X ¯d
´
ˆoi v
´
oi Y l`a f( ( ).y) = E X/y
Trong th
u
.
c t
´
ˆe ta th
u
`
ong g
˘
a
.
p hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen
X, Y o m
´
ˆoi liˆen e
.
v
´
oi nhau,
trong ¯o viˆe
.
˜
khˆong th
ˆe kh
ao
at ¯d
u
o
.
c. Ng
bi
´
ˆet
X ta o th
ˆe
d
u
.
¯do´an ¯d
u
o
.
c Y .
Gi
a s
u bi
´
ˆet
X, n
´
ˆeu d
u
.
¯do´an Y b
`
˘
ang
ϕ(X) th`ı sai s
´
ˆo pha
.
m ph
ai l`a
E[ )] .Y ϕ(X
2
V
´
ˆan ¯d
`
ˆe ¯d
u
o
.
c ¯d
˘
a
.
t ra l`a t`ım ϕ(X) nh
u th
´
ˆe n`ao ¯d
ˆe
E[ )]Y ϕ(X
2
l`a nh
o nh
´
ˆat.
Ta s˜e ch
´
ung minh khi cho
.
n ϕ(X) = E(Y/X) (v
´
oi
ϕ(x) = E(Y /x)) th`ı E[Y ϕ( )]X
2
e nh
o nh
´
ˆat.
Thˆa
.
t a
.
y, ta o
E
[Y Y ϕ(X)]
2
= E{([ E E(Y/X)] + [ (Y/X) ϕ(X)])
2
}
=
E E{[Y ( )] [ ( ( )]Y/X
2
} + E{ E Y /X) ϕ X
2
}
+2 ( )][ ( ( )]E{[Y E Y /X E Y/X) ϕ X }
CuuDuongThanCong.com https://fb.com/tailieudientucntt
104
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
Ta th
´
ˆay
E(Y/X) ch
i phu
.
thuˆo
.
c v`ao X en o th
ˆe ¯d
˘
a
.
t T (X) = E(Y /X) ϕ(X).
V`ı E[ ( ) ( (E Y/X T X)] = E[Y T X)] en
2 [ ( )][ ( ( [ ( )] ( )E Y E Y /X E Y/X) ϕ X)] = 2E{ Y E Y/X T X }
= 2E[Y T ( 2 [ ( ) (X)] E E Y/X T X)] = 0
Do ¯o
E E
{[Y Y ϕ(X)]
2
} = E{[ E E( )]Y/X
2
} + { (Y/X) ϕ(X)]
2
nh
o nh
´
ˆat khi
E
{[(Y/X) ϕ(X)]
2
= 0
Ta ch
i c
`
ˆan cho
.
n
ϕ Y/X(X) = E( ) (6.1)
Ph
u
ong tr`ınh (6.1) ¯d
u
o
.
c go
.
i l`a ph
u
ong tr`ınh t
u
ong quan hay ph
u
ong tr`ınh h
`
ˆoi qui.
3.3 ac ¯di
.
nh h`am h
`
ˆoi qui
a) Tr
u
`
ong h
o
.
p ´ı
Gi
a s
u gi
˜
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y o t
u
ong quan tuy
´
ˆen t´ınh, t
´
uc l`a
E(Y/X) = AX + B.
D
u
.
a v`ao n c
˘
a
.
p gi´a tri
.
(x x x
1
, x
2
), (
2
, y , . . . ,
2
) (
n
, y
n
) c
ua (X, Y ) ta t`ım h`am
y
x
= y = ax + b ( )
¯d
ˆe
u
´
oc l
u
o
.
ng h`am Y = AX + B.
(*) ¯d
u
o
.
c go
.
i l`a h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau.
V`ı ac c
˘
a
.
p gi´a tri
.
trˆen l`a tri
.
x
´
ˆap x
i c
ua
x v`a y nˆen th
oa (*) o
.
t ach x
´
ˆap x
i.
Do ¯o y
i
= ax
i
+ +b ε
i
hay .ε
i
= y
i
ax
i
b
Ta t`ım
a, b sa
h`am
S(a, b) =
n
X
i=1
( )
y
i
ax
i
b
2
¯da
.
t c
u
.
c ti
ˆeu. Ph
u
ong ph´ap t`ım n`ay ¯d
u
o
.
c go
.
i l`a ph
u
ong ph´ap b`ınh ph
u
ong e nh
´
ˆat.
Ta th
´
ˆay S e ¯da
.
t gi´a tri
.
nh
o nh
´
ˆat ta
.
i ¯di
ˆem d
`
ung th
oa m˜an
0 =
S
a
= 2
n
X
i=1
x
i
(y ax b
i
i
)
0 =
S
b
= 2
n
X
i=1
( )y
i
ax
i
b
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 105
hay
n
X
i=1
x
2
i
!
.a +
n
X
i=1
x
i
!
.b =
n
X
i=1
x
i
y
i
n
X
i=1
x
i
!
.a + nb =
n
X
i=1
y
i
(6.2)
e
.
trˆen o ¯di
.
nh th
´
uc
D
=
P
n
i
=1
x
2
i
P
n
i
=1
x
i
P
n
i
=1
x
i
n
= n
n
X
i=1
x
2
i
n
X
i=1
x
i
!
2
V`ı ac
x
i
kh´ac nhau en theo b
´
ˆat ¯d
˘
ang th
´
uc Bunhiakovsky ta o (
P
n
i
=1
x
i
)
2
<
n
P
n
i
=1
x
2
i
. Do ¯o D > 0. Suy ra e
.
trˆen o nghiˆe
.
m duy nh
´
ˆat
a
=
n
P
n
i
=1
x
i
y
i
(
P
n
i
=1
x
i
) (
P
n
i
=1
y
i
)
n
P
n
i
=1
x
2
i
(
P
n
i
=1
x
i
)
2
b
=
(
P
n
i
=1
x
2
i
) (
P
n
i
=1
y
i
) (
P
n
i
=1
x
i
) (
P
n
i
=1
x
i
y
i
)
n
P
n
i
=1
x
2
i
(
P
n
i
=1
x
i
)
2
N
´
ˆeu ¯d
˘
a
.
t
n
i=1
i
n
i=1
i
n
i=1
i i
n
n
X
i=1
x
2
i
th`ı nghiˆe
.
m c
ua e
.
o th
ˆe vi
´
ˆet la
.
i d
u
´
oi da
.
ng
a
=
xy x.y
x
2
(x)
2
=
xy x.y
s
2
x
;
b =
x
2
.y x.xy
x
2
(x)
2
=
x
2
.y x.xy
s
2
x
om la
.
i, ta o th
ˆe t`ım h`am
y
x
= ax + b t
`
u ac ong th
´
uc
a
=
xy x.y
s
2
x
=
n(
P
xy) ( )( )
P
x
P
y
n
(
P
x x
2
) (
P
)
2
b = y a.x
Ch´u ´y
-bb-erro
c ¯di
ˆem (x
1
, y
1
),
(x
2
, y
2
) , . . . , (x
n
, y
n
) ¯d
u
o
.
c go
.
i l`a ¯d
u
`
ong h
`
ˆoi
qui th
u
.
c nghiˆe
.
m.
D
¯
u
`
ong th
˘
ang y = ax + b nhˆa
.
n ¯d
u
o
.
c b
oi
ong th
´
uc b`ınh ph
u
ong e nh
´
ˆat khˆong ¯di qua
¯d
u
o
.
c t
´
ˆat c
a ac ¯di
ˆem nh
ung l`a ¯d
u
`
ong th
˘
ang
”g
`
ˆan” ac ¯di
ˆem ¯o nh
´
ˆat ¯d
u
o
.
c go
.
i l`a ¯d
u
`
ong
th
˘
ang h
`
ˆoi qui v`a th
u tu
.
c l`am th´ıch h
o
.
p ¯d
u
`
ong
th
˘
ang thˆong qua ac ¯di
ˆem d
˜
u liˆe
.
u cho tr
u
´
oc
¯d
u
o
.
c go
.
i l`a h
`
ˆoi qui tuy
´
ˆen t´ınh.
Theo trˆen ta o
b = y a.x, do ¯o ¯di
ˆem (
x, y) luˆon n
`
˘
am trˆen ¯d
u
`
ong th
˘
ang h
`
ˆoi qui.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
106
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
V´ı du
.
2
U
´
oc l
u
o
.
ng h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau x
ua Y theo X trˆen c
o s
o b
ang t
u
ong
quan c
˘
a
.
p sau
X 15 38 23 16 16 13 20 24
Y 145 228 150 130 160 114 142 265
Gi
ai
Ta a
.
p b
ang sau
x x
i
y
i
2
i
x
i
y
i
15 145 225 3175
38 228 1444 8664
23 150 529 3450
16 130 256 2080
13 114 169 1482
20 142 400 2840
24 265 576 6360
P P P
x = 165 y = 1334
P
x
2
= 3855 xy = 29611
Ta o
a
=
n( )( )
P
xy) (
P
x
P
y
n
(
P
x x
2
) (
P
)
2
=
8(19611) (165)(1334)
8(3855)(1
16778
b
= y ax =
1334
8
16778
3615
165
8
= 71
a
.
y h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= 4, 64x + 71.
V´ı du
.
3 D
¯
ˆo
.
ˆam c
ua khˆong kh´ı
anh h
u
ong ¯d
´
ˆen s
u
.
bay h
oi c
ua n
u
´
oc trong s
on khi
phun ra. Ng
u
`
oi ta ti
´
ˆen h`anh nghiˆen c
´
uu m
´
ˆoi liˆen e
.
gi
˜
ua ¯o
.
ˆam c
ua khˆong kh´ı X v`a ¯o
.
bay h
oi Y . S
u
.
hi
ˆeu bi
´
ˆet v
`
ˆe m
´
ˆoi quan e
.
n`ay s˜e gi´up ta ti
´
ˆet kiˆe
.
m ¯d
u
o
.
c l
u
o
.
ng s
on b
`
˘ang
ach ch
inh ung phun s
on o
.
t ach th´ıch h
o
.
p. Ti
´
ˆen h`anh 25 quan at ta ¯d
u
o
.
c ac s
´
ˆo
liˆe
.
u sau:
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 107
Quan at D
¯
ˆo
.
ˆam D
¯
ˆo
.
bay h
oi Quan at D
¯
ˆo
.
ˆam D
¯
ˆo
.
bay h
oi
(%) (%) (%) (%)
1 35,3 11,0 14 39,1 9,6
2 29,7 11,1 15 46,8 10,9
3 30,8 12,5 16 48,5 9,6
4 58,8 8,4 17 59,3 10,1
5 61,4 9,3 18 70,0 8,1
6 71,3 8,7 19 70,0 6,8
7 74,4 6,4 20 74,4 8,9
8 76,7 8,5 21 72,1 7,7
9 70,7 7,8 22 58,1 8,5
10 57,5 9,1 23 44,6 8,9
11 46,4 8,2 24 33,4 10,4
12 28,9 12,2 25 28,6 11,1
13 28,1 11,9
H˜ay t`ım h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau .y
x
= ax + b
Gi
ai
Ta o
n
= 25
X
x = 1314, 9
X
y = 235, 7
X
x
2
= 76308, 53
X
y
2
= 2286 07,
X
xy = 11824 44,
Do ¯o
a
=
n( )( )
P
xy) (
P
x
P
y
n
(
P
x x
2
) (
P
)
2
=
25 × 11824 (1314 235 7), 44 , 9 × ,
25
× 76308 (1314 9), 53 ,
2
= 0 08,
b = y ax = 9, 43 (0, 08) × 52, 6 = 13, 64
a
.
y h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau l`a y
x
= 0, 08x + 13, 64
b) Tr
u
`
ong h
o
.
p nhi
`
ˆeu s
´
ˆo liˆe
.
u (t
u
ong quan b
ang)
Gi
a s
u
X nhˆa
.
n ac gi´a tri
.
x
i
v
´
oi t
`
ˆan su
´
ˆat n
i
i = 1 ,, k
Y nhˆa
.
n ac gi´a tri
.
y
j
v
´
oi t
`
ˆan su
´
ˆat m
j
j = 1 ,, h
XY nhˆa
.
n ac gi´a tri
.
x
i
y
j
v
´
oi t
`
ˆan su
´
ˆat n
ij
i = 1, k, j = 1 ,, h
Ta t`ım h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b trong tr
u
`
ong h
o
.
p o nhi
`
ˆeu s
´
ˆo liˆe
.
u. Theo
(6.2) ta o
CuuDuongThanCong.com https://fb.com/tailieudientucntt
108
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
k
X
i=1
n
i
x
2
i
!
.a +
k
X
i=1
n
i
x
i
!
.b =
k
X
i=1
h
X
j=1
n
ij
x
i
y
j
k
X
i=1
n
i
x
i
!
.a + nb =
h
X
j=1
m
j
y
j
(6.3)
Thay
k
X
i=1
n
i
x
i
= nx,
h
X
j=1
m
j
y
j
= ny,
k
X
i=1
n
i
x
2
i
= nx
2
,
h
X
j=1
m
j
y
2
j
= ny
2
,
k
X
i=1
h
X
j=1
n
ij
x
i
y
j
= nxy v`ao (6.3) ta ¯d
u
o
.
c
x
2
.a + x.b = xy (i)
x.a + nb = y ( )ii
T
`
u (ii) ta o b = y a.x
Thay b v`ao y
x
= ax + b ta suy ra
y
x
y = a(x x) (6.4)
Ta t`ım a b
oi
a
=
P
k
i
=1
h
j
=1
n
ij
x
i
y
j
(
k
i
=1
n
i
x
i
)(
h
j
=1
m
j
y
j
)
n
P
k
i
=1
n
i
x
2
i
(
P
k
i
=1
n
i
x
i
)
2
=
n
2
xy nx.ny
n.nx nx
2
( )
2
=
xy x.y
x x
2
( )
2
=
xy x.y
s
2
x
om la
.
i, ta t`ım h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau
y
x
= ax + b v
´
oi
a =
xy x.y
s
2
x
, b = y ax .
Ch´u ´y
i) Ta bi
´
ˆet e
.
s
´
ˆo t
u
ong quan
r
XY
=
xy xy
s .s
x y
en a = r
XY
s
y
s
x
Thay a v`ao (6
x XY
s
x
hay
y
x
y
s
y
= r
XY
(x x)
s
x
T
`
u ph
u
ong tr`ınh n`ay ta o th
ˆe suy ra ph
u
ong tr`ınh h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax b+
o
.
t ach thuˆa
.
n l
o
.
i h
on v`ı thˆong qua viˆe
.
c t`ım r
XY
ta ¯d˜a t´ınh .s
x
, s
y
ii) Khi ac gi´a tri
.
c
ua
X, Y kh´a l
´
on, ta o th
ˆe d`ung ph´ep ¯d
ˆoi bi
´
ˆen
u
i
=
x
i
x
0
h
x
(
i = 1, k); v
j
=
y
j
y
0
h
y
(j = 1 ), h
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. H
`
ˆoi qui 109
trong ¯o
*
x
0
, y
0
l`a nh
˜
ung gi´a tri
.
t`uy ´y (th
u
`
ong cho
.
n x
0
, y
0
l`a gi´a tri
.
c
ua X, Y
´
ung v
´
oi t
`
ˆan s
´
ˆo
n
ij
l
´
on nh
´
ˆat trong b
ang t
u
ong quan th
u
.
c nghiˆe
.
m),
* h
x
, h
y
l`a ac gi´a tri
.
t`uy ´y (th
u
`
ong cho
.
n h
x
, h
y
l`a kho
ang ach ac gi´a tri
.
k
´
ˆe ti
´
ˆep
nhau c
ua X, Y).
a
.
p b
ang t
u
ong quan ¯d
´
ˆoi v
´
oi ac bi
´
ˆen m
´
oi U, V v`a t´ınh to´an ac gi´a tri
.
c
`
ˆan thi
´
ˆet ta
t`ım ¯d
u
o
.
c h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau
v
u
= a
0
.u + b
0
trong ¯o
a
0
=
uv u.v
s
2
u
, b
0
= v a .u
0
Khi ¯o ta suy ra h`am
y
x
= ax + b v
´
oi a, b ¯d
u
o
.
c t`ım b
oi ong th
´
uc
a = a
0
h
y
h
x
, b
= y
0
+ b
0
.h
y
a
0
.
h
y
h
x
.x
0
V´ı du
.
4 ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan v`a h`am h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b c
ua
ac ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen X v`a Y cho b
oi b
ang t
u
ong quan th
u
.
c nghiˆe
.
m sau:
X 1 2 3
Y
10 20
20 30 1
30 1 48
Gi
ai
Ta a
.
p b
ang sau
X 1 2 3
m m
j j
y
j
m
j
y
2
j
Y
10 200 20 200 2000
|20
20 1200 60 31 620 12400
| |30 1
30 60 4320 49 1470 44100
| |1 48
n
i
20 31 49 n=100
P
y = 2290
P
y
2
= 58500
n
i
x
i
20 62 147
P
x = 229
n
i
x
2
i
20 124 441
P
x
2
= 585
P
xy = 5840
CuuDuongThanCong.com https://fb.com/tailieudientucntt
110
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
X
xy = 200 + 1200 + 60 + 60 + 4320 = 5840
Ph
`
ˆan trˆen oc tr´ai c
ua ˆo ghi ac t´ıch n
ij
x
i
y
j
. Ta o
x
=
229
100
= 2, 29; y =
2290
100
= 22 9;,
x
2
=
585
100
= 5, 58; y
2
=
58500
100
= 585 xy =
5840
100
= 58 4;,
s
2
x
= x
2
(x)
2
= 5, 85 (2 29),
2
0, 6059 = s
x
0 78,
s
y
=
q
y
2
(y) (22
2
=
q
585 , 9) 7
2
, 78
Do ¯o
a
=
xy x.y
s
2
x
=
58 2 22 9, 4 , 29 × ,
0
, 6059
= 9 835,
b = y a.x = 22, 9 9, 835 × 2, 29 = 0, 378
H`am h
`
ˆoi qui t
e
.
s
´
ˆo t
u
ong quan l`a
r
xy
=
xy x.y
s .s
x y
=
58 2 22 9, 4 , 29 × ,
0 7
, 78 × , 78
0 982,
4.
B
`
AI T
ˆ
A
.
P
1. Cho ac gi´a tri
.
quan at c
ua hai ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X v`a Y
o b
ang sau:
X 5 10 10 10 15 15 15 20 20 20
Y 20 20 30 30 30 40 50 50 60 60
Gi
a s
u X v`a
´
i qui tuy
´
ˆen
t´ınh m
˜
ˆau: y
x
2. Ng
u
`
oi ta ¯do chi
`
ˆeu d`ai a
.
t ¯d´uc v`a khon th`ı th
´
ˆay ch´ung e
.
ch kh
oi qui ¯di
.
nh nh
usau:
X 0.90 1,22 1,32 0,77 1,30 1,20 1,32 0,95 0,45 1,30 1,20
Y -0,30 0,10 0,70 -0,28 0,25 0,02 0,37 -0,70 0,55 0,35 0,32
Trong ¯o X, Y l`a ac ¯o
.
e
.
ch.
ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan.
3. S
´
ˆo liˆe
.
u th
´
ˆong e nh
`
˘
am nghiˆen c
´
uu quan e
.
gi
˜
ua t
ˆong s
an ph
ˆam ong nghiˆe
.
p Y v
´
oi
t
ˆong gi´a tri
.
t`ai s
an c
´
ˆo ¯di
.
nh X c
ua 10 ong tra
.
i (t´ınh trˆen 100 ha) nh
u sau:
CuuDuongThanCong.com https://fb.com/tailieudientucntt
4. B`ai t
.
ˆap 111
X 11,3 12,9 13,6 16,8 18,8 20,0 22,2 23,7 26,6 27,5
Y 13,2 15,6 17,2 18,8 20,2 23,9 22,4 23,0 24,4 24,6
ac ¯di
.
nh ¯d
u
`
ong h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau y
x
= ax + b. Sau ¯o t`ım ph
u
ong sai sai
s
´
ˆo th
u
.
c nghiˆe
.
m v`a kho
ang tin a
.
y 95% cho e
.
s
´
ˆo oc c
ua ¯d
u
`
ong h
`
ˆoi qui trˆen.
4. D
¯
o chi
`
ˆeu cao X (cm) v`a tro
.
ng l
u
o
.
ng Y (kg) c
ua 100 ho
.
c sinh, ta ¯d
u
o
.
c k
´
ˆet qu
a sau:
X 145 150 150 155 155 160 160 165 165 170
Y
35 40 3
40 45 5 10
45 50 14 20 6
50 55 15 12 5
55 60 6 4
Gi
a thuy
´
ˆet X v`a Y o m
´
ˆo phu
.
thuˆo
.
c t
u
ong quan tuy
´
ˆen t´ınh. T`ım ac h`am h
`
ˆoi qui
a) y
x
= ax + b;
b) x
y
=
5. Theo d˜oi l
u
o
.
ng phˆan on v`a n
˘
ang su
´
ˆat l´ua c
ua 100 hecta ua
o o
.
t v`ung, ta thu
¯d
u
o
.
c b
ang s
´
ˆo liˆe
.
u sau:
X 120 140 160 180 200
Y
2,2 2
2,6 5 3
3,0 11 8 4
3,4 15 17
3,8 10 6 7
4,2 12
Trong ¯o X l`a phˆan on (kg/ha) v`a Y l`a n
˘
ang su
´
ˆat ua (t
´
ˆan/ha).
a) H˜ay
u
´
oc l
u
o
.
ng e
.
s
´
ˆo t
u
ong quan tuy
´
ˆen t´ınh .r
b) T`ım ph
u
ong tr`ınh t
u
ong quan tuy
´
ˆen t´ınh: .y
x
= ax + b
6. D
¯
o chi
`
ˆeu cao v`a ¯d
u
`
ong k´ınh c
ua o
.
t loa
.
i ay, ta ¯d
u
o
.
c k
´
ˆet qu
a cho b
o b
ang sau:
X 6 8 10 12 14
Y
30 2 17 9 3
35 10 17 9
40 3 24 16 13
45 6 24 12
50 2 11 22
CuuDuongThanCong.com https://fb.com/tailieudientucntt
112
Ch u ong 6. y thuy
´
ˆet t
u
ong quan v`a h`am h
`
ˆoi qui
Trong ¯o X l`a ¯d
u
`
ong k´ınh (cm) v`a Y l`a chi
`
ˆeu cao (m).
a) ac ¯di
.
nh e
.
s
´
ˆo t
u
ong quan tuy
´
ˆen t´ınh m
˜
ˆau .r
b) T`ım ac ph
u
ong tr`ınh h
`
ˆoi qui tuy
´
ˆen t´ınh m
˜
ˆau.
c) ac ph
u
ong tr`ınh trˆen s˜e thay ¯d
ˆoi nh
u th
´
ˆe n`ao n
´
ˆeu X ¯d
u
o
.
c t´ınh theo ¯d
on vi
.
l`a
et (m)?
TR
A L
`
OI B
`
AI T
ˆ
A
.
P
1.
x = 14, y = 39, y
x
=
8
3
x +
5
3
.
2. r = 0 3096.,
3.
y
x
= 0, 67x + 7, ,18, σ
2
= 1, 126, (0 6280 ; 0, 7176).
4. a) y
x
= 0 = 0, 7018 61x , 5537, b) x
y
, 91y + 112 96.,
5. r = 0, 8165; y
x
= 0, 017x + 0 5622.,
6. a) r = 0 = 0 = 2, 69, b) y
x
, 218x + 2, 434, x
y
, 18y + 15 87.,
c)
y
x
= 21 = 0, 8x
+ 2, 434, x
y
, 0218y
+ 0 1587.,
CuuDuongThanCong.com https://fb.com/tailieudientucntt

Preview text:

Ch ’u ’ong 6 L ´ Y THUY ´ ˆ ET T ’ U ’ ONG QUAN V ` A H ` AM H ` ˆ OI QUI 1. M ´ ˆ OI QUAN H ˆ E ’ . GI ˜’ UA HAI D ¯ A . I L ’ U . ONG NG ˜ ˆ AU NHI ˆ EN Khi kh ’ao s´at hai ¯ da.i l ’
u ’o.ng ng ˜ˆau nhiˆen X, Y ta th ´ ˆay gi ˜’ ua ch´ ung c´o th ’ ˆe c´o mˆo.t s ´ ˆo quan hˆe. sau: i) X v`a Y ¯ dˆo.c lˆa.p v´’ oi nhau, t ´’
uc l`a viˆe.c nhˆa.n gi´a tri. c’ua ¯da.i l ’u ’o.ng ng ˜ˆau nhiˆen n`ay khˆong ’anh h ii) X v`a Y c´o m ´
ˆoi phu. thuˆo.c h`am s ´ˆo Y = ϕ(X).
iii) X v`a Y c´o s ’u. phu. thuˆo.c t ’u ’ong quan v`a phu. thuˆo.c khˆong t ’u ’ong quan. 2. H ˆ E . S ´ ˆ O T ’ U ’ ONG QUAN 2.1 Moment t ’ u ’ ong quan (Covarian) ✷ D ¯ i.nh ngh˜ ia 1 * Moment t ’u ’ ong quan (hiˆe . p ph ’u ’ ong sai) c ’ua hai ¯
da.i l ’u ’o.ng ng ˜ˆau nhiˆen X v`a Y, k´ı hiˆe . u cov(X, Y ) hay µXY , l` a s ´ ˆ o ¯ d ’
u ’o.c x´ac ¯di.nh nh ’u sau * N ´
ˆeu cov(X, Y ) = 0 th`ı ta n´oi hai ¯ da . i l ’ u ’ o.ng ng ˜ ˆ au nhiˆen X v` a Y khˆong t ’u ’ ong quan. ⊙ Ch´ u ´ y
cov(X, Y ) = E(XY ) − E(X).E(Y ) Thˆa.t vˆa.y, ta c´o
cov(XY ) = E{X.Y − X.E(Y ) − Y.E(X) + E(X).E(Y )
= E(XY ) − E(X).E(Y ) − E(X).E(Y ) + E(X).E(Y ) = E(XY ) − E(X).E(Y ) 99 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 100 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . ⊕ Nhˆ a.n x´et 1 * N ´ ˆeu (X, Y ) r`’ oi ra.c th`ı n m
cov(X, Y ) = X X xiyjP (xi, yj) − E(X)E(Y ) i=1 j=1 * N ´ ˆeu (X, Y ) liˆen tu.c th`ı +∞ +∞ Z Z cov(X, Y ) = xyf (x, y)dxdy − E(X)E(Y ) −∞ −∞ ⊕ Nhˆ a.n x´et i) N ´ ˆeu X v`a Y l`a hai ¯ da.i l ’u ’ o.ng ng ˜ ˆau nhiˆen ¯
dˆo.c lˆa.p th`ı ch´ung khˆong t ’ u ’ong quan. ii) Cov(X,X)=Var(X). 2.2 Hˆ e. s ´ˆo t ’u ’ong quan ✷ D ¯ i.nh ngh˜ ia 2 Hˆe. s ´ ˆ o t ’ u ’ong quan c ’ua hai ¯ da.i l ’u ’o.ng ng ˜ ˆ
au nhiˆen X v`a Y, k´ı hiˆe.u rXY , l` a s ´ ˆ o ¯ d ’ u ’o.c x´ac ¯di.n cov(X, Y ) rXY = SX.SY v ´’ oi Sx, SY l`a ¯
dˆo. lˆe.ch tiˆeu chu ’ˆan c’ua X, Y . • ´ Y ngh˜ ia c ’ua hˆ e. s ´ ˆ o t ’u ’ ong quan Hˆe. s ´ ˆo t ’ u ’ ong quan ¯ do m´’ uc ¯ dˆo. phu. thuˆo.c tuy ´ ˆen t´ınh gi˜’ ua X v`a Y . Khi |rXY | c`ang g ` ˆan 1 th`ı m ´ ˆoi quan hˆe. tuy ´ ˆen t´ınh c`ang ch˘ a.t, khi |rXY | c`ang g `
ˆan 0 th`ı quan hˆe. tuy ´ˆen
t´ınh c`ang ”l ’ong l ’ eo”. 2.3 ’ U´’ oc l ’u ’ o.ng hˆe. s ´ ˆ o t ’u ’ong quan Lˆa.p m ˜ˆau ng ˜ ˆa E(XY ) − E(X).E(Y ) D ’ ¯ ˆe ’u´’ oc l ’u ’o.ng hˆe. s ´ ˆo t ’ u ’ong quan rXY = ta d` ung th ´ ˆong kˆe SX.SY XY − X.Y R = SX.SY trong ¯ d´o 1 n 1 n 1 n X = X X X X i, Y = Yi, XY = XiY n n n i i=1 i=1 i=1 1 n 1 n S2 = X( = X( X X Y n i − X )2, S2Y n i − Y )2 i=1 i=1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 2. Hˆ e s ´ ˆ o t ’ u ’ ong quan 101 V´’oi m ˜ ˆau cu . th ’ˆe, ta t´ınh ¯ d ’
u ’o.c gi´a tri. c’ua R l`a xy − x.y rXY = sx.sy trong ¯ d´o 1 n 1 n 1 n x = X x X X i, y = yi, xy = x n n n iyi i=1 i=1 i=1 1 n 1 n s2 = X = X x x2 − (x)2, s2 y2 − (y)2 n i y n i i=1 i=1 Ta c´o n P xy − (P x)(P y) rXY = q q
n(P x2) − (P x)2. n(P y2) − (P y)2 2.4 T´ın xy − x.y Hˆe. s ´ ˆo t ’ u ’ ong quan r = ¯ d ’u ’ o s . c d` ung ¯ d ’ ˆe ¯ d´anh gi´a m ´’ uc ¯
dˆo. ch˘a.t ch ’e c’ua s ’u. x.sy
phu. thuˆo.c t ’u ’ong quan tuy ´ˆen t´ınh gi˜’ua hai ¯da.i l ’u ’o.ng ng ˜
ˆau nhiˆen X v`a Y , n´o c´o c´ac t´ınh ch ´ ˆat sau ¯ dˆay: i) |r| ≤ 1. ii) N ´
ˆeu |r| = 1 th`ı X v`a Y c´o quan hˆe. tuy ´ ˆen t´ınh. iii) N ´ ˆer |r| c`ang l´’ on th`ı s ’ u . phu. thuˆo.c t ’u ’ ong quan tuy ´ ˆen t´ınh gi˜’ ua X v`a Y c`ang ch˘ a.t ch ’e. iv) N ´ ˆeu |r| = 0 th`ı gi˜’
ua X v`a Y khˆong c´o phu. thuˆo.c tuy ´ ˆen t´ınh t ’u ’ ong quan. v) N ´ ˆeu r ). N ´ ˆeu r < 0 th`ı X v`a Y c´o t ’
u ’ong quan nghi.ch (X gi ’am th`ı Y gi ’am). • V´ı du. 1 T`’u s ´ ˆ
o liˆe.u ¯d ’u ’o.c cho b’oi b ’ang sau, h˜ay x´ac ¯di.nh hˆe. s ´ˆ o t ’ u ’ ong quan c ’ua Y v` a X X 1 3 4 6 8 9 11 14 Y 1 2 4 4 5 7 8 9 Gi ’ ai Ta lˆa.p b ’ang sau CuuDuongThanCong.com
https://fb.com/tailieudientucntt 102 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . x 2 i yi x x i iyi y2i 1 1 1 1 1 3 2 9 6 4 4 4 16 16 16 6 4 36 24 16 8 5 64 40 25 9 7 81 63 49 11 8 121 88 64 14 9 196 126 81 P P x = 56 P P y = 40 x2 = 524 P xy = 364 y2 = 256
Hˆe. s ´ˆo t ’u ’ong quan c’ua X v`a Y l`a n P xy − (P x)(P y) rXY = q q
n(P x2) − (P x)2. n(P y2) − (P y)2 8.364 − (56).(40) 672 = = = 0, 977 q q
8.524 − (56)2. 8.256 − (40)2 687, 81 2.5 T ’y s ´ ˆ o t ’ u ’ ong quan D ’ ¯ ˆe ¯ d´ anh gi´a m ´’ uc ¯
dˆo. ch˘a.t ch ’e c’ua s ’u. phu. thuˆo.c t ’u ’ong quan phi tuy ´ ˆen, ng ’ u`’oi ta d`ung t ’y s ´ ˆ o t ’u ’ ong quan: ηY/X = sy sy trong ¯ d´o s 1 s 1 s X X y = n − y)2; s m ( n i.(yxi y = n j . yj − y)2 T ’y s ´ ˆo t ’ u ’
ong quan c´o c´ac t´ınh ch ´ ˆat sau: i) 0 ≤ ηY/X ≤ 1. ii) ηY/X = 0 k . . ’ ’
iii) ηY/X = 1 khi v`a ch ’i khi Y v`a X phu. thuˆo.c h`am s ´ ˆo. iv) ηY/X ≥ |r|. N ´ ˆeu ηY/X = |r| th`ı s ’
u. phu. thuˆo.c t ’u ’ong quan c’ua Y v`a X c´o da.ng tuy ´ ˆen t´ınh. 2.6 Hˆ e. s ´ˆo x´ac ¯ di.nh m ˜ ˆ au Trong th ´ ˆong kˆe, ¯ d ’ ˆe ¯ d´anh gi´a ch ´ ˆat l ’u ’
o.ng c’ua mˆo h`ınh tuy ´ˆen t´ınh ng ’u`’ot ta c`on x´et hˆe. s ´ ˆ o x´ac ¯ di.nh m ˜ ˆ au β = r2 v´’ oi r l`a hˆe. s ´ ˆo t ’
u ’ong quan. Ta c´o 0 ≤ β ≤ 1. CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 103 3. H ` ˆ OI QUI 3.1 K` y vo.ng c´o ¯di ` ˆ eu kiˆ e.n i) D ¯ a.i l ’
u ’o.ng ng ˜ˆau nhiˆen r`’oi ra.c * K`y vo.ng c´o ¯di `
ˆeu kiˆe.n c’ua ¯da.i l ’u ’o.ng ng ˜ˆau nhiˆen r`’oi ra.c Y v´’ oi ¯ di ` ˆeu kiˆe.n X = x l`a m
E(Y /x) = X yjP (X = x, Y = yj) j=1 * T ’u ’ong t ’ u., k`y vo.ng c´o ¯di `
ˆeu kiˆe.n c’ua ¯da.i l ’u ’o.ng ng ˜ ˆau nhiˆen r`’ oi ra.c X v´’ oi ¯ di ` ˆeu kiˆe.n Y = y l`a n E(X/y) = XxiP (X = xi, Y = y) i=1 ii) D ¯ a.i l ’
u ’o.ng ng ˜ˆau nhiˆen liˆen tu.c +∞ E(Y /x) = R yf (y/x)dy −∞ −∞ trong ¯ d´o f (y/x) = f (x, y) v ´’ oi x khˆong ¯ d ’ˆoi f (x/y) = f (x, y) v ´’ oi y khˆong ¯ d ’ˆoi 3.2 H` am h ` ˆ oi qui * H`am h ` ˆoi qui c ’ua Y ¯ d ´ ˆoi v´’ oi X l`a f (x) = E(Y /x). * H`am h ` ˆoi qui c ’ua X ¯ d ´ ˆoi v´’ oi Y l`a f (y) = E(X/y).
Trong th ’u.c t ´ˆeta th ’u`’ong g˘a.p hai ¯da.i l ’u ’o.ng ng ˜ ˆau nhiˆen X, Y c´o m ´
ˆoi liˆen hˆe. v´’oi nhau, trong ¯ d´o viˆe . ˜ khˆong th ’ ˆe kh ’ao s´at ¯ d ’ u ’ o.c. Ng bi ´ ˆet X ta c´o th ’ ˆe d ’
u. ¯do´an ¯d ’u ’o.c Y . Gi ’a s ’’ u bi ´ ˆet X, n ´ ˆeu d ’ u 2 . ¯ do´an Y b` ˘
ang ϕ(X) th`ı sai s ´ˆo pha.m ph ’ai l`a E[Y − ϕ(X)] . V ´ ˆan ¯ d ` ˆe ¯ d ’ u ’o 2 . c ¯
d˘a.t ra l`a t`ım ϕ(X) nh ’ u th ´ ˆe n`ao ¯ d ’ ˆe E[Y − ϕ(X)] l`a nh ’ o nh ´ ˆat. Ta s˜ e ch´’ ung minh khi cho 2 . n ϕ(X) = E(Y /X) (v ´’
oi ϕ(x) = E(Y /x)) th`ı E[Y − ϕ(X)] s˜ e nh ’o nh ´ ˆat. Thˆa.t vˆa.y, ta c´o
E[Y − ϕ(X)]2 = E{([Y − E(Y /X)] + [E(Y /X) − ϕ(X)])2}
= E{[Y − E(Y /X)]2} + E{[E(Y /X) − ϕ(X)]2}
+2E{[Y − E(Y /X)][E(Y /X) − ϕ(X)]} CuuDuongThanCong.com
https://fb.com/tailieudientucntt 104 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . Ta th ´ ˆay E(Y /X) ch ’
i phu. thuˆo.c v`ao X nˆen c´o th ’ ˆe ¯
d˘a.t T (X) = E(Y/X) − ϕ(X).
V`ı E[E(Y /X)T (X)] = E[Y T (X)] nˆen
2E[Y − E(Y /X)][E(Y /X) − ϕ(X)] = 2E{[Y − E(Y /X)]T (X)}
= 2E[Y T (X)] − 2E[E(Y /X)T (X)] = 0 Do ¯ d´o
E{[Y − ϕ(X)]2} = E{[Y − E(Y /X)]2} + E{E(Y /X) − ϕ(X)]2 nh ’o nh ´ ˆat khi E{[(Y /X) − ϕ(X)]2 = 0 Ta ch ’i c ` ˆan cho.n ϕ(X) = E(Y /X) (6.1) Ph ’u ’ ong tr`ınh (6.1) ¯ d ’
u ’o.c go.i l`a ph ’u ’ong tr`ınh t ’u ’ong quan hay ph ’u ’ong tr`ınh h ` ˆ oi qui. 3.3 X´ ac ¯ di.nh h`am h ` ˆ oi qui a) Tr ’ u`’ ong h ’ o.p ´ı Gi ’ a s ’’u gi˜’ ua hai ¯ da.i l ’u ’ o.ng ng ˜
ˆau nhiˆen X v`a Y c´o t ’ u ’ ong quan tuy ´ ˆen t´ınh, t ´’ uc l`a E(Y /X) = AX + B. D ’
u.a v`ao n c˘a.p gi´a tri. (x1, x2), (x2, y2), . . . , (xn, yn) c’ua (X, Y ) ta t`ım h`am yx = y = ax + b (∗) ¯ d ’ ˆe ’u´’
oc l ’u ’o.ng h`am Y = AX + B. (*) ¯ d ’ u ’o.c go.i l`a h ` ˆ oi qui tuy ´ ˆen t´ınh m ˜ ˆ au. V`ı c´ac c˘
a.p gi´a tri. trˆen l`a tri. x ´
ˆap x ’i c ’ua x v`a y nˆen th ’oa (*) mˆo.t c´ach x ´ ˆap x ’i. Do ¯
d´o yi = axi + b + εi hay εi = yi − axi − b. Ta t`ım a, b sa h`am n S(a, b) = X(y 2 i − axi − b) i=1 ¯ da.t c ’ u.c ti ’ ˆeu. Ph ’ u ’ ong ph´ap t`ım n`ay ¯ d ’u ’ o.c go.i l`a ph ’ u ’ ong ph´ ap b`ınh ph ’ u ’ ong b´e nh ´ ˆ at. Ta th ´ ˆay S s˜ e ¯ da.t gi´a tri. nh ’o nh ´ ˆat ta.i ¯di ’ˆem d`’ ung th ’oa m˜ an ∂S n 0 = = −2 X x ) ∂a i(yi − axi − b i=1 ∂S n 0 = = −2 X(yi − axi − b) ∂b i=1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 105 hay n ! n ! n X x2 .a + X X i xi .b = xiyi i=1 i=1 i=1 n ! n (6.2) X x X i .a + nb = yi i=1 i=1
Hˆe. trˆen c´o ¯di.nh th´’ uc   !2 Pn Pn n n  x2 x  D = i i X X  i=1 i=1  = n x2 − x  Pn x i  i  i=1 i n  i=1 i=1
V`ı c´ac xi kh´ac nhau nˆen theo b ´ ˆat ¯ d ’˘ang th´’ uc Bunhiakovsky ta c´o (Pn x i=1 i)2 < n Pn x2 i . Do ¯ d´o D > 0. Suy ra hˆe =1 i
. trˆen c´o nghiˆe.m duy nh ´ ˆat n Pn x x y a = i=1 iyi − (Pn i=1 i) (Pn i=1 i) n Pni x2 x =1 i − (Pni=1 i)2 (Pn x2 y x x b = i=1 i ) (Pni=1 i) − (Pn i=1 i) (Pn i=1 iyi) n Pni x2 x =1 i − (Pn i=1 i)2 N ´ ˆeu ¯ d˘a.t n X x2 n i n i n i i n i i=1 i=1 i=1 i=1
th`ı nghiˆe.m c’ua hˆe. c´o th ’ˆe vi ´ ˆet la.i d ’u´’ oi da.ng xy − x.y xy − x.y x2.y − x.xy x2.y − x.xy a = = ; b = = x2 − (x)2 s2x x2 − (x)2 s2x
T´om la.i, ta c´o th ’ˆe t`ım h`am yx = ax + b t`’u c´ac cˆong th´’ uc xy − x.y n(P xy) − (P x)(P y) a = = s2 2) − (P )2 x n(P x x b = y − a.x ⊙ Ch´ u ´ y -bb-erro c ¯ di ’ ˆem (x1, y1), (x2, y2) , . . . , (xn, yn) ¯ d ’u ’ o.c go.i l`a ¯d ’u`’ ong h ` ˆ oi qui th ’ u.c nghiˆe.m. D ¯ ’u`’
ong th ’˘ang y = ax + b nhˆa.n ¯ d ’ u ’o.c b ’oi cˆong th´’ uc b`ınh ph ’ u ’ong b´e nh ´ ˆat khˆong ¯ di qua ¯ d ’ u ’ o.c t ´ ˆat c ’a c´ ac ¯ di ’ˆem nh ’ ung l` a ¯ d ’ u`’ong th ’˘ang ”g ` ˆan” c´ac ¯ di ’ ˆem ¯ d´o nh ´ ˆat ¯ d ’
u ’o.c go.i l`a ¯d ’u`’ong th ’˘ang h ` ˆ
oi qui v`a th ’u tu.c l`am th´ıch h ’o.p ¯d ’u`’ong th ’˘ ang thˆong qua c´ac ¯ di ’ˆem d˜’ u liˆe.u cho tr ’u´’ oc ¯ d ’ u ’ o.c go.i l`a h ` ˆ oi qui tuy ´ ˆen t´ınh.
Theo trˆen ta c´o b = y − a.x, do ¯ d´o ¯ di ’ ˆem (x, y) luˆon n` ˘am trˆen ¯ d ’u`’ ong th ’˘ang h ` ˆoi qui. CuuDuongThanCong.com
https://fb.com/tailieudientucntt 106 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . • V´ı du. 2 ’ U´’ oc l ’ u ’ o. ng h`am h ` ˆ oi qui tuy ´ ˆen t´ınh m ˜ ˆ
au x ’ua Y theo X trˆen c ’ o s ’’ o b ’ang t ’u ’ong quan c˘ a. p sau X 15 38 23 16 16 13 20 24
Y 145 228 150 130 160 114 142 265 Gi ’ ai Ta lˆa.p b ’ang sau x 2 i yi xi xiyi 15 145 225 3175 38 228 1444 8664 23 150 529 3450 16 130 256 2080 13 114 169 1482 20 142 400 2840 24 265 576 6360 P P P x = 165 y = 1334 P x2 = 3855 xy = 29611 Ta c´o n(P xy) − (P x)(P y) a = n(P x2) − (P x)2 8(19611) − (165)(1334) 16778 = 8(3855)(1 1334  16778  165 b = y − ax = − = 71 8 3615 8 Vˆa.y h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau l`a yx = 4, 64x + 71. • V´ı du. 3 D ¯ ˆ o. ’ ˆ am c ’ua khˆ ong kh´ı ’ anh h ’u ’ong ¯ d ´ ˆen s ’
u. bay h ’oi c’ua n ’u´’oc trong s ’on khi phun ra. Ng ’ u`’oi ta ti ´ ˆen h`anh nghiˆen c ´’ uu m ´ ˆ oi liˆen hˆe. gi˜’ ua ¯ dˆ o . ’ ˆ am c ’ua khˆ ong kh´ı X v` a ¯ dˆ o. bay h ’ oi Y . S ’ u . hi ’ ˆeu bi ´ ˆet v ` ˆe m ´ ˆ oi quan hˆe . n` ay s˜ e gi´up ta ti ´ ˆet kiˆe . m ¯ d ’ u ’
o.c l ’u ’o.ng s ’on b`˘ang c´ ach ch ’ inh s´ ung phun s ’ on mˆ
o.t c´ach th´ıch h ’o.p. Ti ´ˆen h`anh 25 quan s´at ta ¯d ’u ’o.c c´ac s ´ˆo liˆe . u sau: CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 107 Quan s´ at D ’ ’ ¯ ˆ o . ˆ am D ¯ ˆ o. bay h ’ oi Quan s´ at D ¯ ˆ o . ˆ am D ¯ ˆ o . bay h ’ oi (%) (%) (%) (%) 1 35,3 11,0 14 39,1 9,6 2 29,7 11,1 15 46,8 10,9 3 30,8 12,5 16 48,5 9,6 4 58,8 8,4 17 59,3 10,1 5 61,4 9,3 18 70,0 8,1 6 71,3 8,7 19 70,0 6,8 7 74,4 6,4 20 74,4 8,9 8 76,7 8,5 21 72,1 7,7 9 70,7 7,8 22 58,1 8,5 10 57,5 9,1 23 44,6 8,9 11 46,4 8,2 24 33,4 10,4 12 28,9 12,2 25 28,6 11,1 13 28,1 11,9 H˜ ay t`ım h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax + b. Gi ’ ai Ta c´o n = 25 X x = 1314, 9 X y = 235, 7 X x2 = 76308, 53 X y2 = 2286, 07 X xy = 11824, 44 Do ¯ d´o n(P xy) − (P x)(P y)
25 × 11824, 44 − (1314, 9 × 235, 7) a = = = −0, 08 n(P x2) − (P x)2 25 × 76308, 53 − (1314, 9)2
b = y − ax = 9, 43 − (−0, 08) × 52, 6 = 13, 64 Vˆa.y h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜
ˆau l`a yx = −0, 08x + 13, 64 b) Tr ’ u`’ ong h ’ o.p nhi ` ˆ eu s ´ ˆ o liˆ e.u (t ’ u ’ ong quan b ’ ang) Gi ’a s ’’u
X nhˆa.n c´ac gi´a tri. xi v´’ oi t ` ˆan su ´ ˆat ni i = 1, k,
Y nhˆa.n c´ac gi´a tri. yj v´’oi t ` ˆan su ´ ˆat mj j = 1, h,
XY nhˆa.n c´ac gi´a tri. xiyj v´’ oi t ` ˆan su ´ ˆat nij i = 1, k, j = 1, h, Ta t`ım h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax + b trong tr ’ u`’ong h ’ o.p c´o nhi ` ˆeu s ´ ˆo liˆe.u. Theo (6.2) ta c´o CuuDuongThanCong.com
https://fb.com/tailieudientucntt 108 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . k ! k ! k h X n X X X ix2 i .a + nixi .b = nijxiyj i=1 i=1 i=1 j=1 (6.3) k ! h X n X ixi .a + nb = mjyj i=1 j=1 k h k h Thay X n X X X ixi = nx, mjyj = ny, nix2i = nx2, mjy2j = ny2, i=1 j=1 i=1 j=1 k h
X X nijxiyj = nxy v`ao (6.3) ta ¯ d ’ u ’o.c i=1 j=1 x2.a + x.b = xy (i) x.a + nb = y (ii)
T`’u (ii) ta c´o b = y − a.x
Thay b v`ao yx = ax + b ta suy ra yx − y = a(x − x) (6.4) Ta t`ım a b ’oi Pk h n n m n2xy − nx.ny a = i=1 j=1 ij xiyj − ( ki=1 ixi)( hj=1 jyj) = n Pk 2 i n n.nx − (nx)2 =1 ix2 n i − (Pki=1 ixi)2 xy − x.y xy − x.y = = x2 − (x)2 s2x xy − x.y T´om la.i, ta t`ım h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax + b v´’ oi a = , b = y − ax . s2x ⊙ Ch´ u ´ y xy − xy s i) Ta bi ´ ˆet hˆe y . s ´ ˆo t ’ u ’ong quan rXY = nˆen a = r s XY x.sy sx Thay a v`ao (6 x XY sx hay yx − y (x − x) = r s XY y sx T`’u ph ’
u ’ong tr`ınh n`ay ta c´o th ’ ˆe suy ra ph ’ u ’ ong tr`ınh h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau yx = ax+b
mˆo.t c´ach thuˆa.n l ’o.i h ’on v`ı thˆong qua viˆe.c t`ım rXY ta ¯d˜a t´ınh sx, sy.
ii) Khi c´ac gi´a tri. c’ua X, Y kh´a l´’ on, ta c´o th ’ ˆe d` ung ph´ep ¯ d ’ˆoi bi ´ ˆen x y u i − x0 j − y0 i = (∀i = 1, k); vj = (∀j = 1, h) hx hy CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. H ` ˆ oi qui 109 trong ¯ d´o
* x0, y0 l`a nh˜’ung gi´a tri. t`uy ´y (th ’u`’ong cho.n x0, y0 l`a gi´a tri. c’ua X, Y ´’ung v´’ oi t ` ˆan s ´ ˆo nij l´’ on nh ´ ˆat trong b ’ ang t ’ u ’ong quan th ’ u.c nghiˆe.m),
* hx, hy l`a c´ac gi´a tri. t`uy ´y (th ’u`’ong cho.n hx, hy l`a kho ’ang c´ach c´ac gi´a tri. k ´ ˆe ti ´ ˆep nhau c ’ua X, Y).
Lˆa.p b ’ang t ’u ’ong quan ¯d ´ ˆoi v´’ oi c´ac bi ´ ˆen m´’
oi U, V v`a t´ınh to´an c´ac gi´a tri. c ` ˆan thi ´ ˆet ta t`ım ¯ d ’ u ’ o.c h`am h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau vu = a0.u + b0 trong ¯ d´o uv − u.v a0 = , b0 = v − a0.u s2u Khi ¯
d´o ta suy ra h`am yx = ax + b v´’oi a, b ¯ d ’
u ’o.c t`ım b’’oi cˆong th´’uc h h a = a y y 0 , b = y0 + b0.hy − a0. .x0 hx hx
• V´ı du. 4 X´ac ¯di.nh hˆe. s ´ ˆ o t ’u ’ ong quan v`a h`am h ` ˆ oi qui tuy ´ ˆen t´ınh m ˜ ˆ au yx = ax + b c ’ua c´ ac ¯ da.i l ’ u ’ong ng ˜ ˆ
au nhiˆen X v`a Y cho b ’oi b ’ang t ’u ’ ong quan th ’u . c nghiˆe.m sau: X 1 2 3 Y 10 20 20 30 1 30 1 48 Gi ’ ai Ta lˆa.p b ’ang sau X 1 2 3 mj mjyj mjy2j Y 10 200 20 200 2000 |20 20 1200 60 31 620 12400 |30 |1 30 60 4320 49 1470 44100 |1 |48 ni 20 31 49 n=100 P y = 2290 P y2 = 58500 nixi 20 62 147 P x = 229 nix2i 20 124 441 P x2 = 585 P xy = 5840 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 110 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui .
X xy = 200 + 1200 + 60 + 60 + 4320 = 5840 Ph `
ˆan trˆen g´oc tr´ai c ’ua ˆo ghi c´ac t´ıch nijxiyj. Ta c´o 229 2290 x = = 2, 29; y = = 22, 9; 100 100 585 58500 5840 x2 = = 5, 58; y2 = = 585 xy = = 58, 4; 100 100 100 s2 2
x = x2 − (x)2 = 5, 85 − (2, 29) ≈ 0, 6059 =⇒ sx ≈ 0, 78 q q s 2 2 y = y2 − (y) = 585 − (22, 9) ≈ 7, 78 Do ¯ d´o xy − x.y 58, 4 − 2, 29 × 22, 9 a = = = 9, 835 s2 0, 6059 x
b = y − a.x = 22, 9 − 9, 835 × 2, 29 = 0, 378 H`am h ` ˆoi qui t Hˆe. s ´ ˆo t ’u ’ ong quan l`a xy − x.y 58, 4 − 2, 29 × 22, 9 rxy = = ≈ 0, 982 sx.sy 0, 78 × 7, 78 4. B ` AI T ˆ A . P
1. Cho c´ac gi´a tri. quan s´at c’ua hai ¯da.i l ’u ’ o.ng ng ˜
ˆau nhiˆen X v`a Y ’’o b ’ang sau: X 5 10 10 10 15 15 15 20 20 20 Y 20 20 30 30 30 40 50 50 60 60 Gi ’a s ’’ u X v`a ´ i qui tuy ´ ˆen t´ınh m ˜ ˆau: yx 2. Ng ’ u`’ oi ta ¯ do chi ` ˆeu d`ai vˆa . t ¯ d´ uc v`a khuˆon th`ı th ´ ˆay ch´
ung lˆe.ch kh ’oi qui ¯di.nh nh ’usau: X 0.90 1,22 1,32 0,77 1,30 1,20 1,32 0,95 0,45 1,30 1,20 Y -0,30 0,10 0,70 -0,28 0,25 0,02 0,37 -0,70 0,55 0,35 0,32 Trong ¯ d´o X, Y l`a c´ac ¯ dˆo. lˆe.ch. X´ac ¯ di.nh hˆe. s ´ ˆo t ’u ’ ong quan. 3. S ´ ˆo liˆe.u th ´
ˆong kˆe nh`˘am nghiˆen c´’
uu quan hˆe. gi˜’ua t ’ˆong s ’an ph ’ˆam nˆong nghiˆe.p Y v´’oi t ’
ˆong gi´a tri. t`ai s ’an c ´ ˆo ¯
di.nh X c’ua 10 nˆong tra.i (t´ınh trˆen 100 ha) nh ’u sau: CuuDuongThanCong.com
https://fb.com/tailieudientucntt 4. B` ai t.ˆ ap 111 X 11,3 12,9 13,6 16,8 18,8 20,0 22,2 23,7 26,6 27,5 Y 13,2 15,6 17,2 18,8 20,2 23,9 22,4 23,0 24,4 24,6 X´ac ¯ di.nh ¯d ’u`’ong h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau y = ax + b. Sau ¯ d´o t`ım ph x ’ u ’ ong sai sai s ´ ˆo th ’
u.c nghiˆe.m v`a kho ’ang tin cˆa.y 95% cho hˆe. s ´ ˆo g´oc c ’ua ¯ d ’ u`’ ong h ` ˆoi qui trˆen. 4. D ¯ o chi `
ˆeu cao X (cm) v`a tro.ng l ’u ’o.ng Y (kg) c’ua 100 ho.c sinh, ta ¯d ’u ’o.c k ´ ˆet qu ’a sau: X 145 − 150 150 − 155 155 − 160 160 − 165 165 − 170 Y 35 − 40 3 40 − 45 5 10 45 − 50 14 20 6 50 − 55 15 12 5 55 − 60 6 4 Gi ’a thuy ´ ˆet X v`a Y c´o m ´
ˆo phu. thuˆo.c t ’u ’ong quan tuy ´
ˆen t´ınh. T`ım c´ac h`am h ` ˆoi qui a) y = ax + b; x b) xy = 5. Theo d˜ oi l ’ u ’
o.ng phˆan b´on v`a n˘ang su ´ ˆat l´
ua c ’ua 100 hecta l´ua ’’ o mˆo.t v`ung, ta thu ¯ d ’ u ’o.c b ’ang s ´ ˆo liˆe.u sau: X 120 140 160 180 200 Y 2,2 2 2,6 5 3 3,0 11 8 4 3,4 15 17 3,8 10 6 7 4,2 12 Trong ¯
d´o X l`a phˆan b´on (kg/ha) v`a Y l`a n˘ ang su ´ ˆat l´ ua (t ´ ˆan/ha). a) H˜ ay ’ u´’ oc l ’u ’o.ng hˆe. s ´ ˆo t ’ u ’ ong quan tuy ´ ˆen t´ınh r. b) T`ım ph ’ u ’ ong tr`ınh t ’ u ’ong quan tuy ´ ˆen t´ınh: y = ax + b. x 6. D ¯ o chi ` ˆeu cao v`a ¯ d ’
u`’ong k´ınh c ’ua mˆo.t loa.i cˆay, ta ¯d ’u ’o.c k ´
ˆet qu ’a cho b ’’o b ’ang sau: X 6 8 10 12 14 Y 30 2 17 9 3 35 10 17 9 40 3 24 16 13 45 6 24 12 50 2 11 22 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 112 Ch ’ u ’ ong 6 L´ y thuy ´ ˆ et t ’ u ’ ong quan v` a h` am h ` ˆ oi qui . Trong ¯ d´o X l`a ¯ d ’ u`’
ong k´ınh (cm) v`a Y l`a chi ` ˆeu cao (m). a) X´ac ¯ di.nh hˆe. s ´ˆo t ’ u ’ ong quan tuy ´ ˆen t´ınh m ˜ ˆau r. b) T`ım c´ac ph ’ u ’ong tr`ınh h ` ˆoi qui tuy ´ ˆen t´ınh m ˜ ˆau. c) C´ac ph ’u ’ ong tr`ınh trˆen s˜ e thay ¯ d ’ ˆoi nh ’ u th ´ ˆe n`ao n ´ ˆeu X ¯ d ’ u ’
o.c t´ınh theo ¯d ’on vi. l`a m´et (m)? • ✷ TR ’ A L `’ OI B ` AI T ˆ A . P 1. x = 14, y = 39, y = 8 . x x + 5 3 3 2. r = −0, 3096.
3. y = 0, 67x + 7, 18, σ2 = 1, 126, (0, 6280 ; 0, 7176). x
4. a) y = 0, 7018x − 61, 5537, b) xy = 0, 91y + 112, 96. x
5. r = 0, 8165; y = 0, 017x + 0, 5622. x
6. a) r = 0, 69, b) y = 0, 218x + 2, 434, xy = 2, 18y + 15, 87. x
c) y = 21, 8x′ + 2, 434, xy = 0, 0218y′ + 0, 1587. x′ CuuDuongThanCong.com
https://fb.com/tailieudientucntt