Ước lượng tham số của đại lượng ngẫu nhiên | Tài liệu Môn Xác suất Thống kê Trường đại học sư phạm kỹ thuật TP. Hồ Chí Minh

Giả sử đại lượng ngẫu nhiên X có tham số chưa biết. Ước lượng tham số là dựa vào mẫu ngẫu nhiên ta đưa ra thống kê để ước lượng. Có 2 phương pháp ước lượng. Ước lượng điểm chỉ ra nào đó, ước lượng khoảng chỉ ra 1 khoảng. Các phương pháp ước lượng điểm. Phương pháp hàm ước lượng. Mô tả phương pháp: Giả sử cần ước lượng tham số của đại lượng ngẫu nhiên X. Từ X ta lập mẫu ngẫn nhiên. Tài liệu giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem!

Ch u ong 4
U
´
OC L
U
.
ONG THAM S
´
ˆ
O C
UA D
¯
A
.
I L
U
.
ONG
NG
˜
ˆ
AU NHI
ˆ
EN
Gi
a s
u ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X o tham s
´
ˆo θ ch
ua bi
´
ˆet.
U
´
oc l
u
o
.
ng tham s
´
ˆo θ l`a d
u
.
a
v`ao m
˜
ˆau ng
˜
ˆau nhiˆen W
x
= (X
1
, X
2
, . . . , X
n
) ta ¯d
ua ra th
´
ˆong e
ˆ
θ
=
ˆ
θ(X
1
, X
2
, . . . , X
n
)
¯d
ˆe
u
´
oc l
u
o
.
ng (d
u
.
¯do´an) .θ
o 2 ph
u
ong ph´ap
u
´
oc l
u
o
.
ng:
i)
U
´
oc lu
ii)
U
´
oc l
u
o
.
ng kho
ang: ch
i ra o
.
t kho
ang (
θ
1
, θ
2
) ch
´
ua θ sao cho P (θ
1
< θ < θ
2
) =
1 α cho tr
u
´
oc (1 go α
.
i l`a ¯o
.
tin a
.
y c
ua
u
´
oc l
u
o
.
ng).
1.
C
´
AC PH
U
ONG PH
´
AP
U
´
OC L
U
.
ONG D
¯
I
ˆ
EM
1.1 Ph
u
ong ph´ap h`am
u
´
oc l
u
o
.
ng
o t
a ph
u
ong ph´ap
Gi
a s
u c
`
ˆan
u
´
oc l
u
o
.
ng tham s
´
ˆo θ c
ua ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X. T
`
u X ta a
.
p m
˜
ˆau ng
˜
ˆau
nhiˆen W
X
= ( ).X
1
, X
2
, . . . , X
n
Cho
.
n th
ˆ ˆ
ˆ
ua .X
Th
u
.
c hiˆe
.
n ph´ep th
u ta ¯d
u
o
.
c m
˜
ˆau cu
.
th
ˆe w
x
= (x
1
, x , . . . , x
2 n
). Khi ¯o
u
´
oc l
u
o
.
ng
¯di
ˆem c
ua θ l`a gi´a tri
.
θ
0
=
ˆ
θ(x
1
, x
2
, . . . , x
n
).
a)
U
´
oc l
u
o
.
ng khˆong chˆe
.
ch
D
¯
i
.
nh ngh
˜
ia 1
Th
´
ˆong kˆe
ˆ
θ
=
ˆ
θ(X
1
, X
2
, . . . , X
n
) ¯d
u
o
.
c go
.
i l`a
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch
c
ua tham s
´
ˆo
θ n
´
ˆeu
E(
ˆ
θ θ) = .
´
Y ngh
˜
ia
Gi
a s
u
ˆ
θ l`a
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua tham s
´
ˆo θ. Ta o
E
(
ˆ
θ
θ) = E(
ˆ
θ) E(θ) = θ θ = 0
69
CuuDuongThanCong.com https://fb.com/tailieudientucntt
70
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
a
.
u
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch l`a
u
´
oc l
u
o
.
ng o sai s
´
ˆo trung b`ınh b
`
˘ang 0.
Nhˆa
.
n et
i) Trung b`ınh c
ua m
˜
ˆau ng
˜
ˆau nhiˆen X l`a
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua trung b`ınh c
ua
t
ˆong th
ˆe θ = E(X) = m v`ı E(X) = .m
ii) Ph
u
ong sai ¯di
`
ˆeu ch
inh c
ua m
˜
ˆau ng
˜
ˆau nhiˆen
S
2
l`a
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua
ph
u
ong sai c
ua t
ˆong th
ˆe
σ
2
v`ı E(S
2
) = .σ
2
V´ı du
.
1 Chi
`
ˆeu cao c
ua 50 ay lim ¯d
u
o
.
c cho b
oi
Kho
ang chi
`
ˆeu cao (m´et) s
´
ˆo ay lim
x
0
i
u
i
n
i
u
i
n
i
u
2
i
[6 6, 25 , 75) 1 6,5 -4 -4 16
[6 7, 75 , 25) 2 7,0 -3 -6 18
[7 7, 25 , 75) 5 7,5 -2 -10 20
[7 8, 75 , 25) 11 8 -1 -11 11
[8 8, 25 , 75) 18 8,5 0 0 0
[8 9, 75 , 25) 9 9 1 9 9
[9 9, 25 , 75) 3 9,5 2 6 12
Go
.
i X l`a chi
`
ˆeu cao c
ua ay lim
a) H˜ay ch
i ra
u
´
oc l
u
o
.
ng ¯di
ˆem cho chi
`
ˆeu cao trung b`ınh c
ua ac ay lim.
b) H˜ay ch
i ra
u
´
oc l
u
o
.
ng ¯di
ˆem cho ¯o
.
t
an at c
ua ac chi
`
ˆeu cao ay lim so v
´
oi chi
`
ˆeu
cao trung b`ınh.
c) Go
.
i p = P (7, 75 X 8, 75). H˜ay ch
i ra
u
´
oc l
u
o
.
ng ¯di
ˆem cho p.
Gi
ai
Ta a
.
p b
ang t´ınh cho
x v`a .s
2
Th
u
.
c hiˆe
.
n ph´ep ¯d
ˆoi bi
´
ˆen
u
i
=
x
0
i
8 5,
0
, 5
(x
0
= 8 = 0 5), 5; h ,
Ta o
u =
1
5
x = 8, , ,5 + 0, 5 0.( 26) = 8 37
s
2
= (0, .5)
2
95
50
( 0 26) ,
2
= 0, 4581 (0 68) .,
2
a) Chi
`
ˆeu cao trung b`ınh ¯d
u
o
.
c
u
´
oc l
u
o
.
ng l`a 8,37 et.
b) D
¯
ˆo
.
t
an at ¯d
u
o
.
c
u
´
oc l
u
o
.
ng l`a s = 0, 68 et ho
˘
a
.
c ˆs =
q
50
50
1
0 0 684, 4581 ,
c) Trong 50 quan at ¯a cho o 11+18 = 29 quan at cho chi
`
ˆeu cao lim thuˆo
.
c kho
ang
[7 8 5), 5 ,
a
.
y
u
´
oc l
u
o
.
ng ¯di
ˆem cho p l`a
p
=
29
50
= 0 58.,
CuuDuongThanCong.com https://fb.com/tailieudientucntt
1. ac ph
u
ong ph´ap
u
´
oc l
u
ong ¯di
ˆem 71
b)
U
´
oc l
u
o
.
ng hiˆe
.
u qu
a
Nhˆa
.
n et Gi
a s
u
ˆ
θ l`a
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua tham s
´
ˆo
θ. Theo b
´
ˆat ¯d
˘
ang th
´
uc
Tchebychev ta o
P
(|
ˆ
θ
E(
ˆ
θ
)| < ε) > 1
V ar(
ˆ
θ)
ε
2
V`ı
E(
ˆ
θ
) = θ en P (|
ˆ
θ
θ| < ε) > 1
V ar(
ˆ
θ)
ε
2
.
Ta th
´
ˆay n
´
ˆeu
V ar(
ˆ
θ
) c`ang nh
o th`ı
P (|
ˆ
θ
θ| < ε) c`ang g
`
ˆan 1. Do ¯o ta s˜e cho
.
n
ˆ
θ
v
´
oi
V ar
(
ˆ
θ
) nh
o nh
´
ˆat.
D
¯
i
.
nh ngh
˜
ia 2
U
´
oc l
u
o
.
ng khˆong chˆe
.
ch
ˆ
θ ¯d
u
o
.
c go
.
i l`a
u
´
oc l
u
o
.
ng o hiˆe
.
u qu
a c
ua tham
s
´
ˆo
θ n
´
ˆeu
V ar(
ˆ
θ
) nh
o nh
´
ˆat trong ac
u
´
oc l
u
o
.
ng c
ua .θ
Ch´u ´y Ng
u
`
oi ta ch
´
ung minh ¯d
u
o
.
c r
`
˘
ang n
´
ˆeu
ˆ
θ l`a
u
´
oc l
u
o
.
ng hiˆe
.
u qu
a c
ua θ th`ı ph
u
ong
sai c
ua o l`a
V ar
(
ˆ
θ
) =
1
n.E
(
∂lnf x,θ( )
∂θ
)
2
(4.1)
trong ¯o
´
ˆen g
´
ˆoc. Mo
.
i
u
´
oc
l
u
o
.
ng khˆong
.
a go
.
i (4.1) l`a gi
´
oi
ha
.
n Crame-Rao.
Nhˆa
.
n et N
´
ˆeu ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen g
´
ˆoc
X N(µ,
σ
2
n
) th`ı trung b`ınh m
˜
ˆau X l`a
u
´
oc l
u
o
.
ng hiˆe
.
u qu
a c
ua k`y vo
.
ng E(X) = .µ
Thˆa
.
t a
.
y, ta bi
´
ˆet
X =
1
n
n
X
i=1
X
i
N (µ,
σ
2
n
)
M
˘
a
.
t kh´ac do X o phˆan ph
´
ˆoi chu
ˆan en n
´
ˆeu f(x, µ) l`a h`am a
.
t ¯o
.
c
ua X
i
th`ı
f
(x, µ) =
1
σ
2π
e
(x µ)
2
/2σ
2
Ta o
x µ
Suy ra
nE
"
lnf( )x, µ
µ
#
2
=
nE
x µ
σ
2
2
=
n
σ
2
. Do ¯o V ar(X) ch´ınh b
`
˘ang nghi
.
ch
¯d
ao .
σ
2
/n
a
.
y X l`a
u
´
oc l
u
o
.
ng hiˆe
.
u qu
a c
ua .µ
c)
U
´
oc l
u
o
.
ng v
˜
ung
D
¯
i
.
nh ngh
˜
ia 3
Th
´
ˆong e
ˆ
θ
=
ˆ
θ(X
1
, X
2
, . . . , X
n
) ¯d
u
o
.
c go
.
i l`a
u
´
oc l
u
o
.
ng v
˜
ung c
ua tham
s
´
ˆo
θ n
´
ˆeu ε > 0 ta o
lim
n
→∞
P (|
ˆ
θ θ| < ε) = 1
CuuDuongThanCong.com https://fb.com/tailieudientucntt
72
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
D
¯
i
`
ˆeu kiˆe
.
n ¯d
u c
ua
u
´
oc l
u
o
.
ng v
˜
ung
N
´
ˆeu
ˆ
θ l`a
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua θ v`a lim
n
→∞
V ar(
ˆ
θ
) = 0 th`ı
ˆ
θ l`a
u
´
oc l
u
o
.
ng v
˜
ung
c
ua .θ
1.2 Ph
u
ong ph´ap
u
´
oc l
u
o
.
ng h
o
.
p y t
´
ˆoi ¯da
Gi
a s
u
W
X
= (X
1
, X
2
, . . . , X
n
) l`a m
˜
ˆau ng
˜
ˆau nhiˆen ¯d
u
o
.
c ta
.
o nˆen t
`
u ¯da
.
i l
u
o
.
ng ng
˜
ˆau
nhiˆen
X o m
˜
ˆau cu
.
th
ˆe
w
x
= (x
1
, x
2
, . . . , x
n
) v`a
ˆ
θ
=
ˆ
θ( ).X
1
, X
2
, . . . , X
n
et h`am h`am h
o
.
p y L(x
1
, . . . , x
n
, θ) c
ua ¯d
´
ˆoi s
´
ˆo θ ac ¯di
.
nh nh
u sau:
N
´
ˆeu
X r
`
oi ra
.
c:
L X (x
1
, . . . , x
n
, θ) = P (
1
= x
1
/θ, . . . , X
n
= x
n
) (4.2)
=
n
Y
i=1
P (X
i
= x
i
) (4.3)
L
(x
1
, . . . , x
n
, θ) l`a ac su
ˆat ¯d
ˆe ta nhˆa
.
n ¯d
u
o
.
c m
ˆau cu
.
th
ˆe W
x
= ( )x
1
, . . . , x
n
N
´
ˆeu X liˆen tu
.
c o h`am a
.
t ¯o
.
ac su
´
ˆat f ( )x, θ
L(x x
1
, . . . , x
n
, θ , θ , θ . . . f) = f(x
1
)f(x
2
) (
n
, θ)
L(x
1
, x , θ
2
, . . . , x
n
) l`a a
.
t ¯o
.
c
ua ac su
´
ˆat ta
.
i ¯di
ˆem )w
x
(x
1
, x
2
, . . . , x
n
Gi´a tri
.
θ
0
=
ˆ
θ(x
1
, x
2
, . . . , x
n
) ¯d
u
o
.
c go
.
i l`a
u
´
oc l
u
o
.
ng h
o
.
p y t
´
ˆoi ¯da n
´
ˆeu
´
ung v
´
oi gi´a
tri
.
n`ay c
ua θ h`am h
o
.
p y ¯da
.
t c
u
.
c ¯da
.
i.
Ph
u
ong ph´ap t`ım
V`ı h`am L v`a lnL ¯da
t c
u
c ¯da
i tai c`ung ot gi´a tri θ en ta et lnL thay v`ı et L.
B
u
´
oc 1:
T`ım
lnL
θ
B
u
´
oc 2: Gi
ai ph
u
ong tr`ınh
lnL
θ
(Ph
u
ong tr`ınh h
o
.
p y)
Gi
a s
u ph
u
ong tr`ınh o nghiˆe
.
m l`a θ
0
=
ˆ
θ(x
1
, x
2
, . . . , x
n
)
B
u
´
oc 3: T`ım ¯da
.
o h`am c
´
ˆap hai
2
lnL
θ
N
´
ˆeu ta
.
i θ
0
m`a
2
lnL
θ
< 0 th`ı lnL ¯da
.
t c
u
.
c ¯da
.
i. Khi ¯o θ
0
=
ˆ
θ(x
1
, x
2
, . . . , x
n
) l`a
u
´
oc
l
u
o
.
ng ¯di
ˆem h
o
.
p y t
´
ˆoi ¯da c
ua .θ
CuuDuongThanCong.com https://fb.com/tailieudientucntt
2. Ph
u
ong ph´ap kho
ang tin ay 73
2.
PH
U
ONG PH
´
AP KHO
ANG TIN C
ˆ
A
.
Y
2.1 o t
a ph
u
ong ph´ap
Gi
a s
u t
ˆong th
ˆe o tham s
´
ˆo θ ch
ua bi
´
ˆet. Ta t`ım kho
ang (
θ
1
, θ
2
) ch
´
ua θ sao cho
P (θ
1
< θ < θ
2
) = 1 α cho tr
u
´
oc.
T
`
u ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen g
´
ˆoc X a
.
p m
˜
ˆau ng
˜
ˆau nhiˆen W
X
= (X
1
, X
2
, . . . , X
n
). Cho
.
n
th
´
ˆong e
ˆ
θ
=
ˆ
θ
(X
1
, X
2
, . . . , X
n
) o phˆan ph
´
ˆoi ac su
´
ˆat ac ¯di
.
nh d`u ch
ua bi
´
ˆet .θ
V
´
oi α
1
kh´a e (α
1
< α) ta t`ım ¯d
u
o
.
c phˆan vi
.
θ
α
1
c
ua
ˆ
θ
(t
´
uc l`a
P (
ˆ
θ < θ
α
1
) = α
1
).
V
´
oi α
2
m`a α
1
+ α
2
= α kh´a e (th
u
`
ong l
´
ˆay α 0, 05) ta t`ım ¯d
u
o
.
c phˆan vi
.
θ
1α
2
c
ua
ˆ
θ
(t
´
uc l`a
P (
ˆ
θ < θ
1α
2
) = 1 α
2
).
Khi ¯o
P
(θ
α
1
ˆ
θ
θ
1α
2
) = P (
ˆ
θ < θ
1α
2
) P (
ˆ
θ < θ
α
1
) = 1 α α
2
1
= 1 α ( )
T
`
u (*) ta gi
ai ra ¯d
u
o
.
c θ. Khi ¯o (*) ¯d
u
o
.
c ¯d
ua v
`
ˆe da
.
ng P (
ˆ
θ
1
< θ <
ˆ
θ
2
) = 1 α.
V`ı ac su
´
ˆat 1
α g
`
ˆan b
`
˘
ang 1, en bi
´
ˆen c
´
ˆo (
ˆ
θ
1
< θ <
ˆ
θ
2
) h
`
ˆau nh
u x
ay ra. Th
u
.
c hiˆe
.
n
o
.
t ph´ep th
( ).x
1
, x
2
, . . . , x
n
T
`
u m
˜
ˆau cu
.
th
ˆe n`ay ta t´ınh ¯d
u
o
.
c gi´a tri
.
θ
1
=
ˆ
θ
1
(x
1
, x
2
, . . . , x
n
), θ
2
=
ˆ
θ
2
(x
1
, x
2
, . . . , x
n
).
a
.
y v
´
oi 1 α cho tr
u
´
oc, qua m
˜
ˆau cu
.
th
ˆe w
x
ta t`ım ¯d
u
o
.
c kho
ang (
θ
1
, θ
2
) ch
´
ua saoθ
cho P (θ
1
< θ < θ
2
) = 1 . α
Kho
ang (θ
1
, θ
2
) ¯d
u
o
.
c go
.
i l`a kho
ang tin a
.
y.
1 α ¯d
u
o
.
c go
.
i l`a ¯o
.
tin a
.
y c
ua
u
´
oc l
u
o
.
ng.
|θ
2
θ
1
| ¯d
u
o
.
c go
.
i l`a ¯o
.
d`ai kho
ang tin a
.
y.
2.2
U
´
oc l
u
o
.
ng trung b`ınh
Gi
a s
u t
ng (
m
1
, m
2
) ch
´
ua
m
sao cho P (m
1
< m < m
2
) = 1 α, v
´
oi 1 α l`a ¯o
.
tin a
.
y cho tr
u
´
oc.
i) Tr
u
`
ong h
o
.
p 1
(
Bi
´
ˆet
V ar(X) = σ
2
n
30 ho
˘
a
.
c (n < 30 nh
ung X o phˆan ph
´
ˆoi chu
ˆan)
Cho
.
n th
´
ˆong e
U
=
(X m)
n
σ
(4.4)
Ta th
´
ˆay U N(0 1).,
CuuDuongThanCong.com https://fb.com/tailieudientucntt
74
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
Cho
.
n c
˘
a
.
p α
1
v`a α
2
sao cho α
1
+ α
2
= α v`a t`ım ac phˆan vi
.
P (U < u U < u
α
1
) = α
1
, P (
α
2
) = 1 α
2
Do phˆan vi
.
chu
ˆan o t´ınh ch
´
ˆat u
α
1
= u
1α
1
en
P (u
1α
1
< U < u
1α
2
) = 1 α (4.5)
D
u
.
a v`ao (4.4) v`a gi
ai e
.
b
´
ˆat ph
u
ong tr`ınh trong (4.5) ta ¯d
u
o
.
c
X
σ
n
u
1α
2
< m < X +
σ
n
u
1α
1
D
¯
ˆe ¯d
u
o
.
c kho
ang tin a
.
y ¯d
´
ˆoi x
´
ung ta cho
.
n α α
1
=
2
=
α
2
v`a ¯d
˘
a
.
t γ = 1
α
2
th`ı
X
σ
n
u
γ
< m < X +
σ
n
u
γ
om la
.
i, ta t`ım ¯d
u
o
.
c kho
ang tin a
.
y (x ε, x + ε), trong ¯o
* x l`a trung b`ınh c
ua m
˜
ˆau ng
˜
ˆau nhiˆen.
* ε = u
γ
σ
n
(¯o
.
ch´ınh ac) v
´
oi u l`a phˆan vi
.
chu
ˆan m
´
uc
γ = 1
α
V´ı du
.
2 Kh
´
ˆoi l
u
o
.
ng s
an ph
ˆam l`a ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X o phˆan ph
´
ˆoi chu
ˆan v
´
oi ¯o
.
e
.
ch tiˆeu chu
ˆan
σ = 1. an th
u 25 s
an ph
ˆam ta thu ¯d
u
o
.
c k
´
ˆet qu
a sau
X (kh
´
ˆoi l
u
o
.
ng) 18 19 20 21
n
i
(s
´
ˆo l
u
o
.
ng 3 5 15 2
H˜ay
u
´
oc l
u
o
.
ng trung b`ınh kh
´
ˆoi l
u
o
.
ng c
ua s
an ph
ˆam v
´
oi ¯o
.
tin a
.
y 95 %.
Gi
ai
x
i
n
i
x
i
n
i
18 3 54
19 5 95
20 15 300
25 491
Ta o
x =
491
25
= 19, 64 .kg
D
¯
ˆo
.
tin a
.
y 1 α = 0, 95 = α = 0, 025 = γ = 1
α
2
= 0, 975 Ta t`ım
¯d
u
o
.
c phˆan vi
.
chu
ˆan u
γ
= u
0,975
= 1, 96. Do ¯o
ε = u
0,975
1
25
= 1, 96.
1
5
= 0.39
x
1
= x ε = 19, 6 0, ,39 = 19 25
x
2
= x + ε = 19, ,6 + 0 39 = 20, 03
a
.
y kho
ang tin a
.
y l`a (19, 25; 20 03).,
CuuDuongThanCong.com https://fb.com/tailieudientucntt
2. Ph
u
ong ph´ap kho
ang tin ay 75
ii) Tr
u
`
ong h
o
.
p 2
(
σ
2
ch
ua bi
´
ˆet
n 30
Tr
u
`
ong h
o
.
p n`ay k´ıch th
u
´
oc m
˜
ˆau l
´
on (
n 30) o th
ˆe d`ung
u
´
oc l
u
o
.
ng c
ua
S
2
thay
cho
σ
2
ch
ua bi
´
ˆet (
E(S
2
) = σ
2
), ta t`ım ¯d
u
o
.
c kho
ang tin a
.
y (x ε, x + ε) trong ¯o
* x l`a trung b`ınh c
ua m
˜
ˆau cu
.
th
ˆe.
* ε = u
γ
s
n
v
´
oi u
γ
l`a phˆan vi
.
chu
ˆan m
´
uc
γ = 1
α
2
v`a s
l`a ¯o
.
e
.
ch tiˆeu chu
ˆan
¯di
`
ˆeu ch
inh c
ua m
˜
ˆau cu
.
th
ˆe.
V´ı du
.
3 Ng
u
`
oi ta ti
´
ˆen h`anh nghiˆen c
´
uu
o o
.
t tr
u
`
ong ¯da
.
i ho
.
c xem trong o
.
t th´ang
trung b`ınh o
.
t sinh viˆen tiˆeu h
´
ˆet bao nhiˆeu ti
`
ˆen go
.
i ¯diˆe
.
n thoa
.
i. L
´
ˆay o
.
t m
˜
ˆau ng
˜
ˆau nhiˆen
g
`
ˆom 59 sinh viˆen thu ¯d
u
o
.
c k
´
ˆet qu
a sau:
14 18 22 30 36 28 42 79 36 52 15 47
95 16 27 111 37 63 127 23 31 70 27 11
5
29 73 26 15 26 31 57 40 18 85 28 32
22 36 60 41 35 26 20 58 33 23 35
H˜ay
u
´
oc l
u
o
.
ng kho
ang tin a
.
y 95% cho s
´
ˆo ti
`
ˆen go
.
i ¯diˆe
.
n thoa
.
i trung b`ınh h`ang th´ang
c
ua o
.
t sinh viˆen.
Gi
ai
T
`
u ac s
´
ˆo liˆe
.
u ¯d˜a cho, ta o
n
= 59; x = 41, ,05; s
= 27 99
D
¯
ˆo
.
tin a
.
y 1 α = 0, 95 = 1
α
2
= 0, 975. Tra b
ang phˆan vi
.
chu
ˆan ta o
u
0,975
= 1, 96.
Do ¯o
ε
x x 7, 13 = 33, 92; + 7, ,13 = 48 18
a
.
y kho
ang tin a
.
y c
ua
u
´
oc l
u
o
.
ng l`a (33,92; 48,18).
iii) Tr
u
`
ong h
o
.
p 3
(
σ
2
ch
ua bi
´
ˆet
n <
30 v`a X o phˆan ph
´
ˆoi chu
ˆan
Cho
.
n th
´
ˆong e
T =
(X m)
n
S
T ( 1).n
CuuDuongThanCong.com https://fb.com/tailieudientucntt
76
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
Ta t`ım ¯d
u
o
.
c kho
ang tin a
.
y ( ) trong ¯ox ε, x + ε ε = t
γ
S
n
v
´
oi t
γ
l`a phˆan vi
.
Student m
´
uc
γ = 1
α
2
v
´
oi n 1 a
.
c t
u
.
do v`a s
l`a ¯o
.
e
.
ch tiˆeu
chu
ˆan ¯di
`
ˆeu ch
inh c
ua m
˜
ˆau cu
.
th
ˆe.
V´ı du
.
4 Dioxide Sulfur v`a Oxide Nitrogen l`a ac oa ch
´
ˆat ¯d
u
o
.
c khai th´ac t
`
u l`ong
¯d
´
ˆat. ac ch
´
ˆat n`ay ¯d
u
o
.
c gi´o mang ¯di r
´
ˆat xa, k
´
ˆet h
o
.
p th`anh acid v`a r
oi tr
o la
.
i m
˘
a
.
t ¯d
´
ˆat ta
.
o
th`anh m
ua acid. Ng
u
`
oi ta ¯do ¯o
.
¯a
.
m ¯d
˘
a
.
c c
ua Dioxide Sulfur
(µg/m
3
) trong khu r
`
ung
Bavarian c
ua n
u
´
oc D
¯
´
uc. S
´
ˆo liˆe
.
u cho b
oi b
ang d
u
´
oi ¯ay:
52,7 43,9 41,7 71,5 47,6 55,1
62,2 56,5 33,4 61,8 54,3 50,0
45,3 63,4 53,9 65,5 66,6 70,0
52,4 38,6 46,1 44,4 60,7 56,4
H˜ay
u
´
oc l
u
o
.
ng ¯o
.
¯a
.
m ¯d
˘
a
.
c trung b`ınh c
ua Dioxide Sulsfur v
´
oi ¯o
.
tin a
.
y 95%.
Gi
ai
Ta t´ınh ¯d
u
o
.
c
D
¯
ˆo
.
tin a
.
y 1 α = 0, 95 = α = 0, 025 = 1
α
2
= 0, 975. Tra b
ang phˆan
vi
.
student m
´
uc 0,975 a
.
c n 1 = 23 ta ¯d
u
o
.
c t
23;0,975
= 2, 069.
Do ¯o
ε = 2, 069
10 07,
24
= 4 25.,
x ε ε= 53, 92 4, ,25 = 49 67, x + = 53, ,92 + 4 25 = 58, 17
a
.
y kho
ang tin a
.
y l`a (49,67; 58,17).
Ng
u
`
oi ta bi
´
ˆet ¯d
u
o
.
c n
´
ˆeu ¯o
.
¯a
.
m ¯d
˘
a
.
c c
ua Dioxide Sulfur trong o
.
t khu v
u
.
c l
´
on h
on
20
µg/m
3
th`ı oi tr
u
`
ong trong khu v
u
.
c bi
.
ph´a hoa
.
i b
oi m
ua acid. Qua v´ı du
.
n`ay ac
nh`a khoa ho
.
c ¯d˜a t`ım ra ¯d
u
o
.
c nguyˆen nhˆan r
`
ung Bavarian bi
.
ph´a hoa
.
i tr
`
ˆam tro
.
ng n
˘
am
1983 l`a do m
ua acid .
Ch´u ´y (X´ac ¯d
.
N
´
ˆeu mu
´
ˆon ¯o
.
tin a
.
y 1 α v`a ¯o
.
ch´ınh ac ε ¯da
.
t
o m
´
uc cho tr
u
´
oc th`ı ta c
`
ˆan ac
¯di
.
nh k´ıch th
u
´
oc n c
ua m
˜
ˆau.
i) Tr
u
`
ong h
o
.
p bi
´
ˆet
V ar(X) = σ
2
:
T
`
u ong th
´
uc
ε = u
2
γ
σ
n
ta suy ra
n
= u
2
γ
σ
2
ε
2
ii) Tr
u
`
ong h
o
.
p ch
ua bi
´
ˆet
σ
2
:
CuuDuongThanCong.com https://fb.com/tailieudientucntt
2. Ph
u
ong ph´ap kho
ang tin ay 77
D
u
.
a v`a m
˜
ˆau cu
.
th
ˆe ¯d˜a cho (n
´
ˆeu ch
ua o m
˜
ˆau th`ı ta o th
ˆe ti
´
ˆen h`anh l
´
ˆay m
˜
ˆau l
`
ˆan
¯d
`
ˆau v
´
oi k´ıch th
u
´
oc
n
1
30) ¯d
ˆe t´ınh
s
2
. T
`
u ¯o ac ¯di
.
nh ¯d
u
o
.
c
n
= u
2
γ
s
2
ε
2
K´ıch th
u
´
oc m
˜
ˆau n ph
ai l`a s
´
ˆo nguyˆen. N
´
ˆeu khi t´ınh
n theo ac ong th
´
uc trˆen ¯d
u
o
.
c
gi´a tri
.
khˆong nguyˆen th`ı ta l
´
ˆay ph
`
ˆan nguyˆen c
ua o o
.
ng thˆem v
´
oi 1.
T
´
uc l`a
n =
"
u
2
γ
σ
2
ε
2
#
+ 1 ho
˘
a
.
c n =
"
u
2
γ
s
2
ε
2
#
+ 1.
2.3
U
´
oc l
u
o
.
ng t
y e
.
Gi
a s
u t
ˆong th
ˆe ¯d
u
o
.
c chia ra l`am hai loa
.
i ph
`
ˆan t
u. T
y e
.
ph
`
ˆan t
u o t´ınh ch
´
ˆat A l`a p
ch
ua bi
´
ˆet.
U
´
oc l
u
o
.
ng t
y e
.
l`a ch
i ra kho
ang (
f
1
, f
2
) ch
´
ua p sao cho P (f
1
< p < f
2
) = 1 .α
D
¯
ˆe cho viˆe
.
c gi
ai b`ai to´an ¯d
u
o
.
c ¯d
on gi
an, ta cho
.
n m
˜
ˆau v
´
oi k´ıch th
u
´
oc
n kh´a l
´
on.
Go
.
i X l`a s
´
ˆo ph
`
ˆan t
u o t´ınh ch
´
ˆat A khi l
´
ˆay ng
˜
ˆau nhiˆen o
.
t ph
`
ˆan t
u t
`
u t
ˆong th
ˆe th`ı
X l`a ¯da
.
i l
u
o
.
X 0 1
P 1-p p
Go
.
i X
i
(i = 1, n) l`a s
´
ˆo ph
`
ˆan t
u o t´ınh ch
´
ˆat A trong l
`
ˆan l
´
ˆay th
´
u i.
Ta o
X =
1
n
n
X
i=1
X
i
ch´ınh l`a t
`
ˆan su
´
ˆat
u
´
oc l
u
o
.
ng ¯di
ˆem c
ua
p = E(X). M
˘
a
.
t kh´ac, theo
ch
u
ong 2,
nX o phˆan ph
´
ˆoi nhi
.
th
´
uc
B(n, p). T
`
u ¯o
E(X) = p v`a V ar(X) =
p(1 ) p
n
.
Cho
.
n th
´
ˆong e
U =
(f p)
n
q
p(1 p)
, trong ¯o f l`a t
y e
.
ac ph
`
ˆan t
u c
ua m
˜
ˆau o t´ınh
ch
´
ˆat A.
Khi
n kh´a l
´
on th`ı U N(0, 1). Gi
ai quy
´
ˆet b`ai to´an t
u
ong t
u
.
nh
u
o
u
´
oc l
u
o
.
ng trung
b`ınh, thay
X b
oi
f, σ
2
b
oi f (1 f )... ta ¯d
u
o
.
c
f
u
γ
s
f(1 ) f
n
< p < f + u
γ
s
f(1 ) f
n
om la
.
i, ta ac ¯di
.
nh ¯d
u
o
.
c kho
ang tin a
.
y (f
1
, f
2
) = (f ε, f + ε), trong ¯o
f l`a t
y e
.
ac ph
`
ˆan t
u c
ua m
˜
ˆau o t´ınh ch
´
ˆat A
ε
= u
γ
s
f(1 ) f
n
(¯o
.
ch´ınh ac) (4.6)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
78
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
v
´
oi u
γ
l`a phˆan vi
.
chu
ˆan m
´
uc 1
α
2
.
T
`
u (4.6) ta o
u
γ
=
ε
n
q
f f(1 )
n
= u
2
1
α
2
f(1 f)
ε
2
Ch´u ´y Ta o th
ˆe t`ım kho
ang tin a
.
y c
ua
p b
`
˘
ang ach kh´ac nh
u sau:
T
`
u kho
ang tin a
.
y c
ua :p
f u
γ
s
p(1 ) p
n
< p < f + u
γ
s
p(1 ) p
n
hay
|f p| < u
γ
s
p(1 ) p
n
Gi
ai b
´
ˆat ph
u
ong tr`ınhn`ay ta t`ım ¯d
u
o
.
c
p
1
=
nf + 0, 5u
2
γ
n
+ u
2
γ
nf(1 f)
n
+ u
2
γ
Khi ¯o (p
1
, p
2
) l`a kho
ang tin a
.
y c
ua
p v
´
oi ¯o
.
tin a
.
y 1 . α
V´ı du
.
5 Ki
ˆem tra 100 s
an ph
ˆam trong o h`ang th
´
ˆay o 20 ph
´
ˆe ph
ˆam.
i) H˜ay
u
´
oc l
u
o
.
ng t
y e
.
ph
´
ˆe ph
ˆam o ¯o
.
tin a
.
y 99 %.
ii) N
´
ˆeu ¯o
.
ch´ınh ac ε = 0, 04 th`ı ¯o
.
tin a
.
y c
ua
u
´
oc l
u
o
.
ng l`a bao nhiˆeu?
iii) N
´
ˆeu mu
´
ˆon o ¯o
.
tin a
.
y 99% v`a ¯o
.
ch´ınh ac 0,04 th`ı ph
ai ki
ˆem tra bao nhiˆeu
s
an ph
ˆam?
Gi
ai
i)
n = 100, f
100
et
U =
( )fp
100
pq
N (0, 1).
Ta o
1
α = 0, 99 = α = 0, 01 = 1
α
2
= 1 0, 005 = 0 995,
ε = u
0,995
0 2 0 8, . ,
100
= 2, 58.
0 4,
10
= 0 1,
f
1
= f ε = 0, 2 0, 1 = 0, 1
f
2
= f + ε = 0, 2 + 0, 1 = 0, 3
CuuDuongThanCong.com https://fb.com/tailieudientucntt
2. Ph
u
ong ph´ap kho
ang tin ay 79
a
.
y kho
ang tin a
.
y l`a (0, 1; 0 3).,
ii) u
1
α
2
=
0 04 100, .
0 2 0, . , 8
= 1
T`ım ¯d
u
o
.
c
1
α
2
= 0, 84 = 1 α = 0, 68
a
.
y ¯o
.
tin a
.
y l`a 68%.
iii)1
α = 0, 99 = α = 0, 01 = 1
α
2
= 0, 995. T`ım ¯d
u
o
.
c u
0,995
= 2, 576.
Do ¯o
n
(2, 576) 0 2 0 8
2
. , . ,
(0 04)
,
2
= 6, 635.100 = 663, 5
a
.
y n = 664
2.4
U
´
oc l
u
o
.
ng ph
u
ong sai
Gi
a s
u ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen X o phˆan ph
´
ˆoi chu
ˆan v
´
oi ph
u
ong sai
V ar(X) = σ
2
ch
ua bi
´
ˆet. Cho 0
< α < 0.05.
U
´
oc l
u
o
.
ng ph
u
ong sai
V ar(X) l`a ch
i ra kho
ang (
σ
2
1
, σ
2
2
)
ch
´
ua
σ
2
sao
T
`
u X a
.
p m
˜
ˆau ng
˜
ˆau nhiˆen W
X
= (X
1
, X
2
, . . . , X
n
) v`a et ac tr
u
`
ong h
o
.
p
a) Bi
´
ˆet .E(X) = µ
Cho
.
n th
´
ˆong e =
χ
2
n
X
i=1
( )
X µ
i
2
σ
2
Ta th
´
ˆay
χ
2
o phˆan ph
´
ˆoi ”khi-b`ınh ph
u
ong” v
´
oi n a
.
c t
u
.
do.
Cho
.
n α
1
v`a α
2
kh´a e sao cho α
1
+ α
2
= α. Ta t`ım ¯d
u
o
.
c ac phˆan vi
.
χ
2
α
1
v`a χ
2
1α
2
th
oa m˜an
P
(χ
2
α
1
< χ
2
< χ
2
1
α
2
) = 1 (4.7) α
Thay bi
ˆeu th
uc c
ua
χ v`ao (4.7) v`a gi
ai ra ta ¯d
u
o
.
c
P
(X
i
µ)
2
χ
2
1α
2
< σ
2
<
P
( )X µ
i
2
χ
2
α
1
Cho
.
n α α
1
=
2
=
α
2
th`ı
P
(X
i
µ)
2
χ
2
1
α
2
< σ
2
<
P
( )X µ
i
2
χ
2
α
2
(4.8)
V
´
oi m
˜
ˆau cu
.
th
ˆe
w
x
= (x
1
, x
2
, . . . , x
n
), t´ınh ac t
ˆong
P
(x
i
µ)
2
v`a d
u
.
a v`ao (4.8) ta
t`ım ¯d
u
o
.
c kho
ang tin a
.
y (σ
2
1
, σ
2
2
), trong ¯o
CuuDuongThanCong.com https://fb.com/tailieudientucntt
80
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
σ
2
1
=
P
(x
i
µ)
2
n
i
χ
2
n,
1
α
2
σ
2
2
=
P
(x
i
µ)
2
n
i
χ
2
n,
α
2
v
´
oi
χ
2
n,
1
α
2
l`a phˆan vi
.
”khib`ınh ph
u
ong” m
´
uc 1
α
2
v
´
oi n a
.
c t
u
.
do.
χ
2
n,
α
2
l`a phˆan vi
.
”khib`ınh ph
u
ong” m
´
uc
α
2
v
´
oi n a
.
c t
u
.
do.
b) Ch
ua bi
´
ˆet .E( )X
Cho
.
n th
´
ˆong e
χ
2
=
( 1)n S
2
σ
2
Th
´
ˆong e n`ay o phˆan ph
´
ˆoi ”khib`ınh ph
u
ong v
´
oi n 1 a
.
c t
u
.
do. T
u
ong t
u
.
nh
u
trˆen ta t`ım ¯d
u
o
.
c kho
ang tin a
.
y (σ
2
1
, σ
2
2
) v
´
oi
σ
2
1
=
( 1)n s
2
χ
2
n ,
1 1
α
;
σ
2
2
=
( 1)n s
2
χ
2
n
1,
α
V´ı du
.
6 M
´
uc hao ph´ı nhiˆen liˆe
.
u cho o
.
t ¯d
on vi
.
s
an ph
ˆam l`a ¯da
.
i l
u
o
.
ng ng
˜
ˆau nhiˆen
o phˆan ph
´
ˆoi chu
ˆan. et trˆen 25 s
an ph
ˆam ta thu ¯d
u
o
.
c k
´
ˆet qu
a sau:
X 19,5 20 20,5
n
i
5 18 2
H˜ay
u
´
oc l
u
o
.
ng ph
u
ong sai v
´
oi ¯o
.
tin a
.
y 90 % trong ac tr
u
`
ong h
o
.
p sau:
i) Bi
´
ˆet k`y vo
.
ng .µ = 20g
ii) Ch
ua bi
´
ˆet k`y vo
.
ng.
Gi
ai
i) Bi
´
ˆet µ = 20 .g
i i i i i i
19,5 5 -0,5 0,25 1,25
20 18 0 0 0
20,5 2 0,5 0,25 0,5
P
n=25 1,75
D
¯
ˆo
.
tin a
.
y 1 α = 0, 9 = α = 0, 1 =
α
2
= 0, 05 = 1
α
2
= 0.95
Tra b
ang phˆan vi
.
χ
2
v
´
oi n = 25 a
.
c t
u
.
do ta ¯d
u
o
.
c
χ
2
25;0
,05
= 14, 6; χ
2
25;0
,95
= 37 7,
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. B`ai t
.
ˆap 81
Do ¯o
σ
2
1
=
P
(x
i
20)
2
n
i
χ
2
25;0 95,
=
1 75,
37
, 7
= 0 046,
σ
2
2
=
P
(x
i
20)
2
n
i
χ
2
25;0 05,
=
1 75,
14
, 6
= 0 12,
a
.
y kho
ang tin a
.
y l`a (0, 046; 0 12).,
ii) Khi ch
ua bi
´
ˆet k`y vo
.
ng ta t`ım s
2
= 0 0692.,
Tra b
ang phˆan vi
.
khi b`ınh ph
u
ong v
´
oi a
.
c t
u
.
do n 1 = 24.
χ
2
0
,05
= 13, 85; χ
2
0
,95
= 36 4,
v`a t´ınh
σ
2
1
=
24s
2
χ
2
0 95,
=
24 × 0 0692,
36
, 4
= 0 046,
σ
2
2
=
24s
2
χ
2
0,05
=
24 × 0 0692,
13
, 85
= 0 12,
a
.
y kho
3.
B
`
AI T
ˆ
A
.
P
1. o
.
t m
˜
ˆau ac tro
.
ng l
u
o
.
ng t
u
ong
´
ung l`a 8,3; 10,6; 9,7; 8,8; 10,2 v`a 9,4 kg. ac ¯di
.
nh
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua
a) trung b`ınh c
ua t
ˆong th
ˆe,
b) ph
u
ong sai c
ua t
ˆong th
ˆe.
2. o
.
t m
˜
ˆau ¯o
.
¯do 5 ¯d
u
`
ong k´ınh c
ua qu
a c
`
ˆau l`a 6,33; 6,37; 6,36; 6,32 v`a 6,37cm. ac
¯di
.
nh
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua trung b`ınh v`a ph
u
ong sai c
ua ¯d
u
`
ong k´ınh qu
a
c
`
ˆau.
3. D
¯
ˆe ac ˆ
th
´
ˆong, ng
u
`
oi ta
ti
´
ˆen h`anh 5 l
`
ˆan an ¯o
.
c a
.
p (c`ung o
.
t a
.
t), k
´
ˆet qu
a nh
u sau:
94, 1 94 8 96 0 95, , , 2 kg
ac ¯di
.
nh
u
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua ph
u
ong sai s
´
ˆo ¯do trong hai tr
u
`
ong h
o
.
p:
a) bi
´
ˆet kh
´
ˆoi l
u
o
.
ng a
.
t an l`a 95kg;
b) khˆong bi
´
ˆet kh
´
ˆoi l
u
o
.
ng a
.
t an.
4. D
¯
u
`
ong k´ınh c
ua o
.
t m
˜
ˆau ng
˜
ˆau nhiˆen c
ua 200 viˆen bi ¯d
u
o
.
c s
an xu
´
ˆat b
oi o
.
t ay
trong o
.
t tu
`
ˆan o trung b`ınh 20,9mm v`a ¯o
.
e
.
ch tiˆeu chu
ˆan 1,07
mm.
U
´
oc l
u
o
.
ng
trung b`ınh ¯d
u
`
ong k´ınh c
ua viˆen bi v
´
oi ¯o
.
tin a
.
y (a) 95%, (b) 99%.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
82
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
5. D
¯
ˆe kh
ao at s
´
uc b
`
ˆen chi
.
u l
u
.
c c
ua o
.
t loa
.
i
´
ˆong ong nghiˆe
.
p ng
u
`
oi ta ti
´
ˆen h`anh ¯do
9
´
ˆong v`a thu ¯d
u
o
.
c ac s
´
ˆo liˆe
.
u sau
4500 6500 5000 5200 4800 4900 5125 6200 5375
T
`
u kinh nghiˆe
.
m ngh
`
ˆe nghiˆe
.
p ng
u
`
oi ta bi
´
ˆet r
`
˘
ang s
´
uc b
`
ˆen ¯o o phˆan ph
´
ˆoi chu
ˆan
v
´
oi ¯o
.
e
.
ch chu
ˆan σ = 300. ac ¯di
.
nh kho
ang tin a
.
y 95% cho s
´
uc b
`
ˆen trung b`ınh
c
ua loa
.
i
´
ˆong trˆen.
6. Ta
.
i o
.
t v`ung r
`
ung nguyˆen sinh, ng
u
`
oi ta ¯deo v`ong cho 1000 con chim. Sau o
.
t
th
`
oi gian, b
´
˘at la
.
i 200 con th`ı th
´
ˆay o 40 con o ¯deo v`ong. Th
u
u
´
oc l
u
o
.
ng s
´
ˆo chim
trong v`ung r
`
ung ¯o v
´
oi ¯o
.
tin a
.
y 99%.
7. Bi
´
ˆet t
y e
.
n
ay m
`
ˆam c
ua o
.
t loa
.
i ha
.
t gi
´
ˆong l`a 0,9. V
´
oi ¯o
.
tin a
.
y 0,95, n
´
ˆeu ta
mu
´
ˆon ¯o
.
d`ai kho
ang tin a
.
y c
ua t
y e
.
n
ay m
`
ˆam khˆong v
u
o
.
t qu´a 0,02 th`ı c
`
ˆan ph
ai
gieo bao nhiˆeu ha
.
t?
8. K
´
ˆet qu
a quan at v
`
ˆe h`am l
u
o
.
ng vitamine C c
ua o
.
t loa
.
i tr´ai ay cho
o b
ang sau:
´
7 8 10
8 9 20
9 10 35
10 11 25
11 12 5
a) H˜ay
u
´
oc l
u
o
.
ng h`am l
u
o
.
ng vitamine C trung b`ınh trong o
.
t tr´ai v
´
oi ¯o
.
tin a
.
y
95%.
b) Qui
u
´
oc nh
˜
ung tr´ai o h`am l
u
o
.
ng vitamine C trˆen 10% l`a tr´ai loa
.
i A.
U
´
oc l
u
o
.
ng
t
y e
.
tr´ai loa
.
i A v
´
oi ¯o
.
tin a
.
y 90%.
c) Mu
´
ˆon ¯o
.
ch´ınh ac khi
u
´
oc l
u
o
.
ng h`am l
u
o
.
ng vitamine C trung b`ınh l`a 0,1 v`a
¯o
.
ch´ınh ac khi
u
´
oc l
u
o
.
ng t
y e
.
tr´ai loa
.
i A l`a 5% v
´
oi c`ung ¯o
.
tin a
.
y 95% th`ı c
`
ˆan
quan at thˆe
9. D
¯
o ¯d
u
`
ong k´ınh c
ua 100 chi ti
´
ˆet ay do o
.
t phˆan x
u
ong s
an xu
´
ˆat, ta ¯d
u
o
.
c k
´
ˆet qu
a
cho
o b
ang sau:
D
¯
u
`
ong k´ınh (
mm) S
´
ˆo chi ti
´
ˆet ay
9,85 8
9,90 12
9,95 20
10,00 30
10,05 14
10,10 10
10,15 6
CuuDuongThanCong.com https://fb.com/tailieudientucntt
3. B`ai t
.
ˆap 83
Theo qui ¯di
.
nh, nh
˜
ung chi ti
´
ˆet o ¯d
u
`
ong k´ınh t
`
u 9
, 9mm ¯d
´
ˆen 10
, 1mm l`a nh
˜
ung chi
ti
´
ˆet ¯da
.
t tiˆeu chu
ˆan k˜y thuˆa
.
t.
a)
U
´
oc l
u
o
.
ng t
y lˆe
.
v`a
u
´
oc l
u
o
.
ng trung b`ınh ¯d
u
`
ong k´ınh c
ua nh
˜
ung chi ti
´
ˆet ¯da
.
t tiˆeu
chu
ˆan v
´
oi c`ung ¯o
.
tin a
.
y 95%?
b) D
¯
ˆe ¯o
.
ch´ınh ac khi
u
´
oc l
u
o
.
ng ¯d
u
`
ong k´ınh trung b`ınh c
ua nh
˜
ung chi ti
´
ˆet ¯da
.
t
tiˆeu chu
ˆan l`a 0, 02mm v`a ¯o
.
ch´ınh ac khi
u
´
oc l
u
o
.
ng t
y e
.
chi ti
´
ˆet ¯da
.
t tiˆeu chu
ˆan
l`a 5% v
´
oi c`ung ¯o
.
tin a
.
y 99% th`ı c
`
ˆan ¯do thˆem ´ıt nh
´
ˆat bao nhiˆeu chi ti
´
ˆet n
˜
ua?
10. D
¯
ˆo
.
d`ai c
ua b
an kim loa
.
i tuˆan theo luˆa
.
t chu
ˆan. D
¯
o 10 b
an kim loa
.
i ¯o ta thu ¯d
u
o
.
c
s
´
ˆo liˆe
.
u sau:
4, 1 3 9 4 7 4 4 4 0 3 8 4 4 4 2 4 4 5 0, , , , , , , , ,
H˜ay ac ¯di
.
nh
a) Kho
ang tin a
.
y 90% cho ¯o
.
d`ai trung b`ınh trˆen;
b) Kho
ang tin ajy 95% cho ph
u
ong sai c
ua ¯o
.
d`ai ¯o.
11. Ng
u
`
oi ta ¯do chi
`
ˆeu au c
ua bi
ˆen, sai e
.
ch ng
˜
ˆau nhiˆen ¯d
u
o
.
c gi
a thi
´
ˆet phˆan ph
´
ˆoi theo
qui luˆa
.
l
`
ˆan ¯d
ˆe ac ¯di
.
nh
chi
`
ˆeu au c
ua bi
ˆen v
oi sai e
.
ch khˆong qu´a 15m v`a ¯o
.
tin a
.
y ¯da
.
t ¯d
u
o
.
c 95%?
12. Theo d˜oi s
´
ˆo h`ang an ¯d
u
o
.
c trong o
.
t ng`ay
o o
.
t c
ua h`ang, ta ¯d
u
o
.
c k
´
ˆet qu
a ghi
o b
ang sau:
S
´
ˆo h`ang an ¯d
u
o
.
c (kg/ng`ay) S
´
ˆo ng`ay
1900 1950 2
1950 2000 10
2000 2050 8
2050 2100 5
H˜ay
u
´
oc l
u
o
.
ng ph
u
ong sai c
ua l
u
o
.
ng h`ang an ¯d
u
o
.
c m
˜
ˆoi ng`ay v
´
oi ¯o
.
tin a
.
y 95%?
(cho bi
´
ˆet ).α
1
= α
2
TR
A L
`
OI B
`
AI T
ˆ
A
.
P
1.
a) 9, 5 74kg, b) 0, kg
2
2.
x = 6, ,35cm, s
2
= 0 00055 .cm
2
3.
a) Trung b`ınh kh
´
ˆoi l
u
o
.
ng m = 95kg.
U
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua ph
u
ong sai l`a
1
n
n
X
i=1
(
x
i
m)
2
=
1
5
5
X
i=1
( 95)
x
i
2
= 0 41,
b)
X =
1
n
n
X
i=1
x
i
=
1
5
5
X
i=1
x
i
= 95, 5
CuuDuongThanCong.com https://fb.com/tailieudientucntt
84
Ch u ong 4.
U
´
oc l
u
ong tham s
´
ˆo c
ua ¯da
.
i l
u
ong ng
˜
ˆau nhiˆen
U
´
oc l
u
o
.
ng khˆong chˆe
.
ch c
ua ph
u
ong sai l`a
s
2
=
1
n 1
n
X
i=1
(
x
i
X)
2
=
1
4
5
X
i=1
( 95 5) 7
x
i
,
2
= 0, rf f
4. (a) 20, 9 ± 0 148 0 195 ., mm, (b) 20, 9 ± , mm
5. (5092, 89 ; 5484 89).,
6. 0 0 2729, 1271 < p < ,
T
ˆong s
´
ˆo chim trong v`ung r
`
ung n
`
˘
am trong kho
ang (
1000
0
,2729
,
1000
0
,1271
)
7.
2 × 1 96,
q
0 9, ×0,1
n
< 0, 02. Gi
ai b
´
ˆat ph
u
ong tr`ınh ta o 3457.n >
8. a) 9, 06; 9, 54), c) 467 tr´ai.
9. a) (0, 792 < p < 0 10, 928); (9, 982 < m < , 006). b) 221.
10. a) (4, 09 ; 4, 49), b) (0, 064 ; 0 456).,
11.
7 l
`
ˆan.
12.
(1253, 8 <
CuuDuongThanCong.com https://fb.com/tailieudientucntt
| 1/16

Preview text:

Ch ’u ’ong 4 ’ U ´’ OC L ’ U .’ ONG THAM S ´ ˆ O C ’ UA D ¯ A.I L ’ U .’ ONG NG ˜ˆ AU NHIˆ EN Gi ’a s ’’u ¯
da.i l ’u ’o.ng ng ˜ˆau nhiˆen X c´o tham s ´ˆo θ ch ’ua bi ´ˆet. ’ U´’ oc l ’ u ’o.ng tham s ´ ˆo θ l`a d ’u.a v`ao m ˜ ˆau ng ˜
ˆau nhiˆen Wx = (X1, X2, . . . , Xn) ta ¯ d ’ ua ra th ´ ˆong kˆe ˆ θ = ˆ θ(X1, X2, . . . , Xn) ¯ d ’ ˆe ’ u´’
oc l ’u ’o.ng (d ’u. ¯do´an) θ. C´o 2 ph ’ u ’ong ph´ap ’ u´’oc l ’ u ’o.ng: i) ’ U´’ oc lu ii) ’ U´’ oc l ’
u ’o.ng kho ’ang: ch’i ra mˆo.t kho ’ang (θ1, θ2) ch´’ua θ sao cho P (θ1 < θ < θ2) =
1 − α cho tr ’u´’oc (1 − α go.i l`a ¯dˆo. tin cˆa.y c’ua ’ u´’ oc l ’u ’o.ng). ’ 1. ´ C ´ AC PH ’ U ’ ONG PH ´ AP ’ U ’ OC L ’ U ’ ˆ . ONG D ¯ I EM 1.1 Ph ’ u ’ ong ph´ ap h` am ’ u´’ oc l ’ u ’o.ng • Mˆo t ’a ph ’ u ’ ong ph´ ap Gi ’a s ’’ u c ` ˆan ’u´’ oc l ’ u ’o.ng tham s ´ ˆo θ c ’ua ¯
da.i l ’u ’o.ng ng ˜ˆau nhiˆen X. T`’u X ta lˆa.p m ˜ ˆau ng ˜ ˆau
nhiˆen WX = (X1, X2, . . . , Xn). Cho.n th ˆ ˆ ˆ ’ua X. Th ’
u.c hiˆe.n ph´ep th ’’u ta ¯d ’u ’o.c m ˜
ˆau cu. th ’ˆe wx = (x1, x2, . . . , xn). Khi ¯d´o ’u´’oc l ’u ’o.ng ¯ di ’
ˆem c’ua θ l`a gi´a tri. θ0 = ˆθ(x1, x2, . . . , xn). a) ’ U´’ oc l ’ u ’ o.ng khˆong chˆe.ch ✷ D ¯ i.nh ngh˜ ia 1 Th ´ ˆong kˆe ˆ θ = ˆ θ(X1, X2, . . . , Xn) ¯ d ’ u ’ o.c go.i l`a ’u´’oc l ’ u ’o.ng khˆong chˆe.ch c ’ ua tham s ´ ˆo θ n ´ ˆeu E(ˆ θ) = θ. ⊙ ´ Y ngh˜ ia Gi ’ a s ’’ u ˆ θ l`a ’ u´’
oc l ’u ’o.ng khˆong chˆe.ch c’ua tham s ´ ˆo θ. Ta c´o E(ˆ
θ − θ) = E(ˆθ) − E(θ) = θ − θ = 0 69 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 70 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ong ng ˜ ˆ au nhiˆ en Vˆa.u ’ u´’ oc l ’
u ’o.ng khˆong chˆe.ch l`a ’u´’oc l ’u ’o.ng c´o sai s ´ ˆo trung b`ınh b` ˘ ang 0. ⊕ Nhˆa.n x´et i) Trung b`ınh c’ua m ˜ ˆau ng ˜ ˆau nhiˆen X l`a ’ u´’
oc l ’u ’o.ng khˆong chˆe.ch c’ua trung b`ınh c’ua t ’
ˆong th ’ˆe θ = E(X) = m v`ı E(X) = m. ii) Ph ’ u ’ong sai ¯ di ` ˆeu ch ’inh c’ua m ˜ ˆau ng ˜ ˆau nhiˆen S′2 l`a ’ u´’ oc l ’
u ’o.ng khˆong chˆe.ch c’ua ph ’ u ’ong sai c’ua t ’ ˆong th ’ ˆe σ2 v`ı E(S′2) = σ2. • V´ı du. 1 Chi ` ˆeu cao c ’ ua 50 cˆay lim ¯ d ’u ’ o.c cho b ’’ oi Kho ’ang chi ` ˆeu cao (m´et) s ´ ˆo cˆ ay lim x0 u i i niui niu2i [6, 25 − 6, 75) 1 6,5 -4 -4 16 [6, 75 − 7, 25) 2 7,0 -3 -6 18 [7, 25 − 7, 75) 5 7,5 -2 -10 20 [7, 75 − 8, 25) 11 8 -1 -11 11 [8, 25 − 8, 75) 18 8,5 0 0 0 [8, 75 − 9, 25) 9 9 1 9 9 [9, 25 − 9, 75) 3 9,5 2 6 12 Go.i X l`a chi ` ˆeu cao c’ua cˆay lim a) H˜ ay ch ’i ra ’u´’ oc l ’ u ’ o.ng ¯di ’ˆem cho chi `
ˆeu cao trung b`ınh c’ua c´ac cˆay lim. b) H˜ ay ch ’ira ’u´’ oc l ’ u ’ o.ng ¯di ’ ˆem cho ¯
dˆo. t ’an m´at c’ua c´ac chi ` ˆeu cao cˆay lim so v´’ oi chi ` ˆeu cao trung b`ınh.
c) Go.i p = P (7, 75 ≤ X ≤ 8, 75). H˜ay ch ’i ra ’u´’
oc l ’u ’o.ng ¯di ’ˆem cho p. Gi ’ ai
Ta lˆa.p b ’ang t´ınh cho x v`a s2. x0 , Th ’ u i − 8 5 . c hiˆe.n ph´ep ¯ d ’ˆoi bi ´ ˆen ui = (x , 5; h , 0, 5 0 = 8 = 0 5) Ta c´o u = −15
x = 8, 5 + 0, 5.(−0, 26) = 8, 37  95  s2 = (0, 5)2.
− (−0, 26)2 = 0, 4581 ∼ (0, 68)2. 50 a) Chi ` ˆeu cao trung b`ınh ¯ d ’
u ’o.c ’u´’oc l ’u ’o.ng l`a 8,37 m´et. q b) D 50 ¯ ˆo. t ’an m´at ¯ d ’ u ’
o.c ’u´’oc l ’u ’o.ng l`a s = 0, 68 m´et ho˘a.c ˆs = 0, 4581 ∼ 0, 684 50−1 c) Trong 50 quan s´at ¯ d˜ a cho c´
o 11+18 = 29 quan s´at cho chi `
ˆeu cao lim thuˆo.c kho ’ang [7, 5 − 8, 5) Vˆa.y ’ u´’
oc l ’u ’o.ng ¯di ’ˆem cho p l`a p∗ = 29 = 0, 58. 50 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 1. C´ ac ph ’ u ’ ong ph´ ap ’ u ´’ oc l ’ u ’ ong ¯ di ’ ˆ em 71 b) ’ U´ ’ oc l ’ u ’ o.ng hiˆe.u qu ’a ⊕ Nhˆa . n x´ et Gi ’a s ’’u ˆ θ l`a ’u´’ oc l ’
u ’o.ng khˆong chˆe.ch c’ua tham s ´ˆo θ. Theo b ´ ˆat ¯ d ’˘ang th´’ uc Tchebychev ta c´o V ar(ˆ θ) P (|ˆθ − E(ˆ θ)| < ε) > 1 − ε2 V ar(ˆ θ) V`ı E(ˆ
θ) = θ nˆen P (|ˆθ − θ| < ε) > 1 − . ε2 Ta th ´ ˆay n ´ ˆeu V ar(ˆ θ) c`ang nh ’o th`ı P (|ˆ θ − θ| < ε) c`ang g ` ˆan 1. Do ¯ d´o ta s˜ e cho.n ˆθ v´’oi V ar(ˆ θ) nh ’o nh ´ ˆat. ✷ D ¯ i.nh ngh˜ ia 2 ’ U´’ oc l ’ u ’
o.ng khˆong chˆe.ch ˆθ ¯d ’u ’o.c go.i l`a ’ u ´’ oc l ’ u ’
o.ng c´o hiˆe.u qu ’a c’ua tham s ´ ˆ o θ n ´ ˆeu V ar(ˆ θ) nh ’ o nh ´ ˆ at trong c´ac ’u´’ oc l ’ u ’ o.ng c’ua θ. ⊙ Ch´ u ´ y Ng ’ u`’ oi ta ch´’ ung minh ¯ d ’u ’o.c r`˘ang n ´ ˆeu ˆ θ l`a ’u´’
oc l ’u ’o.ng hiˆe.u qu ’a c’ua θ th`ı ph ’u ’ong sai c’ua n´o l`a 1 V ar(ˆ θ) = (4.1) n.E(∂lnf(x,θ))2 ∂θ trong ¯ d´o ´ ˆen g ´ ˆoc. Mo.i ’u´’ oc l ’ u ’ o.ng khˆong . a go.i (4.1) l`a gi´’ oi ha.n Crame-Rao. ⊕ Nhˆa . n x´ et N ´ ˆeu ¯ da.i l ’u ’o.ng ng ˜ ˆau nhiˆen g ´
ˆoc X ∈ N(µ, σ2 ) th`ı trung b`ınh m ˜ˆau X l`a n ’ u´’ oc l ’u ’
o.ng hiˆe.u qu ’a c’ua k`y vo.ng E(X) = µ. 1 n σ2 Thˆa X . t vˆa.y, ta bi ´ ˆet X = X ) n i ∈ N (µ, n i=1 M˘
a.t kh´ac do X c´o phˆan ph ´ ˆoi chu ’ˆan nˆen n ´
ˆeu f (x, µ) l`a h`am mˆa.t ¯dˆo. c’ua Xi th`ı 1 f (x, µ) = √ e−(x−µ)2/2σ2 σ 2π ∂ x − µ Ta c´o ∂ " ∂lnf(x, µ)#2  x − µ2 n Suy ra nE = nE = . Do ¯ d´ o V ar(X) ch´ınh b` ˘ang nghi ∂µ σ2 σ2 .ch ¯ d ’ao σ2/n.
Vˆa.y X l`a ’u´’oc l ’u ’o.ng hiˆe.u qu ’a c’ua µ. c) ’ U´’ oc l ’ u ’ o.ng v˜’ung ✷ D ¯ i.nh ngh˜ ia 3 Th ´ ˆ ong kˆe ˆθ = ˆ θ(X1, X2, . . . , Xn) ¯ d ’ u ’o.c go.i l`a ’u´’ oc l ’
u ’o.ng v˜’ung c’ua tham s ´ ˆ o θ n ´ ˆeu ∀ε > 0 ta c´o
lim P (|ˆθ − θ| < ε) = 1 n→∞ CuuDuongThanCong.com
https://fb.com/tailieudientucntt 72 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ong ng ˜ ˆ au nhiˆ en ⊙ D ¯ i ` ˆ eu kiˆ e.n ¯ d’u c’ua ’ u´’ oc l ’ u ’o.ng v˜’ ung N ´ ˆeu ˆ θ l`a ’u´’ oc l ’ u ’
o.ng khˆong chˆe.ch c’ua θ v`a lim V ar(ˆθ) = 0 th`ı ˆ θ l`a ’u´’ oc l ’ u ’o n . ng v˜’ ung →∞ c ’ua θ. 1.2 Ph ’ u ’ ong ph´ ap ’u´’ oc l ’u ’ o.ng h ’o.p l´y t ´ ˆ oi ¯ da
Gi ’a s ’’u WX = (X1, X2, . . . , Xn) l`a m ˜ ˆau ng ˜ ˆau nhiˆen ¯ d ’
u ’o.c ta.o nˆen t`’u ¯da.i l ’ u ’o.ng ng ˜ˆau nhiˆen X c´o m ˜ ˆau cu. th ’
ˆe wx = (x1, x2, . . . , xn) v`a ˆ θ = ˆ θ(X1, X2, . . . , Xn). X´et h`am h`am h ’
o.p l´y L(x1, . . . , xn, θ) c’ua ¯d ´ ˆoi s ´ ˆo θ x´ac ¯ di.nh nh ’u sau: • N ´ ˆeu X r`’ oi ra.c:
L(x1, . . . , xn, θ) = P (X1 = x1/θ, . . . , Xn = xn/θ) (4.2) n = Y P (Xi = xi/θ) (4.3) i=1
L(x1, . . . , xn, θ) l`a x´ac suˆat ¯ dˆe ta nhˆa . n ¯ d ’
u ’o.c mˆau cu. thˆe Wx = (x1, . . . , xn) • N ´
ˆeu X liˆen tu.c c´o h`am mˆa.t ¯dˆo. x´ac su ´ ˆat f (x, θ)
L(x1, . . . , xn, θ) = f (x1, θ)f (x2, θ) . . . f(xn, θ)
L(x1, x2, . . . , xn, θ) l`a mˆa.t ¯dˆo. c’ua x´ac su ´
ˆat ta.i ¯di ’ˆem wx(x1, x2, . . . , xn)
Gi´a tri. θ0 = ˆθ(x1, x2, . . . , xn) ¯d ’u ’o.c go.i l`a ’u´’ oc l ’
u ’o.ng h ’o.p l´y t ´ˆoi ¯da n ´ ˆeu ´’ ung v´’ oi gi´a
tri. n`ay c’ua θ h`am h ’o.p l´y ¯da.t c ’u.c ¯da.i. ⊙ Ph ’u ’ ong ph´ ap t`ım V`ı h` am L v` a lnL ¯ dat c ’ uc ¯ dai tai c`
ung mˆot gi´a tri θ nˆen ta x´et lnL thay v`ı x´et L. ∂lnL B ’ u´’ oc 1: T`ım ∂θ ∂lnL B ’ u´’ oc 2: Gi ’ai ph ’ u ’ ong tr`ınh (Ph ’u ’ ong tr`ınh h ’o ∂θ . p l´y)
Gi ’a s ’’u ph ’u ’ong tr`ınh c´o nghiˆe.m l`a θ0 = ˆ θ(x1, x2, . . . , xn) ∂2lnL B ’ u´’ oc 3: T`ım ¯ da.o h`am c ´ ˆap hai ∂θ ∂2lnL N ´ ˆeu ta . i θ0 m`a < 0 th`ı lnL ¯ da ∂θ . t c ’
u.c ¯da.i. Khi ¯d´o θ0 = ˆθ(x1, x2, . . . , xn) l`a ’u´’oc l ’ u ’
o.ng ¯di ’ˆem h ’o.p l´y t ´ ˆoi ¯ da c’ua θ. CuuDuongThanCong.com
https://fb.com/tailieudientucntt 2. Ph ’ u ’ ong ph´ ap kho ’ ang tin cˆ ay 73 2. PH ’ U ’ ONG PH ´ AP KHO ’ ANG TIN C ˆ A . Y 2.1 Mˆ o t ’a ph ’ u ’ ong ph´ ap Gi ’a s ’’ u t ’ˆong th ’ ˆe c´o tham s ´ ˆo θ ch ’ ua bi ´
ˆet. Ta t`ım kho ’ang (θ1, θ2) ch´’ ua θ sao cho
P (θ1 < θ < θ2) = 1 − α cho tr ’ u´’ oc. T`’ u ¯ da.i l ’ u ’o.ng ng ˜ ˆau nhiˆen g ´ ˆoc X lˆa.p m ˜ ˆau ng ˜
ˆau nhiˆen WX = (X1, X2, . . . , Xn). Cho.n th ´ ˆong kˆe ˆ θ = ˆ
θ(X1, X2, . . . , Xn) c´o phˆan ph ´ ˆoi x´ac su ´ ˆat x´ac ¯ di.nh d`u ch ’ua bi ´ ˆet θ. V´’
oi α1 kh´a b´e (α1 < α) ta t`ım ¯ d ’
u ’o.c phˆan vi. θα c’ua ˆθ (t´’uc l`a P (ˆ θ < θ ) = α 1 α1 1). V´’
oi α2 m`a α1 + α2 = α kh´a b´e (th ’u`’ ong l ´
ˆay α ≤ 0, 05) ta t`ım ¯d ’ u ’o.c phˆan vi. θ1 c ’ua −α2
ˆθ (t´’uc l`a P (ˆθ < θ1 ) = 1 −α − α 2 2). Khi ¯ d´ o P (θα ≤ ˆ θ ≤ θ ) = P (ˆ θ < θ
) − P (ˆθ < θ ) = 1 − α2 − α ∗ 1 1−α2 1−α2 α1 1 = 1 − α ( ) T`’ u (*) ta gi ’ai ra ¯ d ’
u ’o.c θ. Khi ¯d´o (*) ¯d ’u ’o.c ¯d ’ua v ` ˆe da.ng P (ˆ
θ1 < θ < ˆθ2) = 1 − α. V`ı x´ac su ´ ˆat 1 − α g ` ˆan b`˘ ang 1, nˆen bi ´ ˆen c ´ ˆo (ˆ θ1 < θ < ˆθ2) h ` ˆau nh ’u x ’ ay ra. Th ’u.c hiˆe.n mˆo.t ph´ep th (x1, x2, . . . , xn). T`’ u m ˜
ˆau cu. th ’ˆe n`ay ta t´ınh ¯d ’u ’o.c gi´a tri. θ1 = ˆθ1(x1, x2, . . . , xn), θ2 = ˆθ2(x1, x2, . . . , xn).
Vˆa.y v´’oi 1 − α cho tr ’u´’oc, qua m ˜
ˆau cu. th ’ˆe wx ta t`ım ¯d ’u ’o.c kho ’ang (θ1, θ2) ch´’ua θ sao
cho P (θ1 < θ < θ2) = 1 − α.
• Kho ’ang (θ1, θ2) ¯d ’u ’o.c go.i l`a kho ’ang tin cˆa.y.
• 1 − α ¯d ’u ’o.c go.i l`a ¯dˆo. tin cˆa.y c’ua ’u´’oc l ’u ’o.ng. • |θ2 − θ1| ¯d ’
u ’o.c go.i l`a ¯dˆo. d`ai kho ’ang tin cˆa.y. 2.2 ’ U´’ oc l ’u ’ o.ng trung b`ınh Gi ’a s ’’ u t ng (m1, m2) ch´’ua
m sao cho P (m1 < m < m2) = 1 − α, v´’
oi 1 − α l`a ¯dˆo. tin cˆa.y cho tr ’u´’oc. i) Tr ’ u`’ ong h ’ o.p 1 ( Bi ´ ˆet V ar(X) = σ2
n ≥ 30 ho˘a.c (n < 30 nh ’ung X c´o phˆan ph ´ ˆoi chu ’ˆan) Cho.n th ´ ˆong kˆe √ (X − m) n U = (4.4) σ Ta th ´ ˆay U ∈ N(0, 1). CuuDuongThanCong.com
https://fb.com/tailieudientucntt 74 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ ong ng ˜ ˆ au nhiˆ en
Cho.n c˘a.p α1 v`a α2 sao cho α1 + α2 = α v`a t`ım c´ac phˆan vi. P (U < uα ) = α1, P (U < u ) = 1 − α 1 α2 2
Do phˆan vi. chu ’ˆan c´o t´ınh ch ´ˆat uα = −u nˆen 1 1−α1 P (−u1 < U < u ) = 1 −α − α (4.5) 1 1−α2 D ’
u.a v`ao (4.4) v`a gi ’ai hˆe. b ´ ˆat ph ’u ’ ong tr`ınh trong (4.5) ta ¯ d ’u ’ o.c σ σ X − √ u < m < X + √ u n 1−α2 n 1−α1 D ’ ¯ ˆe ¯ d ’ u ’
o.c kho ’ang tin cˆa.y ¯d ´
ˆoi x´’ung ta cho.n α1 = α2 = α v`a ¯d˘a th`ı 2 . t γ = 1 − α2 σ σ X − √ u √ u n γ < m < X + n γ T´om la . i, ta t`ım ¯
d ’u ’o.c kho ’ang tin cˆa.y (x − ε, x + ε), trong ¯d´o
* x l`a trung b`ınh c’ua m ˜ ˆau ng ˜ ˆau nhiˆen. σ * ε = uγ√ (¯ dˆo n . ch´ınh x´ ac) v´’
oi u l`a phˆan vi. chu ’ˆan m´’ uc γ = 1 − α • V´ı du. 2 Kh ´ ˆ oi l ’
u ’o.ng s ’an ph ’ˆam l`a ¯da.i l ’u ’ o.ng ng ˜ˆ au nhiˆen X c´ o phˆan ph ´ ˆ oi chu ’ ˆ an v´’ oi ¯ dˆ o.
lˆe.ch tiˆeu chu ’ˆan σ = 1. Cˆan th ’’u 25 s ’an ph ’ˆam ta thu ¯d ’u ’o.c k ´ˆet qu ’a sau X (kh ´ ˆ oi l ’u ’ o.ng) 18 19 20 21 ni (s ´ ˆ o l ’ u ’ o.ng 3 5 15 2 H˜ ay ’ u´’ oc l ’ u ’ o.ng trung b`ınh kh ´ ˆ
oi l ’u ’o.ng c’ua s ’an ph ’ ˆ am v´’ oi ¯ dˆ o. tin cˆa.y 95 %. Gi ’ ai xi ni xini 18 3 54 19 5 95 20 15 300 25 491 Ta c´o x = 491 = 19, 64kg. 25 D
¯ ˆo. tin cˆa.y 1 − α = 0, 95 =⇒ α = 0, 025 =⇒
γ = 1 − α = 0, 975 Ta t`ım 2 ¯
d ’u ’o.c phˆan vi. chu ’ˆan uγ = u0,975 = 1, 96. Do ¯d´o 1 1 ε = u0,975 √ = 1, 96. = 0.39 25 5
x1 = x − ε = 19, 6 − 0, 39 = 19, 25
x2 = x + ε = 19, 6 + 0, 39 = 20, 03
Vˆa.y kho ’ang tin cˆa.y l`a (19, 25; 20, 03). CuuDuongThanCong.com
https://fb.com/tailieudientucntt 2. Ph ’ u ’ ong ph´ ap kho ’ ang tin cˆ ay 75 ii) Tr ’ u`’ ong h ’ o.p 2 ( σ2 ch ’ ua bi ´ ˆet n ≥ 30 Tr ’ u`’
ong h ’o.p n`ay k´ıch th ’ u´’ oc m ˜ ˆau l´’
on (n ≥ 30) c´o th ’ˆe d`ung ’u´’ oc l ’ u ’o.ng c’ua S′2 thay cho σ2 ch ’ ua bi ´
ˆet (E(S′2) = σ2), ta t`ım ¯
d ’u ’o.c kho ’ang tin cˆa.y (x − ε, x + ε) trong ¯d´o
* x l`a trung b`ınh c’ua m ˜ ˆau cu. th ’ˆe. s′ * ε = uγ√ v´’ oi u v`a s′ l` a ¯ dˆo n γ l`
a phˆan vi. chu ’ˆan m´’ uc γ = 1 − α2 . lˆe.ch tiˆeu chu ’ˆan ¯ di ` ˆeu ch ’inh c’ua m ˜ ˆau cu. th ’ˆe.
• V´ı du. 3 Ng ’u`’oi ta ti ´ ˆen h`anh nghiˆ en c´’ uu ’’ o mˆ o.t tr ’u`’ ong ¯ da . i ho.c xem trong mˆ o.t th´ang trung b`ınh mˆ o.t sinh viˆen tiˆeu h ´ ˆet bao nhiˆ eu ti `
ˆen go.i ¯diˆe.n thoa.i. L ´ˆay mˆo.t m ˜ˆau ng ˜ ˆ au nhiˆen g ` ˆ om 59 sinh viˆ en thu ¯ d ’u ’o.c k ´ ˆet qu ’a sau: 14 18 22 30 36 28 42 79 36 52 15 47 95 16
27 111 37 63 127 23 31 70 27 11 5 29 73 26 15 26 31 57 40 18 85 28 32 22 36 60 41 35 26 20 58 33 23 35 H˜ ay ’ u ´’ oc l ’
u ’o.ng kho ’ang tin cˆa.y 95% cho s ´ ˆ o ti ` ˆen go. i ¯diˆe . n thoa.i trung b`ınh h` ang th´ ang c ’ ua mˆ o.t sinh viˆen. Gi ’ ai T`’ u c´ac s ´
ˆo liˆe.u ¯d˜a cho, ta c´o n = 59; x = 41, 05; s′ = 27, 99 D
¯ ˆo. tin cˆa.y 1 − α = 0, 95
=⇒ 1 − α = 0, 975. Tra b ’ang phˆan vi 2 . chu ’ ˆan ta c´o u0,975 = 1, 96. Do ¯ d´ o ε
x − 7, 13 = 33, 92; x + 7, 13 = 48, 18
Vˆa.y kho ’ang tin cˆa.y c’ua ’u´’ oc l ’u ’ o.ng l`a (33,92; 48,18). iii) Tr ’ u`’ ong h ’ o.p 3 ( σ2 ch ’ ua bi ´ ˆet
n < 30 v`a X c´o phˆan ph ´ ˆoi chu ’ ˆan √ (X − m) n Cho.n th ´ ˆong kˆe T = ∈ T (n − 1). S′ CuuDuongThanCong.com
https://fb.com/tailieudientucntt 76 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ ong ng ˜ ˆ au nhiˆ en S′ Ta t`ım ¯ d ’ u ’
o.c kho ’ang tin cˆa.y (x − ε, x + ε) trong ¯d´o ε = tγ √n v ´’
oi tγ l`a phˆan vi. Student m´’uc γ = 1 − α v´’oi n − 1 bˆa 2 . c t ’u. do v`a s′ l`a ¯ dˆ o. lˆe.ch tiˆeu chu ’ ˆan ¯ di ` ˆeu ch ’inh c’ua m ˜ ˆau cu. th ’ˆe.
• V´ı du. 4 Dioxide Sulfur v`a Oxide Nitrogen l`a c´ac h´oa ch´ ˆ at ¯ d ’ u ’ o.c khai th´ac t`’ u l` ong ¯ d ´ ˆ at. C´ac ch ´ ˆ at n`ay ¯ d ’ u ’o.c gi´o mang ¯di r ´ ˆ at xa, k ´ ˆet h ’
o.p th`anh acid v`a r ’oi tr ’’ o la.i m˘a.t ¯d´ ˆ at ta.o th` anh m ’ ua acid. Ng ’u`’ oi ta ¯ do ¯ dˆ o . ¯ dˆ
a.m ¯d˘a.c c’ua Dioxide Sulfur (µg/m3) trong khu r`’ung
Bavarian c’ua n ’u´’oc D ¯ ´’ uc. S ´ ˆ o liˆe . u cho b ’’ oi b ’ang d ’ u´’ oi ¯ dˆ ay: 52,7 43,9 41,7 71,5 47,6 55,1 62,2 56,5 33,4 61,8 54,3 50,0 45,3 63,4 53,9 65,5 66,6 70,0 52,4 38,6 46,1 44,4 60,7 56,4 H˜ ay ’ u´’ oc l ’ u ’
o.ng ¯dˆo. ¯dˆa.m ¯d˘a.c trung b`ınh c’ua Dioxide Sulsfur v´’ oi ¯ dˆ o. tin cˆa.y 95%. Gi ’ ai Ta t´ınh ¯ d ’ u ’ o.c D ¯ ˆo. tin cˆa . y 1 − α = 0, 95 =⇒ α = 0, 025 =⇒
1 − α = 0, 975. Tra b ’ang phˆan 2
vi. student m´’uc 0,975 bˆa.c n − 1 = 23 ta ¯d ’u ’ o.c t23;0,975 = 2, 069. Do ¯ d´ o ε = 2, 06910,07 √ = 4, 25. 24
x − ε = 53, 92 − 4, 25 = 49, 67, x + ε = 53, 92 + 4, 25 = 58, 17
Vˆa.y kho ’ang tin cˆa.y l`a (49,67; 58,17). Ng ’u`’oi ta bi ´ ˆet ¯
d ’u ’o.c n ´ˆeu ¯dˆo. ¯dˆa.m ¯d˘a.c c’ua Dioxide Sulfur trong mˆo.t khu v ’u.c l´’on h ’on 20µg/m3 th`ı mˆ oi tr ’ u`’ ong trong khu v ’
u.c bi. ph´a hoa.i b’oi m ’ua acid. Qua v´ı du. n`ay c´ac
nh`a khoa ho.c ¯d˜a t`ım ra ¯d ’u ’o.c nguyˆen nhˆan r`’ung Bavarian bi. ph´a hoa.i tr ` ˆam tro.ng n˘am 1983 l`a do m ’ ua acid . ⊙ Ch´ u ´ y (X´ ac ¯ d. N ´ ˆeu mu ´ ˆon ¯ dˆ
o. tin cˆa.y 1 − α v`a ¯dˆo. ch´ınh x´ac ε ¯da.t ’o m´’uc cho tr ’u´’ oc th`ı ta c ` ˆan x´ac ¯ di.nh k´ıch th ’u´’ oc n c ’ua m ˜ ˆau. i) Tr ’ u`’ ong h ’ o.p bi ´ ˆet V ar(X) = σ2: T`’u cˆong th´’ uc ε = u2 σ ta suy ra γ √n σ2 n = u2γ ε2 ii) Tr ’ u`’ ong h ’o.p ch ’ua bi ´ ˆet σ2: CuuDuongThanCong.com
https://fb.com/tailieudientucntt 2. Ph ’ u ’ ong ph´ ap kho ’ ang tin cˆ ay 77 D ’ u.a v`a m ˜ˆau cu. th ’ ˆe ¯ d˜ a cho (n ´ ˆeu ch ’ ua c´o m ˜ ˆau th`ı ta c´o th ’ ˆe ti ´ ˆen h`anh l ´ ˆay m ˜ ˆau l ` ˆan ¯ d ` ˆau v´’ oi k´ıch th ’ u´’
oc n1 ≥ 30) ¯d ’ˆe t´ınh s′2. T`’u ¯d´o x´ac ¯di.nh ¯d ’u ’o.c s′2 n = u2γ ε2 K´ıch th ’u´’ oc m ˜ ˆau n ph ’ ai l`a s ´ ˆo nguyˆen. N ´
ˆeu khi t´ınh n theo c´ac cˆong th´’ uc trˆen ¯ d ’ u ’o.c
gi´a tri. khˆong nguyˆen th`ı ta l ´ ˆay ph `
ˆan nguyˆen c’ua n´o cˆo.ng thˆem v´’ oi 1. " σ2 # " s′2 # T´’ uc l`a n = u2 + 1 ho˘ a + 1. γ u2 ε2 . c n = γ ε2 2.3 ’ U´’ oc l ’u ’ o.ng t’y lˆe. Gi ’a s ’’ u t ’ ˆong th ’ˆe ¯ d ’
u ’o.c chia ra l`am hai loa.i ph ` ˆan t ’’ u. T ’y lˆe. ph ` ˆan t ’’ u c´ o t´ınh ch ´ ˆat A l`a p ch ’ ua bi ´ ˆet. ’ U´’
oc l ’u ’o.ng t ’y lˆe. l`a ch ’i ra kho ’ang (f1, f2) ch´’
ua p sao cho P (f1 < p < f2) = 1−α. D ’
¯ ˆe cho viˆe.c gi ’ai b`ai to´an ¯ d ’u ’
o.c ¯d ’on gi ’an, ta cho.n m ˜ˆau v´’oi k´ıch th ’u´’oc n kh´a l´’on. Go . i X l`a s ´ ˆo ph `
ˆan t ’’u c´o t´ınh ch ´ ˆat A khi l ´ ˆay ng ˜ ˆau nhiˆen mˆo.t ph ` ˆan t ’’ u t`’ u t ’ ˆong th ’ ˆe th`ı X l`a ¯ da . i l ’u ’o. X 0 1 P 1-p p Go . i Xi (i = 1, n) l`a s ´ ˆo ph ` ˆan t ’’ u c´o t´ınh ch ´ ˆat A trong l ` ˆan l ´ ˆay th´’ u i. 1 n Ta c´o X = X X n i ch´ ınh l`a t ` ˆan su ´ ˆat ’ u´’ oc l ’u ’
o.ng ¯di ’ˆem c’ua p = E(X). M˘a.t kh´ac, theo i=1 p(1 − p) ch ’ u ’ ong 2, nX c´o phˆan ph ´
ˆoi nhi. th´’uc B(n, p). T`’ u ¯ d´ o E(X) = p v`a V ar(X) = . n √ (f − p) n Cho.n th ´ ˆong kˆe U = , trong ¯ d´ o f l`a t ’y lˆe q . c´ac ph ` ˆan t ’’ u c’ua m ˜ ˆau c´o t´ınh p(1 − p) ch ´ ˆat A. Khi n kh´a l´’
on th`ı U ∈ N(0, 1). Gi ’ai quy ´ ˆet b`ai to´an t ’u ’ ong t ’u. nh ’ u ’’ o ’u´’ oc l ’ u ’ o.ng trung b`ınh, thay X b ’’
oi f , σ2 b ’’oi f(1 − f)... ta ¯d ’ u ’o.c s s f (1 − f) f (1 − f) f − uγ < p < f + u n γ n
T´om la.i, ta x´ac ¯di.nh ¯d ’ u ’
o.c kho ’ang tin cˆa.y (f1, f2) = (f − ε, f + ε), trong ¯d´o f l`a t ’y lˆe. c´ac ph ` ˆan t ’’ u c’ua m ˜ ˆau c´o t´ınh ch ´ ˆat A s f(1 − f) ε = uγ (¯ dˆo n . ch´ınh x´ ac) (4.6) CuuDuongThanCong.com
https://fb.com/tailieudientucntt 78 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ ong ng ˜ ˆ au nhiˆ en v´’
oi uγ l`a phˆan vi. chu ’ˆan m´’ uc 1 − α. 2 T`’u (4.6) ta c´o √ ε n uγ = qf(1 − f) f (1 − f) n = u21 α − 2 ε2 ⊙ Ch´ u ´ y Ta c´o th ’
ˆe t`ım kho ’ang tin cˆa.y c’ua p b`˘ang c´ach kh´ac nh ’u sau:
T`’u kho ’ang tin cˆa.y c’ua p:  s s   s  p(1 − p) p(1 − p) p(1 − p) f − uγ < p < f + u  hay |f − p| < u n γ  n γ n Gi ’ai b ´
ˆat ph ’u ’ong tr`ınhn`ay ta t`ım ¯ d ’ u ’o.c nf + 0, 5u2γ nf(1 − f) p1 = n + u2γ n + u2γ Khi ¯ d´
o (p1, p2) l`a kho ’ang tin cˆa.y c’ua p v´’ oi ¯ dˆ o. tin cˆa.y 1 − α.
• V´ı du. 5 Ki ’ˆem tra 100 s ’an ph ’ˆam trong lˆo h`ang th ´ ˆ ay c´ o 20 ph ´ ˆe ph ’ ˆ am. i) H˜ ay ’ u´’ oc l ’u ’ o.ng t ’y lˆe. ph ´ ˆe ph ’ ˆ am c´o ¯ dˆ o. tin cˆa.y 99 %. ii) N ´ ˆeu ¯ dˆ
o. ch´ınh x´ac ε = 0, 04 th`ı ¯ dˆ o. tin cˆa.y c’ua ’u´’ oc l ’u ’ o.ng l`a bao nhiˆeu? iii) N ´ ˆeu mu ´ ˆ on c´o ¯
dˆo. tin cˆa.y 99% v`a ¯dˆo. ch´ınh x´ac 0,04 th`ı ph ’ai ki ’ˆem tra bao nhiˆeu s ’ an ph ’ ˆ am? Gi ’ ai i) n = 100, f 100 √ X´et U = (f−p) 100 √ ∈ N(0, 1). pq Ta c´o α 1 − α = 0, 99 =⇒ α = 0, 01 =⇒ 1 − = 1 − 0, 005 = 0, 995 2 √0,2.0,8 0, 4 ε = u0,995 √ = 2, 58. = 0, 1 100 10
f1 = f − ε = 0, 2 − 0, 1 = 0, 1
f2 = f + ε = 0, 2 + 0, 1 = 0, 3 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 2. Ph ’ u ’ ong ph´ ap kho ’ ang tin cˆ ay 79
Vˆa.y kho ’ang tin cˆa.y l`a (0, 1; 0, 3). √ 0, 04. 100 ii) u1 α = − √ = 1 2 0, 2.0, 8 T`ım ¯ d ’ u ’ o.c α 1 − = 0, 84 =⇒ 1 − α = 0, 68 2
Vˆa.y ¯dˆo. tin cˆa.y l`a 68%. iii)1−α = 0, 99 =⇒ α = 0, 01 =⇒
1 − α = 0, 995. T`ım ¯d ’u ’ o 2 . c u0,995 = 2, 576. Do ¯ d´ o (2, 576)2.0, 2.0, 8 n ≈ = 6, 635.100 = 663, 5 (0, 04)2 Vˆa.y n = 664 2.4 ’ U´’ oc l ’u ’ o.ng ph ’u ’ong sai Gi ’a s ’’u ¯
da.i l ’u ’o.ng ng ˜ˆau nhiˆen X c´o phˆan ph ´ˆoi chu ’ ˆan v´’ oi ph ’u ’ ong sai V ar(X) = σ2 ch ’ ua bi ´ ˆet. Cho 0 < α < 0.05. ’ U´’ oc l ’
u ’o.ng ph ’u ’ong sai V ar(X) l`a ch ’i ra kho ’ang (σ2, σ2 1 2 ) ch´’ ua σ2 sao T`’ u X lˆa.p m ˜ ˆau ng ˜
ˆau nhiˆen WX = (X1, X2, . . . , Xn) v`a x´et c´ac tr ’u`’ ong h ’ o.p a) Bi ´ ˆ et E(X) = µ. n (X 2 i − µ) Cho X . n th ´ˆong kˆe χ2 = σ2 i=1 Ta th ´ ˆay χ2 c´ o phˆan ph ´ ˆoi ”khi-b`ınh ph ’ u ’ong” v´’ oi n bˆa.c t ’ u. do.
Cho.n α1 v`a α2 kh´a b´e sao cho α1 + α2 = α. Ta t`ım ¯d ’ u ’
o.c c´ac phˆan vi. χ2 v`a χ2 α1 1−α2 th ’oa m˜ an P (χ2 ) = 1 − α (4.7) α < χ2 < χ2 1 1−α2
Thay biˆeu th ’uc c’ua χ v`ao (4.7) v`a gi ’ai ra ta ¯ d ’ u ’o.c P(X P 2 i − µ)2 (Xi − µ) < σ2 < χ2 χ2 1−α2 α1 Cho.n α1 = α2 = α th`ı 2 P(X P 2 i − µ)2 (Xi − µ) < σ2 < (4.8) χ2 χ2 1 α α − 2 2 V´’ oi m ˜
ˆau cu. th ’ˆe wx = (x1, x2, . . . , xn), t´ınh c´ac t ’ˆong P(xi − µ)2 v`a d ’u.a v`ao (4.8) ta t`ım ¯ d ’ u ’
o.c kho ’ang tin cˆa.y (σ2, σ2 1 2 ), trong ¯ d´ o CuuDuongThanCong.com
https://fb.com/tailieudientucntt 80 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ ong ng ˜ ˆ au nhiˆ en P(x σ2 i − µ)2ni 1 = χ2n,1 α −2 P(x σ2 i − µ)2ni 2 = χ2n,α2 v´’ oi χ2 l`a phˆan vi v´’ oi n bˆa n,1 α − . ”khi−b`ınh ph ’u ’ ong” m´’ uc 1 − α2 . c t ’ u. do. 2 χ2 l`a phˆan vi n, α . ”khi−b`ınh ph ’ u ’ong” m´’uc α v´’ oi n bˆa.c t ’u. do. 2 2 b) Ch ’ ua bi ´ ˆ et E(X). (n − 1)S2 Cho.n th ´ ˆong kˆe χ2 = σ2 Th ´ ˆong kˆe n` ay c´o phˆan ph ´ ˆoi ”khi−b`ınh ph ’ u ’ong v´’
oi n − 1 bˆa.c t ’u. do. T ’u ’ong t ’u. nh ’u trˆen ta t`ım ¯ d ’
u ’o.c kho ’ang tin cˆa.y (σ2, σ2 1 2 ) v ´’ oi (n − 1)s2 (n − 1)s2 σ2 ; 1 = σ2 χ2 2 = χ2 n α −1,1− n−1, α
• V´ı du. 6 M´’uc hao ph´ı nhiˆen liˆe.u cho mˆo.t ¯d ’on vi. s ’an ph ’ˆam l`a ¯da.i l ’u ’o.ng ng ˜ ˆ au nhiˆen c´ o phˆan ph ´ ˆ oi chu ’ˆ
an. X´et trˆen 25 s ’an ph ’ ˆ am ta thu ¯ d ’u ’ o.c k ´ ˆet qu ’a sau: X 19,5 20 20,5 ni 5 18 2 H˜ ay ’ u´’ oc l ’ u ’ o.ng ph ’u ’ ong sai v´’ oi ¯ dˆ
o. tin cˆa.y 90 % trong c´ac tr ’u`’ong h ’o.p sau: i) Bi ´ ˆet k`y vo.ng µ = 20g. ii) Ch ’ ua bi ´ ˆet k`y vo . ng. Gi ’ ai i) Bi ´ ˆet µ = 20g. i i i i i i 19,5 5 -0,5 0,25 1,25 20 18 0 0 0 20,5 2 0,5 0,25 0,5 P n=25 1,75 α α D
¯ ˆo. tin cˆa.y 1 − α = 0, 9 =⇒ α = 0, 1 =⇒ = 0, 05 =⇒ 1 − = 0.95 2 2 Tra b ’
ang phˆan vi. χ2 v´’oi n = 25 bˆa.c t ’u. do ta ¯d ’u ’o.c χ2 = 37, 7 25;0 = 14, 6; χ2 ,05 25;0,95 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. B` ai t.ˆ ap 81 Do ¯ d´ o P(x 1, 75 σ2 i − 20)2ni = 1 = = 0, 046 χ225;0,95 37, 7 P(x 1, 75 σ2 i − 20)2ni 2 = = = 0, 12 χ2 14, 6 25;0,05
Vˆa.y kho ’ang tin cˆa.y l`a (0, 046; 0, 12). ii) Khi ch ’ ua bi ´
ˆet k`y vo.ng ta t`ım s′2 = 0, 0692.
Tra b ’ang phˆan vi. khi b`ınh ph ’u ’ ong v´’ oi bˆa.c t ’ u. do n − 1 = 24. χ20 = 13, 85; χ2 ,05 , 0 = 36 4 ,95 v`a t´ınh 24s′2 24 × 0, 0692 σ21 = = = 0, 046 χ2 36, 4 0,95 24s′2 24 × 0, 0692 σ2 = 2 = = 0, 12 χ20,05 13, 85 Vˆa.y kho 3. B ` AI T ˆ A . P 1. Mˆo.t m ˜
ˆau c´ac tro.ng l ’u ’o.ng t ’u ’ong ´’ung l`a 8,3; 10,6; 9,7; 8,8; 10,2 v`a 9,4 kg. X´ac ¯di.nh ’u´’ oc l ’ u ’ o.ng khˆong chˆe.ch c’ua a) trung b`ınh c’ua t ’ ˆong th ’ˆe, b) ph ’ u ’
ong sai c’ua t ’ˆong th ’ ˆe. 2. Mˆo.t m ˜ ˆau ¯ dˆ
o. ¯do 5 ¯d ’u`’ong k´ınh c’ua qu ’a c ` ˆau l` a 6,33; 6,37; 6,36; 6,32 v` a 6,37cm. X´ ac ¯ di.nh ’u´’ oc l ’u ’
o.ng khˆong chˆe.ch c’ua trung b`ınh v`a ph ’u ’ong sai c’ua ¯d ’u`’ong k´ınh qu ’a c ` ˆau. 3. D ’ ¯ ˆe x´ac ˆ th ´ ˆong, ng ’u`’ oi ta ti ´ ˆen h`anh 5 l ` ˆan cˆan ¯ dˆ
o.c lˆa.p (c`ung mˆo.t vˆa.t), k ´ ˆet qu ’a nh ’ u sau: 94, 1 94, 8 96, 0 95, 2 kg X´ac ¯ di.nh ’u´’ oc l ’
u ’o.ng khˆong chˆe.ch c’ua ph ’ u ’ong sai s ´ ˆo ¯ do trong hai tr ’u`’ ong h ’ o.p: a) bi ´ ˆet kh ´ ˆoi l ’
u ’o.ng vˆa.t cˆan l`a 95kg; b) khˆong bi ´ ˆet kh ´ ˆoi l ’ u ’o.ng vˆa.t cˆan. 4. D ¯ ’ u`’ ong k´ınh c’ua mˆo.t m ˜ ˆau ng ˜
ˆau nhiˆen c’ua 200 viˆen bi ¯ d ’u ’
o.c s ’an xu ´ˆat b ’oi mˆo.t m´ay trong mˆo.t tu `
ˆan c´o trung b`ınh 20,9mm v` a ¯
dˆo. lˆe.ch tiˆeu chu ’ˆan 1,07mm. ’ U´’ oc l ’u ’o.ng trung b`ınh ¯ d ’ u`’
ong k´ınh c’ua viˆen bi v´’ oi ¯ dˆ
o. tin cˆa.y (a) 95%, (b) 99%. CuuDuongThanCong.com
https://fb.com/tailieudientucntt 82 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ ong ng ˜ ˆ au nhiˆ en 5. D ’ ¯ ˆe kh ’ao s´at s´’ uc b `
ˆen chi.u l ’u.c c’ua mˆo.t loa.i ´
ˆong cˆong nghiˆe.p ng ’u`’oi ta ti ´ ˆen h`anh ¯ do 9 ´ ˆong v`a thu ¯ d ’u ’ o.c c´ac s ´ ˆo liˆe.u sau
4500 6500 5000 5200 4800 4900 5125 6200 5375 T`’ u kinh nghiˆe.m ngh ` ˆe nghiˆe.p ng ’ u`’ oi ta bi ´ ˆet r` ˘ang s´’uc b ` ˆen ¯ d´o c´o phˆan ph ´ ˆoi chu ’ ˆan v ´’ oi ¯ dˆ o. lˆe.ch chu ’ ˆan σ = 300. X´ ac ¯
di.nh kho ’ang tin cˆa.y 95% cho s´’uc b ` ˆen trung b`ınh c ’ua loa . i ´ ˆong trˆen.
6. Ta.i mˆo.t v`ung r`’ung nguyˆen sinh, ng ’u`’oi ta ¯deo v`ong cho 1000 con chim. Sau mˆo.t th`’oi gian, b´˘ at la.i 200 con th`ı th ´ ˆay c´o 40 con c´o ¯ deo v` ong. Th ’’ u ’u´’ oc l ’u ’ o.ng s ´ ˆo chim trong v` ung r`’ ung ¯ d´ o v´’oi ¯ dˆ o. tin cˆa.y 99%. 7. Bi ´ ˆet t ’y lˆe. n ’ay m `
ˆam c’ua mˆo.t loa.i ha.t gi ´ ˆong l`a 0,9. V´’oi ¯ dˆ o. tin cˆa.y 0,95, n ´ ˆeu ta mu ´ ˆon ¯ dˆ
o. d`ai kho ’ang tin cˆa.y c’ua t ’y lˆe. n ’ay m ` ˆam khˆong v ’ u ’ o.t qu´a 0,02 th`ı c ` ˆan ph ’ai gieo bao nhiˆeu ha.t? 8. K ´ ˆet qu ’a quan s´at v ` ˆe h`am l ’ u ’
o.ng vitamine C c’ua mˆo.t loa.i tr´ai cˆay cho ’’o b ’ang sau: ´ 7 − 8 10 8 − 9 20 9 − 10 35 10 − 11 25 11 − 12 5 a) H˜ ay ’u´’ oc l ’u ’
o.ng h`am l ’u ’o.ng vitamine C trung b`ınh trong mˆo.t tr´ai v´’oi ¯dˆo. tin cˆa.y 95%. b) Qui ’ u´’ oc nh˜’
ung tr´ai c´o h`am l ’u ’
o.ng vitamine C trˆen 10% l`a tr´ai loa.i A. ’ U´’ oc l ’u ’o.ng
t ’y lˆe. tr´ai loa.i A v´’ oi ¯ dˆ o. tin cˆa.y 90%. c) Mu ´ ˆon ¯ dˆ
o. ch´ınh x´ac khi ’u´’oc l ’u ’o.ng h`am l ’u ’o.ng vitamine C trung b`ınh l`a 0,1 v`a ¯ dˆ
o. ch´ınh x´ac khi ’u´’oc l ’u ’
o.ng t ’y lˆe. tr´ai loa.i A l`a 5% v´’oi c`ung ¯dˆo. tin cˆa.y 95% th`ı c ` ˆan quan s´at thˆe 9. D ¯ o ¯ d ’u`’
ong k´ınh c’ua 100 chi ti ´
ˆet m´ay do mˆo.t phˆan x ’u ’ong s ’an xu ´ ˆat, ta ¯ d ’u ’o.c k ´ ˆet qu ’a cho ’o b ’ang sau: D ¯ ’ u`’ ong k´ınh (mm) S ´ ˆ o chi ti ´ ˆet m´ ay 9,85 8 9,90 12 9,95 20 10,00 30 10,05 14 10,10 10 10,15 6 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 3. B` ai t .ˆ ap 83 Theo qui ¯
di.nh, nh˜’ung chi ti ´ˆet c´o ¯d ’u`’ong k´ınh t`’ u 9, 9mm ¯ d ´ ˆen 10, 1mm l` a nh˜’ung chi ti ´ ˆet ¯ da.t tiˆeu chu ’ ˆan k˜ y thuˆ a.t. a) ’ U´’ oc l ’
u ’o.ng t ’y lˆe. v`a ’u´’ oc l ’
u ’o.ng trung b`ınh ¯d ’u`’
ong k´ınh c’ua nh˜’ung chi ti ´ ˆet ¯ da.t tiˆeu chu ’ ˆan v´’ oi c` ung ¯ dˆo. tin cˆa.y 95%? b) D ’ ¯ ˆe ¯ dˆ
o. ch´ınh x´ac khi ’u´’ oc l ’
u ’o.ng ¯d ’u`’ong k´ınh trung b`ınh c’ua nh˜’ung chi ti ´ ˆet ¯ da.t tiˆeu chu ’ ˆan l`a 0, 02mm v` a ¯
dˆo. ch´ınh x´ac khi ’u´’oc l ’
u ’o.ng t ’y lˆe. chi ti ´ ˆet ¯ da.t tiˆeu chu ’ˆan l`a 5% v´’ oi c` ung ¯ dˆo. tin cˆa.y 99% th`ı c ` ˆan ¯ do thˆem ´ıt nh ´ ˆat bao nhiˆeu chi ti ´ ˆet n˜’ua? 10. D
¯ ˆo. d`ai c’ua b ’an kim loa.i tuˆan theo luˆa.t chu ’ˆan. D ¯ o 10 b ’an kim loa.i ¯ d´o ta thu ¯ d ’u ’o.c s ´ ˆo liˆe.u sau:
4, 1 3, 9 4, 7 4, 4 4, 0 3, 8 4, 4 4, 2 4, 4 5, 0 H˜ ay x´ ac ¯ di.nh
a) Kho ’ang tin cˆa.y 90% cho ¯dˆo. d`ai trung b`ınh trˆen;
b) Kho ’ang tin cˆajy 95% cho ph ’ u ’ ong sai c’ua ¯ dˆ o. d`ai ¯d´o. 11. Ng ’u`’ oi ta ¯ do chi ` ˆeu sˆau c’ua bi ’ ˆen, sai lˆe.ch ng ˜ ˆau nhiˆen ¯ d ’ u ’o.c gi ’a thi ´ ˆet phˆan ph ´ ˆoi theo qui luˆa. l ` ˆan ¯ d ’ ˆe x´ac ¯ di.nh chi `
ˆeu sˆau cua biˆen v ’oi sai lˆe.ch khˆong qu´a 15m v`a ¯dˆo. tin cˆa.y ¯da.t ¯d ’u ’ o.c 95%? 12. Theo d˜ oi s ´ ˆo h`ang b´an ¯ d ’
u ’o.c trong mˆo.t ng`ay ’’ o mˆo.t c ’’ ua h`ang, ta ¯ d ’u ’ o.c k ´ˆet qu ’a ghi ’’o b ’ang sau: S ´ ˆ o h` ang b´ an ¯ d ’ u ’ o . c (kg/ng` ay) S ´ ˆ o ng` ay 1900 − 1950 2 1950 − 2000 10 2000 − 2050 8 2050 − 2100 5 H˜ ay ’ u´’ oc l ’u ’
o.ng ph ’u ’ong sai c’ua l ’u ’o.ng h`ang b´an ¯d ’u ’o.c m ˜ ˆoi ng`ay v´’ oi ¯ dˆ o. tin cˆa.y 95%? (cho bi ´ ˆet α1 = α2). • ✷ TR ’ A L `’ OI B ` AI T ˆ A . P 1. a) 9, 5kg, b) 0, 74kg2
2. x = 6, 35cm, s2 = 0, 00055cm2. 3. a) Trung b`ınh kh ´ ˆoi l ’ u ’ o.ng m = 95kg. ’ U´’
oc l ’u ’o.ng khˆong chˆe.ch c’ua ph ’ u ’ong sai l`a 1 n 1 5 X(x X(x 2 i − 95) = 0, 41 n i − m)2 = 5 i=1 i=1 1 n 1 5 b) X = X x X x n i = 5 i = 95, 5 i=1 i=1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt 84 Ch ’ u ’ ong 4 ’ U ´’ oc l ’ u ’ ong tham s ´ ˆ o c ’ua ¯ da . . i l ’ u ’ ong ng ˜ ˆ au nhiˆ en ’ U´’ oc l ’
u ’o.ng khˆong chˆe.ch c’ua ph ’u ’ong sai l`a 1 n 1 5 s2 = X(x X(x 2 i − 95, 5) = 0, 7rf f n − 1 i − X )2 = 4 i=1 i=1
4. (a) 20, 9 ± 0, 148mm, (b) 20, 9 ± 0, 195mm. 5. (5092, 89 ; 5484, 89). 6. 0, 1271 < p < 0, 2729 T ’ ˆong s ´ ˆo chim trong v` ung r`’ ung n`˘am trong kho ’ ang ( 1000 , 1000 ) 0,2729 0,1271 q
7. 2 × 1, 96 0,9×0,1 < 0, 02. Gi ’ai b ´ ˆat ph n > n ’ u ’ ong tr`ınh ta c´o 3457.
8. a) 9, 06; 9, 54), c) 467 tr´ai.
9. a) (0, 792 < p < 0, 928); (9, 982 < m < 10, 006). b) 221.
10. a) (4, 09 ; 4, 49), b) (0, 064 ; 0, 456). 11. 7 l ` ˆan. 12. (1253, 8 < CuuDuongThanCong.com
https://fb.com/tailieudientucntt