Vở bài tập Toán 9 tập 2 phần Đại số

Tài liệu gồm 222 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 2 phần Đại số. Tài liệu giúp bạn ôn tập kiến thức, chuẩn bị tốt kì thi sắp tới. Mời bạn đọc đón xem.

Toaùn 9 Taøi lieäu daïy hoïc
1
Bài 1. PHƯƠNG TRÌNH BC NHT HAI N
A. KIN THC TRNG TÂM
1. Khái niệm phương trình bậc nht hai n
Phương trình bậc nht hai n
x
y
h thc dng
ax by c
, trong đó
,,a b c
các
s thc (
0a
hoc
0b
).
2. Tp nghim và biu din tp nghim của phương trình bc nht hai n
Tp nghim của phương trình bậc nht hai n
Cp s
00
;xy
gi là nghim ca phương trình
ax by c
nếu có đẳng thc
00
ax by c
Ta cũng viết: nghim của phương trình
ax by c
. Vi cách viết này,
cn hiu rng
00
;x x y y
.
Lưu ý: + Đối với phương trình bc nht hai n, khái nim tp nghim khái nim nghim
của phương trình tương đương cũng tương tự như đối với phương trình một n.
+ Các quy tc chuyn vế và quy tắc để biến đổi phương trình bậc nht hai n.
Tng quát: Một phương trình bc nht hai n
(*)ax by c
có vô s nghim.
Điu kin
Dạng phương trình
ax by c
Tp nghim
0
0
a
b
c
by c y
b
;|
c
S x x
b
0
0
a
b
c
ax c x
a
;|
c
S y y
a
0
0
a
b
ac
ax by c y x
bb
;|
ac
S x x x
bb
Biu din tp nghim của phương trình bc nht hai n trong h trc ta độ
Oxy
: Tp nghim
S của phương trình (*) được biu din bởi đường thng
ax by c
hiu
d
. Biu
din tp nghim S trong h trc tọa độ
Oxy
, tc v đường thng
d
trong h trc tọa độ
Oxy
.
Điu kin
Dạng phương trình đưng thng
d
Tính cht của đường thng
d
0
0
a
b
c
by c y
b
Song song hoc trùng vi trc hoành, vuông
góc vi trc tung.
Chương
3
Toaùn 9 Taøi lieäu daïy hoïc
2
0
0
a
b
c
ax c x
a
Song song hoc trùng vi trc tung, vuông
góc vi trc hoành.
0
0
a
b
ac
ax by c y x
bb
Đồ th ca
d
là đồ th hàm s bc nht
ac
yx
bb
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Nhn biết hàm s bc nht
y ax b
Hàm s bc nht mt n có dng
0y ax b a
.
d 1. Trong các phương trình sau, phương trình nào xác đnh mt hàm s bc nht dng
y ax b
?
a)
2yx
; ĐS: . b)
20yx
; ĐS: .
c)
2yx
; ĐS: . d)
20xy
; ĐS: .
e)
01xy
; ĐS: Không. f)
4 0 12xy
. ĐS: Không.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Kim tra các cp s cho trước có là nghim của phương trình bậc nht hai n không?
Thay giá tr
00
;x x y y
vào phương trình đã cho.
Nếu cp
00
;xy
làm cho đẳng thc
00
ax by c
đúng thì
00
;xy
nghim ca
phương trình
ax by c
và ngược li.
Ví d 2. Cho các cp s
(0;0),(0; 1),(3; 1)
, cp s nào là nghim của phương trình:
a)
2yx
; ĐS:
(0; 0)
. b)
20xy
; ĐS: Không có điểm nào.
c)
01xy
; ĐS:
(0; 1)
. d)
4 0 12xy
. ĐS:
(3; 1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
3
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Tìm mt nghim của phương trình bậc nht hai n
Thay
0
xx
(hoc
0
yy
) để t đó m
0
y
(hoc
0
x
), trong đó
00
;xy
mt hng s c
th.
Ví d 3. Tìm mt nghim của phương trình bậc nht hai ẩn trong các trường hp sau:
a)
2yx
; ĐS:
(0; 0)
. b)
20xy
; ĐS:
(0;2)
.
c)
01xy
; ĐS:
(0; 1)
. d)
4 0 12xy
. ĐS:
(3; 0)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 4: Viết nghim tng quát và v đường thng biu din tp nghim của phương trình
Xem phn kiến thc trng tâm.
Ví d 4. Viết nghim tng quát và v đường thng biu din tp nghim ca mỗi phương trình sau:
a)
2yx
; ĐS:
{( ;2 ) | }x x x
. b)
01xy
; ĐS:
{( ;1) | }xx
.
c)
20xy
; ĐS:
{( ; 2) | }x x x
. d)
4 0 12xy
. ĐS:
{(3; ) | }yy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 5: Tìm điều kin ca tham s để đường thẳng đi qua một điểm cho trước
Thay tọa độ của điểm vào phương trình để tìm giá tr ca tham s tha mãn yêu cu.
Ví d 5. Trong mỗi trường hp sau hãy tìm giá tr ca
m
để:
a) Đim
(1;2)A
thuộc đường thng
35x my
; ĐS:
1m
.
b) Đim
1;3B
thuộc đường thng
57mx y
; ĐS:
8m
.
Toaùn 9 Taøi lieäu daïy hoïc
4
c) Đim
(5;3)C
thuộc đường thng
1mx y m
; ĐS:
1
3
m
.
d) Đim
( 1; 1)D
thuộc đường thng
2
( 1) 0m x y
. ĐS:
0m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 6: V cặp đường thẳng và tìm giao điểm ca chúng
V đồ th tương ng ca các đường thẳng xác định tọa độ giao điểm trong h trc ta
độ.
Ví d 6. V mi cặp đường thng sau trong cùng mt mt phng tọa độ và tìm tọa độ giao điểm ca
hai đường thẳng đó:
a)
3xy−=
23xy+=
; ĐS:
(2; 1)
.
b)
2 3 10xy
0,5 0,5 2xy
; ĐS:
(2;2)
.
c)
21xy
1x
; ĐS:
( 1;0)
.
d)
4 5 9xy
1y
. ĐS:
(1;1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
5
Ví d 7. Cho hai phương trình
23xy
23xy
.
a) V hai đường thng biu din tp nghim của hai phương trình đó trên cùng một h trc tọa độ.
Xác định tọa độ giao điểm của hai đường thẳng đó cho biết tọa độ giao điểm đó nghiệm ca
các phương trình nào?
b) Gi
00
( ; )M x y
giao điểm của hai đường thng
1 1 1
a x b y c
2 2 2
a x b y c
. Chng minh
rng
00
( ; )xy
là nghim chung ca hai phương trình đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Trong các phương trình sau, phương trình nào xác định mt hàm s dng
y ax b
?
a)
4yx
; ĐS: . b)
40yx
; ĐS: .
c)
21yx
; ĐS: . d)
2 2 0xy
; ĐS: .
e)
07xy + =
; ĐS: Không. f)
03xy =
. ĐS: Không.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
6
Bài 2. Cho các cp s
(0;0),(0; 1),(3; 1)
, cp s nào là nghim ca phương trình:
a)
4yx
; ĐS:
(0; 0)
. b)
2 2 0xy
; ĐS:
(0; 1)
.
c)
07xy
; ĐS: Không cp nào. d)
03xy
. ĐS:
(3; 1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Tìm mt nghim của phương trình bậc nht hai ẩn trong các trường hp sau:
a)
4yx
; ĐS:
(0; 0)
. b)
2 2 0xy
; ĐS:
(0; 1)
.
c)
07xy
; ĐS:
(0;7)
. d)
03xy
. ĐS:
(3; 0)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Viết nghim tng quát và v đường thng biu din tp nghim ca mỗi phương trình sau:
a)
4yx
; ĐS:
{( ;4 ) | }x x x
. b)
2 2 0xy
; ĐS:
{( 2 2; ) | }y y y
.
c)
07xy
; ĐS:
{( ;7) | }xx
. d)
03xy =
. ĐS:
{(3; ) | }yy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
7
Bài 5. Trong mỗi trường hp sau hãy tìm giá tr ca
m
để:
a) Đim
( 3;1)A
thuộc đường thng
1mx y
; ĐS:
2
3
m
.
b) Đim
(2;5)B
thuộc đường thng
4x my
; ĐS:
2
5
m
.
c) Đim
(1;1)C
thuộc đường thng
( 1) 2mx m y
; ĐS:
1
2
m
.
d) Đim
(1;2)D
thuộc đường thng
2
(2 1) 0m x y
. ĐS:
3
2
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. V mi cặp đường thng sau trong cùng mt mt phng tọa độ tìm tọa độ giao điểm ca
hai đường thẳng đó:
a)
21xy
45xy
; ĐS:
(1;1)
.
b)
1xy
2 0,1 2xy
; ĐS:
(1;0)
.
c)
2xy
0xy−=
; ĐS:
(1;1)
.
d)
1xy
4 1 0xy
. ĐS:
(1;1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
8
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho hai phương trình
1xy
3xy
. V hai đường thng biu din tp nghim
của hai phương trình đó trên cùng mt h trc tọa độ. Xác định tọa đ giao điểm của hai đường
thẳng đó và cho biết tọa độ giao điểm đó là nghiệm của các phương trình nào?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TP V NHÀ
Bài 8. Trong các phương trình sau, phương trình nào xác đnh mt hàm s bc nht dng
y ax b
?
a)
3yx
; ĐS: . b)
30yx
; ĐS: .
c)
21yx
; ĐS: . d)
2 1 0xy
; ĐS: .
e)
05xy
; ĐS: Không. f)
4 0 14xy
. ĐS: Không.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
9
Bài 9. Cho các cp s
(0;0),(2; 1),(3; 1)
, cp s nào là nghim của phương trình:
a)
3yx
; ĐS:
(0; 0)
. b)
2 1 0xy
; ĐS:
(3; 1)
.
c)
0 1 0xy
; ĐS: Không có điểm nào. d)
3 0 9xy
. ĐS:
(3; 1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Tìm mt nghim của phương trình bậc nht hai ẩn trong các trường hp sau:
a)
3yx
; ĐS:
(0; 0)
. b)
2 1 0xy
; ĐS:
(1;0)
.
c)
0 1 0xy + + =
; ĐS:
(0; 1)
. d)
3 0 9xy
. ĐS:
(3; 0)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Viết nghim tng quát và v đường thng biu din tp nghim ca mỗi phương trình sau:
a)
3yx
; ĐS:
{( ;3 ) | }x x x
. b)
2 1 0xy
; ĐS:
{( 2 1; )| }y y x +
.
c)
0 1 0xy
; ĐS:
{( ; 1) | }xx
. d)
3 0 9xy
. ĐS:
{(3; ) | }yy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
10
Bài 12. Trong mỗi trường hp sau hãy tìm giá tr ca
m
để:
a) Đim
( 3;1)A
thuộc đường thng
10mx y
; ĐS:
3m
.
b) Đim
(2;5)B
thuộc đường thng
5x my
; ĐS:
7
5
m =
.
c) Đim
(1;1)C
thuộc đường thng
( 1) 3 2mx m y m
; ĐS:
1m
.
d) Đim
(1;2)D
thuộc đường thng
2
(2 1) 1m x y
. ĐS:
0m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
i 13. V mi cặp đường thng sau trong cùng mt mt phng tọa độ tìm tọa độ giao điểm ca
hai đường thẳng đó:
a)
3xy
20x
; ĐS:
(2; 1)
.
b)
4 3 13xy
0,25 4 5xy
; ĐS:
(4;1)
.
c)
21xy
3y =
; ĐS:
(1;3)
.
d)
4 5 9xy+=
2 2,5 0,5xy
. ĐS: Không có giao điểm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
11
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Cho hai phương trình
2xy
21xy
. V hai đường thng biu din tp nghim
của hai phương trình đó trên cùng mt h trc tọa độ. Xác định tọa độ giao đim của hai đường
thẳng đó và cho biết tọa độ giao điểm đó là nghiệm của các phương trình nào?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
12
Bài 2. H HAI PHƯƠNG TRÌNH BẬC NHT HAI N
A. KIN THC TRNG TÂM
H hai phương trình bc nht hai n là h phương trình có dng:
1 1 1
2 2 2
(1)
()
(2)
a x b y c
I
a x b y c
+=
+=
.
Trong đó
1 1 1
a x b y c+=
2 2 2
a x b y c+=
là các phương trình bc nht hai n.
Nếu hai phương trình
(1)
(2)
nghim chung
00
( ; )xy
thì
00
( ; )xy
được gi nghim
ca h phương trình.
Nếu hai phương trình
(1)
(2)
không có nghim chung thì ta nói h vô nghim.
Gii h phương trình tìm tt c các cp
( ; )xy
(tìm tp nghim) tha mãn hai phương trình
(1)
(2)
.
Hai h phương trình tương đương vi nhau nếu chúng có cùng tp nghim.
Minh ha hình hc tp nghim ca h phương trình bc nht hai n:
Gi
( ),( )dd
ln lượt là các đường thng
1 1 1
a x b y c+=
2 2 2
a x b y c+=
thì tp nghim ca
h phương trình được biu din bi tp hp các đim chung ca
()d
()d
. Khi đó
Nếu
()d
ct
()d
hay
11
12
ab
bb
thì h có nghim duy nht.
Nếu
()d
song song vi
()d
hay
1 1 1
1 2 2
a b c
b b c
=
thì h vô nghim.
Nếu
()d
trùng vi
()d
hay
1 1 1
1 2 2
a b c
b b c
==
thì h vô s nghim.
Chú ý: S nghim ca h phương trình
()I
bng s giao đim ca hai đường thng
1 1 1
()a x b y c d+=
2 2 2
( ).a x b y c d
+=
B. CÁC DNG BÀI TP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Kim tra cp s cho trước có là nghim ca h phương trình đã cho hay không?
c 1: Thay cp s
( )
00
;xy
vào h đã cho tương ứng
00
;x x y y==
.
c 2: Nếu các phương trình trong h đều tha mãn thì kết lun
( )
00
;xy
nghim ca
h và ngược li.
d 1. Xét h phương trình
0
2
xy
xy
−=
+=
, cho biết cp s
(1;1)
phi nghim ca h phương
trình hay không? Vì sao? ĐS: .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
13
d 2. Cho h phương trình
32
2 3 2
xy
xy
=
+=
, các cp s
2
(0;1), 0; ,(4;5)
3



. Cp nào nghim
ca h phương trình hay không? Vì sao? ĐS:
2
0;
3



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Đoán nhận s nghim ca h phương trình
ớc 1: Đưa hệ v dng
11
22
y m x n
y m x m
=+
=+
;
c 2: So sánh các h s tương ứng các trường hp sau
Nếu
12
mm
thì h có nghim duy nht.
Nếu
1 2 1 2
;m m n n=
thì h vô nghim.
Nếu
1 2 1 2
;m m n n==
thì h có vô s nghim.
Ví d 3. Không v hình, hãy cho biết s nghim ca mi h phương trình sau đây:
a)
21
1
yx
yx
=−
=+
ĐS: Nghim duy nht.
b)
2
3
yx
yx
=−
=+
ĐS: Vô nghim.
c)
1
2 2 2
yx
yx
=+
=+
ĐS: Vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
14
Ví d 4. Xác định s nghim ca mi h phương trình sau đây:
a)
2 1 0
10
xy
xy
=
+ =
ĐS: Nghim duy nht.
b)
20
30
xy
xy
=
+ =
ĐS: Vô nghim.
c)
10
2 2 2 0
xy
xy
+ =
+ =
. ĐS: Vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Cho hai phương trình
22xy−=
35xy+=
.
a) Cho biết nghim tng quát ca mỗi phương trình.
b) V các đường thng biu din tp nghim của hai phương trình trên cùng mt h trc tọa độ.
c) Xác định nghim chung của hai phương trình.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
15
...........................................................................................................................................................................................................................................................................
Dng 3: Tìm nghim ca h bằng phương pháp hình học
V đường thẳng tương ứng vi mỗi phương trình, sau đó tìm giao điểm.
Ví d 6. Tìm nghim ca các h phương trình sau bằng phương pháp hình học.
a)
10
2 1 0
xy
xy
+ =
+ =
ĐS:
(0;1)
.
b)
2 1 0
30
xy
xy
+ =
+ =
ĐS:
( 5; 2)−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Tìm giao điểm ca các cặp đường thng sau:
a)
2 3 5xy+=
21xy−=
; ĐS:
(1;1)
.
b)
20xy+ =
12xy+=
. ĐS:
(1;1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
16
...........................................................................................................................................................................................................................................................................
Dng 4: Tìm điều kin ca tham s để h phương trình thỏa mãn điều kiện cho trước
ớc 1: Đưa hệ v dng
11
22
y a x b
y a x b
=+
=+
.
ớc 2: Xác định các h s
1 2 1 2
, , ,a a b b
trong mỗi phương trình ở bước 1 và áp dng v trí
tương đối của hai đường thng.
Ví d 8. Cho h phương trình
( 2) 3
1
a x y
x y a
+ + =
= +
. Tìm tham s
a
để h tha mãn:
a) Có nghim duy nht; ĐS:
3a −
.
b) Vô nghim; ĐS:
3a =−
.
c) Vô s nghim. ĐS: Không có
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho hai đường thng
:1d ax y a+ =
:(2 1) 5.d a x y
+ =
Tìm tham s
a
sao cho:
a)
d
ct
d
ti một điểm; ĐS:
1a
.
b)
d
d
song song; ĐS:
1a =
.
c)
d
trùng vi
d
. ĐS: Không có
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
17
...........................................................................................................................................................................................................................................................................
Dng 5: V trí tương đối của hai đường thng
Nếu
11
22
ab
ab
d
ct
'd
ti một điểm.
Nếu
1 1 1
2 2 2
a b c
a b c
=
d
song song vi
'd
.
Nếu
111
222
a b c
a b c
==
d
trùng vi
'd
.
Ví d 10. Xác định v trí tương đối ca các cặp đường thng sau:
a)
1yx=+
23xy+=
; ĐS: Ct ti một điểm.
b)
20xy+ =
3yx=−
; ĐS: Song song.
c)
3 2 5xy+=
32
1
55
xy+=
. ĐS: Trùng nhau.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Cho biết cp s
(2;1)
phi nghim ca h phương trình
24
,
20
xy
xy
−=
+=
hay không? Vì
sao? ĐS: Không.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
18
Bài 2. Cho h phương trình
3 2 1
6 4 3
xy
xy
−=
−=
, các cp s
(3;4),( 4;5),(2; 7)−−
. Cp nào nghim
ca h phương trình hay không? Vì sao? ĐS: Không có cp nào.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Không v hình, hãy cho biết s nghim ca mi h phương trình sau đây:
a)
2
1
yx
yx
=−
=+
ĐS: Vô nghim.
b)
21
4
yx
yx
=+
= +
ĐS: Nghim duy nht.
c)
3
2 2 6
yx
yx
=−
=−
ĐS: Vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Xác định s nghim ca mi h phương trình sau đây:
a)
2 1 0
3 5 0
xy
xy
+ =
+ =
ĐS: Nghim duy nht.
b)
1
4
xy
xy
+ =
=−
ĐS: Vô nghim.
c)
10
4 4 4
xy
xy
=
=+
ĐS: Vô s nghim.
Toaùn 9 Taøi lieäu daïy hoïc
19
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hai phương trình
1xy−=
24xy+=
.
a) Cho biết nghim tng quát ca mỗi phương trình.
b) V các đường thng biu din tp nghim của hai phương trình trên cùng một h trc tọa độ.
c) Xác định nghim chung của hai phương trình.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Tìm nghim ca các h phương trình sau bằng phương pháp hình học.
a)
22
21
xy
xy
−=
−=
ĐS:
(1;0)
.
b)
33
51
xy
xy
−=
+=
ĐS:
(1;0)
.
Toaùn 9 Taøi lieäu daïy hoïc
20
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Tìm giao điểm ca các cặp đường thng sau:
a)
22xy+=
4 2 4xy+=
; ĐS: Vô s giao điểm .
b)
37xy+=
2 3 4xy =
. ĐS:
(1;2)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho h phương trình
2 3 2
5 3 2 1
x ay
x y a
−=
+=−
. Tìm tham s
a
để h tha mãn:
a) Có nghim duy nht; ĐS:
0a =
hoc
2
5
a
.
b) Vô nghim;
c) Vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
21
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho hai đường thng
:1d ax y a+ =
:( 1) 4d a x y
+ + =
. Tìm tham s
a
sao cho:
a)
d
ct
d
ti một điểm; ĐS:
a
.
b)
d
d
song song; ĐS: Không có giá tr
a
.
c)
d
trùng vi
d
. ĐS: Không có giá tr
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Xác định v trí tương đối ca các cặp đường thng sau:
a)
4yx=−
4xy+=
; ĐS: Ct ti một điểm.
b)
2 3 0xy+ =
1
1
2
yx=−
; ĐS: Song song.
c)
10xy+ + =
1 1 1
4 4 4
xy+ =
. ĐS: Trùng nhau.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
22
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TP V NHÀ
Bài 11. Xét h phương trình
20
,
22
xy
xy
−=
+=
cho biết cp s
(1;2)
phi nghim ca h phương
trình hay không? Vì sao? ĐS: Không.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho h phương trình
21
2 4 2
xy
xy
−=
−=
, các cp s
(0; 1),(2;3),(3; 5)−−
. Cp nào nghim
ca h phương trình hay không? Vì sao? ĐS: Không có cp nào.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 13. Không v hình, hãy cho biết s nghim ca mi h phương trình sau đây:
a)
31
1
yx
yx
=+
=+
ĐS: Nghim duy nht.
b)
1
4
yx
yx
=+
=+
ĐS: Vô nghim.
c)
31
2 6 2
yx
yx
=+
=+
ĐS: Vô s nghim.
Toaùn 9 Taøi lieäu daïy hoïc
23
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Xác định s nghim ca mi h phương trình sau đây:
a)
3 1 0
10
xy
xy
=
+ =
ĐS: Nghim duy nht.
b)
10
40
xy
xy
+ =
−+=
ĐS: Vô nghim.
c)
3 1 0
6 2 2 0
xy
xy
+ =
+ =
ĐS: Vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Cho hai phương trình
1xy+=
21xy+=
.
a) Cho biết nghim tng quát ca mỗi phương trình.
b) V các đường thng biu din tp nghim của hai phương trình trên cùng mt h trc tọa độ, ri
xác định nghim chung của hai phương trình.
Toaùn 9 Taøi lieäu daïy hoïc
24
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Tìm nghim ca các h phương trình sau bằng phương pháp hình học.
a)
10
10
xy
xy
+ + =
+ =
ĐS:
( 1;0)
.
b)
2 1 0
10
xy
xy
+ =
+ + =
ĐS:
( 2; 3)−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Tìm giao điểm ca các cặp đường thng sau:
a)
3xy+=
23xy−=
; ĐS:
(2;1)
.
b)
2 4 0xy+ =
21xy−=
. ĐS:
67
;
55



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
25
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Cho h phương trình
1
21
ax y
x y a
−=
+ =
. Tìm tham s
a
để h tha mãn:
a) Có nghim duy nht; ĐS:
2a −
.
b) Vô nghim; ĐS:
2a =−
.
c) Vô s nghim. ĐS: Không có
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 19. Cho hai đường thng
:1d x y a+ = +
:( 1) 4d a x y
+ + =
. Tìm tham s
a
sao cho:
a)
d
ct
d
ti một điểm; ĐS:
0a
.
b)
d
d
song song; ĐS:
0a =
.
c)
d
trùng vi
d
. ĐS: Không có
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
26
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 20. Xác định v trí tương đối ca các cặp đường thng sau:
a)
yx=
4xy+=
; ĐS: Ct ti một điểm.
b)
10xy+ =
1yx=−
; ĐS: Trùng nhau.
c)
24xy+=
11
1
42
xy+=
. ĐS: Trùng nhau.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
27
Bài 2. GII H PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ
A. KIN THC TRNG TÂM
1. Quy tc thế
Quy tc thế là quy tc dùng để biến đổi mt h phương trình thành h phương trình tương
đương.
2. Các bước thc hin
Bước 1. Dùng quy tc thế biến đổi h phương trình đã cho để được mt h phương trình mi,
trong đó có mt phương trình mt n;
Bước 2. Gii phương trình mt n thu được ri suy ra nghim ca h đã cho.
Chú ý:
Đối vi h phương trình bc nht hai n
,xy
gii bng phương pháp thếth la chn vic
t
x
hoc rút
y
. Để tránh độ phc tp trong tính toán ta thường chn rút n có h s
1
trong h đã cho.
Ưu đim ca phương pháp thế được th hin trong bài toán gii bin lun h phương trình,
sau khi thế ta được phương trình mt n. S nghim ca h đã cho ph thuc vào s
nghim ca phương trình bc nht mt n.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Gii h phương trình bằng phương pháp thế
Thc hiện theo hai bước phn kiến thc trng tâm.
Ví d 1. Gii các h phương trình sau
a)
2
2 1;
xy
xy
−=
+=
ĐS:
1
1
x
y
=
=−
.
b)
0,25 0,36 4
0,7 0,4 1;
xy
xy
−=
−=
ĐS:
155
19
1275
76
x
y
=−
=−
.
c)
4
3
1
2;
3
y
x
xy
−=
−=
ĐS:
35
3
23
x
y
=
=
.
d)
2
7
33
4
1;
75
xy
xy
−=
+ =
ĐS:
77
47
455
47
x
y
=
=−
.
Toaùn 9 Taøi lieäu daïy hoïc
28
e)
( ) ( )
( ) ( )
1 3 1 3 4
1 3 1 3 3;
xy
xy
+ + =
+ + + =
ĐS:
9 10 3
6
3
6
x
y
−+
=
=−
.
f)
( )
25
1 2 2.
xy
xy
+=
+ + =
ĐS:
7 2 2
9 7 2
x
y
=−
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
29
Ví d 2. Gii h phương trình
2
21
( 1) 4 2
xy
a x y a
−=
+ =
trong mỗi trường hp sau
a)
1a =−
; ĐS: vô nghim.
b)
0a =
; ĐS:
2
1
2
x
y
=
=
.
c)
1a =
. ĐS: vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Gii h phương trình quy về phương trình bậc nht hai n
c 1: Thu gn h phương trình đã cho về dạng đơn giản.
c 2: S dng quy tc thế để gii h phương trình vừa nhận được.
c 3: Kiểm tra điều kin (nếu có) và kết lun nghim.
Ví d 3. Gii các h phương trình sau:
a)
2( 2 ) 3( 2 ) 4
( ) 2( ) 1;
x y x y
x y x y
+ + =
+ + =
ĐS:
6
11
7
11
x
y
=
=
.
b)
12
3 2;
x y x y
x y x y
+ = +
+ = +
ĐS:
1
0
x
y
=
=
.
c)
2( 2) 3(1 2 ) 3
3( 2) 2(1 2 ) 1;
xy
xy
+ + =
+ + =
ĐS:
31
13
6
13
x
y
=−
=
.
Toaùn 9 Taøi lieäu daïy hoïc
30
d)
12
1
24
23
2.
36
x y x y
x y y x
+=
+
−=
ĐS:
18
7
3
7
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Gii các h phương trình sau
a)
(2 1)( 1) ( 3)(2 5)
(3 1)( 1) ( 1)(3 1);
x y x y
x y x y
+ =
+ = +
ĐS:
4
3
4
3
x
y
=
=
.
b)
(2 1)(2 1) ( 3)( 5) 3
(3 1)( 1) ( 1)( 1) 2 .
x y x y xy
x y x y xy
+ = +
+ = + +
ĐS:
16
9
32
9
x
y
=
=
.
Toaùn 9 Taøi lieäu daïy hoïc
31
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: S dụng đặt n ph gii h phương trình quy v phương trình bậc nht hai n
ớc 1: Đặt n ph và điều kin (nếu có).
c 2: Gii h phương trình bậc nht hai n mới thu được.
c 3: T các giá tr ca n ph va nhận được, gii tìm các n ca h ban đầu.
c 4: Kiểm tra điều kin (nếu có) và kết lun nghim.
Ví d 5. Gii các h phương trình sau
a)
2( ) 4( 2 ) 6
3( ) ( 2 ) 2;
x y x y
x y x y
+ + =
+ =
ĐS:
1
0
x
y
=
=
.
b)
12
1
21
3;
xy
xy
=
+=
ĐS:
1
1
x
y
=
=
.
c)
11
2
2
32
2;
2
x y x y
x y x y
+=
−+
=
−+
ĐS:
25
24
35
24
x
y
=
=−
.
d)
32
3
13
41
5;
13
x
xy
x
xy
−=
−+
+=
−+
ĐS:
13
2
2
3
x
y
=
=
.
Toaùn 9 Taøi lieäu daïy hoïc
32
e)
21
2
11
62
1;
11
xy
xy
+=
++
−=
++
ĐS:
1
0
x
y
=
=
.
f)
11
8
21
21
6.
21
x y x y
x y x y
+=
+ +
−=
+ +
ĐS:
17
70
54
35
x
y
=−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
33
Ví d 6. Gii các h phương trình sau
a)
2 1 1 5
3 1 1 1;
xy
xy
+ + =
+ =
ĐS:
61
25
194
25
x
y
=
=
.
b)
21
2
11
62
1.
11
xy
xy
+=
+−
−=
+−
ĐS:
3
2
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 4: Tìm điều kin ca tham s để h phương trình thỏa mãn điều kiện cho trước
Thay giá tr ca biến o từng phương trình trong h đã cho để tìm các giá tr tha mãn
yêu cầu đề bài.
Ví d 7. Cho h phương trình
23
5
ax by
bx ay
−=
=
. Xác định các h s
a
b
, biết:
a) H có nghim
( ; ) (1;2)xy=
; ĐS:
7
,2
2
ab==
.
b) H có nghim
( )
( ; ) 1 3;1 3xy= +
. ĐS:
38 11 3 103 5 3
,
23 46
ab
++
= =
.
Toaùn 9 Taøi lieäu daïy hoïc
34
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 8. Tìm giá tr ca
a
b
để hai đưng thng
1
( ):( 1) (2 1) 33d a x b y + =
2
( ): 2 11d bx ay+=
ct nhau tại điểm
(1; 2)M
. ĐS:
76 139
,
15 15
ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Tìm
a
b
để đường thng
( ):d y ax b=+
đi qua hai điểm:
a)
1
(1; 2), ;1
3
AB



; ĐS:
95
,
22
ab= =
.
b)
(1;3), ( 1;5)CD
. ĐS:
1, 4ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
35
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 10. Tìm
a
b
để đưng thng
2bx ay a =
đi qua đim
(2;5)M
đi qua giao điểm
của hai đường thng
1
( ):3 2 1d x y−=
2
( ):7 4 3d x y−=
. ĐS:
1, 4ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 11. Cho hai đường thng
1
( ):2 1d x y−=
2
( ):( 1) 5d m x y + =
. Tìm
m
để hai đường
thẳng đã cho cắt nhau ti một điểm
A
tha mãn:
a)
A
thuc trc hoành; ĐS:
11m =
.
b)
A
thuc trc tung; ĐS:
m
.
c)
A
thuộc đường thng
21yx=−
; ĐS:
1m −
.
d)
A
thuc góc phần tư thứ nht. ĐS:
1 11m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
36
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 12. Tìm giao điểm của hai đường thng
1
( ): 2d x y a−=
2
( ):2 5 8d x by−=
, biết
1
()d
đi
qua điểm
(4; 3)A
2
()d
đi qua điểm
( 1;3)B
. ĐS:
74 18
;
11 11
M



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 13. Tìm giá tr ca
m
để đường thng
( ):(2 1) 5d m x y m + =
đi qua giao điểm ca hai
đường thng
1
( ):2 3d x y+=
2
( ):3 2 1d x y−=
. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 14. Tìm giá tr ca tham s
m
để ba đưng thng
12
( ): 2 1,( ):3 10d x y d x y = + =
3
( ):( 1) 2 1d m x y m+ + = +
đồng quy. ĐS:
3m =−
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
37
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Gii các h phương trình sau:
a)
1
3 7;
xy
xy
−=
+=
ĐS:
2
1
x
y
=
=
.
b)
0,1 0,2 2
0,7 0,5 1;
xy
xy
−=
−=
ĐS:
80
9
130
9
x
y
=−
=−
.
c)
3
4
1
2 3 ;
3
y
x
xy
−=
−=
ĐS:
107
30
34
15
x
y
=
=
.
d)
2
1
23
1;
45
xy
xy
−=
+ =
ĐS:
7
4
45
16
x
y
=−
=−
.
e)
( ) ( )
( ) ( )
1 5 1 5 5
1 5 1 5 3;
xy
xy
+ + =
+ + + =
ĐS:
15 19 5
20
5
5
x
y
−+
=
=−
.
f)
( )
33
1 3 1.
xy
xy
+=
+ + =
ĐS:
4 3 5
5 3 9
x
y
=−
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
38
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Gii h phương trình
2
4 2 1
(3 1) 4 2
xy
a x y a
−=
+ =
trong mỗi trường hp sau:
a)
1a =−
; ĐS:
1
3
2
x
y
=
=
.
b)
0a =
; ĐS:
2
7
1
14
x
y
=
=
.
c)
1a =
. ĐS:
0
1
2
x
y
=
=−
.
Toaùn 9 Taøi lieäu daïy hoïc
39
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Gii các h phương trình sau
a)
(2 ) 3( 2 ) 1
( 2 ) 2( 2 ) 1;
x y x y
x y x y
+ + =
+ + =
ĐS:
3
25
8
25
x
y
=
=
.
b)
2( 1) 3(1 ) 3
2( ) (1 2 ) 1;
xy
x y y
+ + =
+ + + =
ĐS:
5
2
x
y
=−
=
.
c)
22
2
24
2 1 2
1.
36
x y x y
x y y x
+
+=
−=
ĐS:
4
8
5
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
40
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Gii các h phương trình sau
a)
( 1)( 1) ( 3)( 3)
(2 1)( 2) (2 1)( 1);
x y x y
x y x y
+ = +
+ + = +
ĐS:
5
4
11
4
x
y
=
=−
.
b)
( 1)(2 1) ( 3)( 5)
( 1)( 1) (2 1)( 1) .
x y x y xy
x y x y xy
+ = +
+ + = +
ĐS:
34
13
4
13
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
41
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Gii các h phương trình sau:
a)
( ) (3 2 ) 1
4( ) (3 2 ) 2;
x y x y
x y x y
+ =
=
ĐS:
4
5
7
5
x
y
=−
=−
.
b)
21
1
32
5;
xy
xy
−=
+=
ĐS:
1
1
x
y
=
=
.
c)
11
1
2
31
2;
2
x y x y
x y x y
+=
+−
=
−+
ĐS:
16
15
44
15
x
y
=−
=
.
d)
2
4
11
31
5;
11
x
xy
x
xy
−=
++
+=
++
ĐS:
2
2
x
y
=−
=−
.
e)
21
2
11
11
3;
11
xy
xy
+=
−+
−=
−+
ĐS:
8
5
7
4
x
y
=
=−
.
Toaùn 9 Taøi lieäu daïy hoïc
42
f)
11
2
3
23
6.
3
x y x y
x y x y
+=
+ +
−=
+ +
ĐS:
61
24
1
24
x
y
=−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Gii các h phương trình sau
a)
25
3 1;
xy
xy
+=
−=
ĐS:
36
25
169
25
x
y
=
=
.
b)
11
2
32
1.
xy
xy
+=
−=
ĐS:
1
1
x
y
=
=
.
Toaùn 9 Taøi lieäu daïy hoïc
43
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho h phương trình
24
25
ax by
ax by
−=
+=
. Xác định các h s
a
b
, biết:
a) H có nghim
( ; ) (1;1)xy=
; ĐS:
13 6
,
55
ab==
.
b) H có nghim
( )
( ; ) 3;1 3xy=−
. ĐS:
13 3 3 3 3
,
55
ab
+
= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Tìm giá tr ca
a
b
để hai đường thng
1
( ): 2 7d ax by+=
2
( ): 7d bx ay−=
ct nhau
tại điểm
(1;2)M
. ĐS:
2
3
a
b
=−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
44
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Tìm
a
b
để đường thng
( ):d y ax b=+
đi qua hai điểm:
a)
( 2;5), (4;1)AB
; ĐS:
2 11
,
33
ab= =
.
b)
(1;2), ( 1;4)CD
. ĐS:
1, 3ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Tìm
a
b
để đường thng
23bx ay a =
đi qua điểm
(2;3)M
đi qua giao đim ca
hai đường thng
1
( ): 2 1d x y−=
2
( ):7 4 17d x y−=
. ĐS:
33
,
88
ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
45
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Cho hai đường thng
1
( ):4 1d x y−=
2
( ): 2d mx y+=
. Tìm
m
để hai đường thẳng đã
cho ct nhau ti một điểm
A
tha mãn:
a)
A
thuc trc hoành; ĐS:
8m =
.
b)
A
thuc trc tung; ĐS:
m
.
c)
A
thuộc đường thng
1yx=+
; ĐS:
1
2
m =
.
d)
A
thuc góc phần tư thứ nht ĐS:
48m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Tìm giao đim của hai đường thng
1
( ):3 2d x y a−=
2
( ): 2 4d x by−=
, biết
1
()d
đi qua
điểm
(4;3)A
2
()d
đi qua điểm
(1;2)B
. ĐS:
34 12
;
13 13
M



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
46
...........................................................................................................................................................................................................................................................................
Bài 13. Tìm giá tr ca
m
để đường thng
( ):( 1) 3d m x y m+ =
đi qua giao điểm của hai đường
thng
1
( ): 3d x y+=
2
( ):3 2 1d x y =
. ĐS:
1
2
m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Tìm giá tr ca tham s
m
để ba đường thng
12
( ):3 2 1,( ):3 2d x y d x y = =
3
( ): 2 1d mx y m =
. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TP V NHÀ
Bài 15. Gii các h phương trình sau
a)
21
2;
xy
xy
−=
+=
ĐS:
1
1
x
y
=
=
.
Toaùn 9 Taøi lieäu daïy hoïc
47
b)
0,1 0,4 3
0,2 0,25 1;
xy
xy
−=
=
ĐS:
230
11
140
11
x
y
=−
=−
.
c)
4
2
1
;
3
y
x
xy
+=
−=
ĐS:
25
9
22
9
x
y
=
=
.
d)
1
24
1;
32
xy
xy
−=
+ =
ĐS:
3
4
5
2
x
y
=
=−
.
e)
( ) ( )
( ) ( )
1 2 1 2 2
1 2 1 2 3;
xy
xy
+ + =
+ + + =
ĐS:
12 11 2
4
2
4
x
y
−+
=
=
.
f)
( )
22
1 2 1.
xy
xy
+=
+ =
ĐS:
1 5 2
7
42
7
x
y
+
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
48
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Gii h phương trình
2
2
( 1) 2 4
xy
a x y a
+=
+ + =
trong mỗi trường hp sau:
a)
1a =−
; ĐS: vô nghim.
b)
0a =
; ĐS:
4
2
x
y
=
=−
.
c)
1a =
. ĐS: vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Gii các h phương trình sau:
a)
( ) 2( ) 3
( 2 ) 2( 2 ) 1;
x y x y
x y x y
+ + =
+ + =
ĐS:
7
9
2
3
x
y
=
=
.
b)
2( 1) 3(1 ) 3
3( 1) 2(1 ) 2;
xy
xy
+ =
+ + =
ĐS:
5
6
x
y
=−
=−
.
c)
2 1 2
2 1;
x x y
x y x y
+ = +
= + +
ĐS:
1
0
x
y
=−
=
.
Toaùn 9 Taøi lieäu daïy hoïc
49
d)
12
1
64
1
2.
23
x x y
x y y x
−−
+=
+
−=
ĐS:
44
23
10
23
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Gii các h phương trình sau
a)
( 1)( 1) ( 3)( 3)
( 1)(2 1) (2 1)( 1);
x y x y
x y x y
+ + = +
+ = +
ĐS:
5
5
x
y
=−
=−
.
b)
( 1)( 1) (2 3)( 2)
( 1)(2 1) ( 1)( 1) .
x y x y xy
x y x y xy
+ =
+ = + +
ĐS:
21
19
14
19
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
50
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 19. Gii các h phương trình sau:
a)
( ) 2( 2 ) 3
2( ) ( 2 ) 1;
x y x y
x y x y
+ + =
+ =
ĐS:
1
0
x
y
=
=
.
b)
12
3
21
1;
xy
xy
+=
−=
ĐS:
1
1
x
y
=
=
.
c)
11
4
12
1;
x y x y
x y x y
+=
−+
−=
−+
ĐS:
2
3
1
3
x
y
=
=
.
d)
2
2
11
21
7;
11
x
xy
x
xy
−=
++
+=
++
ĐS:
16
11
2
3
x
y
=−
=
.
e)
11
1
11
34
1;
11
xy
xy
+=
+−
−=
+−
ĐS:
2
5
9
2
x
y
=
=
.
f)
12
4
21
21
6.
21
x y x y
x y x y
+=
+
−=
+
ĐS:
93
32
19
32
x
y
=
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
51
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 20. Gii các h phương trình sau:
a)
1 2 1 3
3 1 1 2;
xy
xy
+ + =
+ =
ĐS:
0
2
x
y
=
=
.
b)
11
2
65
1.
xy
xy
+=
−=
ĐS:
1
1
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
52
Bài 21. Cho h phương trình
1
24
ax by
bx ay
−=
=
. Xác định các h s
a
b
, biết:
a) H có nghim
( ; ) (1;1)xy=
; ĐS:
2, 3ab= =
.
b) H có nghim
( )
( ; ) 2;1 2xy=−
. ĐS:
4 2 2, 2 3ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 22. Tìm giá tr ca
a
b
để hai đường thng
1
( ): ( 1) 4d ax b y+ =
2
( ):2 5d bx ay−=
ct
nhau tại điểm
(1;3)M
. ĐS:
1 26
,
11 11
ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 23. Tìm
a
b
để đường thng
( ):d y ax b=+
đi qua hai điểm:
a)
( 1;2), ( 2;1)AB−−
; ĐS:
1, 3ab==
.
b)
( 1;1), (2;4)CD
. ĐS:
1, 2ab==
.
Toaùn 9 Taøi lieäu daïy hoïc
53
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 24. Tìm
a
b
để đường thng
2ax by a+ =
đi qua điểm
(1;1)M
đi qua giao đim ca
hai đường thng
1
( ): 2 1d x y =
. ĐS:
1, 2ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 25. Cho hai đường thng
1
( ): 2d x y−=
2
( ): 4d x my+=
. Tìm
m
để hai đường thẳng đã
cho ct nhau ti một điểm
A
tha mãn
a)
A
thuc trc hoành; ĐS:
m
.
b)
A
thuc trc tung; ĐS:
2m =−
.
c)
A
thuộc đường thng
1yx=−
; ĐS:
m
.
d)
A
thuc góc phần tư thứ nht. ĐS:
1m −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
54
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 26. Tìm giao điểm của hai đường thng
1
( ):4d x y b−=
2
( ):2 5 9d ax y+=
, biết
1
()d
đi qua
điểm
(1; 2)A
2
()d
đi qua điểm
( 2;4)B
. ĐS:
26 2
;
17 17
M



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 27. Tìm giá tr ca
m
để đường thng
( ):( 1) 2d m x y m + =
đi qua giao đim của hai đường
thng
1
( ): 3d x y+=
2
( ):3 2 1d x y−=
. ĐS:
1
3
m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
55
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 28. Tìm giá tr ca tham s
m
để ba đường thng
12
( ): 2 1,( ):4 11d x y d x y = =
3
( ):( 1) 2d m x y m + =
đồng quy. ĐS:
2m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
56
Bài 4. GII H PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP
CỘNG ĐẠI S
A. KIN THC TRNG TÂM
1. Quy tc cng đại s
Quy tc cộng đại s ng để biến đổi mt h phương trình thành một h phương trình
tương đương, bao gồm hai bước như sau:
c 1. Cng hay tr tng vế của hai phương trình ca h phương trình đã cho để
được một phương trình mới;
c 2. Dùng phương trình mới y thay thế cho một trong hai phương trình kia ta
được mt h mới tương đương với h đã cho.
2. Các bưc gii
c 1. Biến đổi đc h s ca mt n có giá tr tuyệt đối bng nhau;
c 2. Cng hoc tr vế vi vế của hai phương trình đ kh đi một n;
c 3. Giải phương trình tìm giá trị ca n còn li;
c 4. Thay giá tr va tìm được vào một trong hai phương trình ban đầu để tìm giá
tr còn li;
c 5. Kết lun nghim ca h phương trình.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dng 1: Gii h phương trình bằng phương pháp cộng đại s
Thc hiện theo các bưc đã nêu trong phn kiến thc trng tâm.
Ví d 1. Gii các h phương trình sau
a)
4 2 2
8 3 5;
xy
xy
+=
+=
ĐS:
1
1
x
y
=
=−
.
b)
52
19
35
3
4 21;
2
xy
y
x
−=
+=
ĐS:
9
10
x
y
=
=−
.
c)
3 2 2 3
3 3 2 1;
xy
xy
+=
+ =
ĐS:
53
21
42
7
x
y
=
=
.
d)
1,2 1,5 3
2,8 3,5 2.
xy
xy
+=
=
ĐS:
25
28
9
7
x
y
=
=
.
Toaùn 9 Taøi lieäu daïy hoïc
57
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho h phương trình sau:
0
1.
x my
mx y m
−=
= +
Gii h phương trình với
a)
2m =
; ĐS:
2
1
x
y
=
=
.
b)
1m =
; ĐS: vô nghim.
c)
1m =−
. ĐS: vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
58
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Gii h phương trình quy về h phương trình bậc nht hai n
c 1: Biến đổi h phương trình đã cho về phương trình bc nht hai n.
c 2: Gii h phương trình bc nht hai n vừa tìm đưc bằng phương pháp
cộng đại s.
Ví d 3. Gii các h phương trình sau:
a)
(3 2)(2 3) 6
(4 5)( 5) 4 ;
x y xy
x y xy
+ =
+ =
ĐS:
2
3
x
y
=−
=−
.
b)
2( ) 3( ) 4
( ) 2( ) 5;
x y x y
x y x y
+ + =
+ + =
ĐS:
1
2
13
2
x
y
=−
=−
.
c)
(2 3)(2 4) 4 ( 3) 54
( 1)(3 3) 3 ( 1) 12;
x y x y
x y y x
+ = +
+ = +
ĐS:
3
1
x
y
=
=−
.
d)
2 5 27
52
34
1 6 5
.
37
y x y
x
x y x
y
−+
+ =
+−
+=
ĐS:
1
5
x
y
=−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
59
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Giải phương trình bằng phương pháp đặt n ph
ớc 1: Đặt n ph cho các biu thc ca h phương trình đã cho để được h
phương trình bậc nht hai n mi dng bản. Tìm điều kin ca n ph (nếu
có).
c 2: Gii h phương trình bậc nht hai n bằng phương pháp cộng đại s.
c 3: T các giá tr ca n ph nhận được, gii tìm các n ca h ban đầu.
c 4: Kim tra điu kin (nếu có) và kết lun nghim.
Ví d 4. Gii h phương trình sau:
a)
1 1 1
12
8 15
1;
xy
xy
+=
+=
ĐS:
28
21
x
y
=
=
.
b)
21
3
22
43
1;
22
x y y x
x y y x
+=
++
−=
++
ĐS:
1
3
1
3
x
y
=
=
.
c)
7 4 5
3
76
5 3 13
;
6
76
xy
xy
−=
−+
+=
−+
ĐS:
16
30
x
y
=
=
.
d)
2
2
2( 2 ) 1 0
3( 2 ) 2 1 7.
x x y
x x y
+ + =
+ =
ĐS:
1
3
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
60
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 4: Tìm điều kin ca tham s để h phương trình thỏa mãn điều kiện cho trưc
H phương trình bc nht hai n
ax by c
a x b c c
nhn cp s
00
;xy
làm nghim
khi và ch khi
00
00
ax by c
a x b y c
.
Đưng thng
( ) :d ax by c
đi qua điểm
0 0 0 0
;M x y ax by c
.
Ví d 5. Xác định
,ab
để h phương trình
1
ax y b
bx ay
−=
+=
có nghim là
( )
1; 3
.
ĐS:
3 2, 2 2 3ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 6. Xác định
,ab
để đường thng
( ): 2 3d y ax b=−
đường thng
( ): 2 3d bx ay
−=
đi qua
điểm
( 1;2)A
. ĐS:
71
,
10 5
ab= =
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
61
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Xác định
,ab
để đường thng
( ): ( 2 )d y a b x b= +
đi qua hai điểm
(2; 5), ( 3;2)AB−−
.
ĐS:
29 11
,
55
ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Hãy xác định hàm s bc nht tha mãn mỗi điều kin sau:
a) Đồ th hàm s đi qua hai điểm
(5; 4), (2; 1)AB−−
; ĐS:
1yx= +
.
b) Đồ th hàm s đi qua hai điểm
2 1 1 2
; , ;
3 3 3 3
CD
; ĐS:
( )
3 2 2 3 6yx= +
.
c) Đồ th hàm s đi qua điểm
(3; 1)E
cắt đường thng
( ): 2 4d y x
=+
tại điểm hoành đ
bng
1
. ĐS:
35
44
yx= +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Vi giá tr nào ca
m
thì đường thng
( ):( 2) 4 1d m x y m + =
đi qua giao điểm ca hai
đường thng
1
( ): 4 6 0d x y+ =
2
( ):4 3 5d x y−=
. ĐS:
1m =−
.
Toaùn 9 Taøi lieäu daïy hoïc
62
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 10. Vi giá tr nào ca
m
thì ba đường thng
1
( ):3 2 4d x y+=
,
2
( ):2 ( 1)d x m y m + =
3
( ): 2 3d x y+=
đồng quy. ĐS:
1
9
m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 11. Xác định
m
để đường thng
( ): 2 1d y x=−
đường thng
( ): (2 3) 2 0d x m y
+ + + =
ct nhau ti một điểm
a) Nm trên trc hoành; ĐS:
m
.
b) Nm trên trc tung; ĐS:
1
2
m =−
.
c) Thuc góc phần tư thứ nht; ĐS:
1
2
m −
.
d) Nằm trên đường thng
1
( ): 2 2 0d x y + =
. ĐS:
5
2
m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
63
d 12. Tìm giao điểm của hai đường thng
đường thng
( ): (2 1) 3 0d x b y a
+ + =
biết rng
d
đi qua điểm
(2; 1)A
()d
đi qua điểm
(1; 2)B
.
ĐS:
(11; 4)M
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Gii các h phương trình sau:
a)
3 2 4
2 5;
xy
xy
−=
+=
ĐS:
2
1
x
y
=
=
.
b)
2 3 1
3 4 12
43
;
5 2 10
xy
xy
=
+=
ĐS:
1
1
x
y
=
=−
.
c)
( )
5 3 3 5
2 5 2 3 3;
xy
xy
=
+ =
ĐS:
1
2
15 3 3
6
x
y
=
+
=−
.
d)
2,1 1,4 3,5
4,5 2,25 2,4.
xy
xy
+ =
=
ĐS:
43
15
34
5
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
64
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho h phương trình sau
31
1.
mx y m
x my m
+ =
+ = +
Gii h phương trình với
a)
2m =−
; ĐS:
5
3
x
y
=
=
.
b)
1m =
; ĐS: vô s nghim.
c)
1m =−
. ĐS: vô nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Gii các h phương trình sau
a)
2( ) 3( ) 9
5( ) 7( ) 8;
x y x y
x y x y
+ + =
+ =
ĐS:
2
1
x
y
=
=
.
b)
( )( 1) ( )( 1) 2( 1)
( )( 1) ( )( 2) 2 .
x y x x y x xy
y x y y x y xy
+ = + + +
+ = +
ĐS:
1
1
3
x
y
=−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
65
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Gii các h phương trình sau
a)
23
1
21
11
2;
21
xy
xy
−=
−−
+=
−−
ĐS:
19
7
8
5
x
y
=
=
.
b)
2
3
11
3
1;
11
xy
xy
xy
xy
+=
++
+ =
++
ĐS:
2
1
2
x
y
=−
=−
.
c)
7 5 9
2 1 2
32
4;
21
x y x y
x y x y
−=
+ +
+=
+ +
ĐS:
1
2
x
y
=
=
.
d)
3 1 2 1 4
2 1 1 5.
xy
xy
=
+ =
ĐS:
5
2
x
y
=
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
66
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho h phương trình
2 ( 2) 9
( 3) 2 5
mx n y
m x ny
+ =
+ + =
. Tìm giá tr ca
,mn
để h có nghim là
(3; 1)
. ĐS:
2, 5mn==
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Xác định
,mn
để đường thng
( ):3 9d nx my =
đường thng
( ): 2 16d mx y n
+=
đi
qua điểm
(2;5)A
. ĐS:
3, 1mn==
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Xác định
,mn
để đường thng
( ): ( 2 ) 2 0d mx m n y+ =
đi qua hai điểm
(1; 1), ( 2;3)AB−−
. ĐS:
8, 1mn==
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
67
Bài 8. Hãy xác định hàm s bc nht tha mãn mỗi điều kin sau
a) Đồ th hàm s đi qua hai điểm
(1; 3), (2;3)AB
; ĐS:
69yx=−
.
b) Đồ th hàm s đi qua hai điểm
( )
1 2; 2C −−
( )
2 1; 2 1D −−
; ĐS:
3 2 1
22
yx
+
=−
.
c) Đồ th hàm s đi qua điểm
(1;3)E
cắt đường thng
( ): 2 4d y x=−
tại điểm hoành đ bng
3
. ĐS:
17
22
yx= +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Vi giá tr nào ca
m
thì đường thng
( ):2 ( 1) 3d mx m y+ =
đi qua giao điểm ca hai
đường thng
1
( ):2 3 2 0d x y+ + =
2
( ):3 2 3d x y =
. ĐS:
3
2
m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Tìm
m
để ba đường thng
1 2 3
( ):2 5,( ): 3 4 5,( ): (2 3) 1d x y d x y d y m x = + = =
đồng
quy. ĐS:
21
10
m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
68
...........................................................................................................................................................................................................................................................................
Bài 11. Xác định
m
để đường thng
( ): 2 1d y mx m= +
đường thng
( ):3 2 0d x y
−+=
ct
nhau ti một điểm:
a) Nm trên trc hoành; ĐS:
3m =−
.
b) Nm trên trc tung; ĐS:
3m =
.
c) Thuc góc phần tư thứ ba; ĐS:
3
2
m
hoc
1m −
.
d) Nằm trên đường thng
1
( ): 2 3d y x=
. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Tìm giao điểm của hai đường thng
( ): 2d y ax a b=
đường thng
( ): (3 1) 10d ax b y
=
, biết rng
()d
đi qua điểm
( 3;5)A
()d
đi qua điểm
(2; 1)B
.
ĐS:
29
;
13 13
M

−−


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
69
D. BÀI TP V NHÀ
Bài 13. Gii các h phương trình sau
a)
22
4 3 1;
xy
xy
+=
−=
ĐS:
7
10
3
5
x
y
=
=
.
b)
23
3
54
31
2;
22
xy
xy
−=
+ =
ĐS:
0
4
x
y
=
=−
.
c)
( )
( )
3 1 3 1
1 3 3 1;
xy
xy
+ + =
+ =
ĐS:
1 2 3
2 3 1
x
y
=+
=−
.
d)
7,5 3,6 1,2
2 0,9 3.
xy
xy
+ =
=
ĐS:
108
5
134
3
x
y
=−
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
70
Bài 14. Cho h phương trình sau:
2
4 6.
mx y m
x my m
−=
= +
Gii h phương trình với
a)
1m =
; ĐS:
5
3
1
3
x
y
=
=−
.
b)
2m =
; ĐS: vô nghim.
c)
2m =−
. ĐS: vô s nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Gii các h phương trình sau bằng phương pháp cộng đại s
a)
11
( 2)( 3) 50
22
11
( 2)( 2) 32;
22
x y xy
xy x y
+ + =
=
ĐS:
26
8
x
y
=
=
.
b)
( 20)( 1)
( 10)( 1) ;
x y xy
x y xy
+ =
+ =
ĐS:
40
3
x
y
=
=
.
c)
2( ) 3( ) 5
4( ) ( ) 3;
x y x y
x y x y
+ =
+ + =
ĐS:
0
1
x
y
=
=
.
d)
3 5 10 3
2
15 10 6
2 3 2 5
.
4 4 20 4
y x y x
x y y x
+ +
=
−−
+ = +
ĐS:
4
2
x
y
=
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
71
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Gii h phương trình sau:
a)
11
1
24
5;
xy
xy
−=
+=
ĐS:
2
3
2
x
y
=
=
.
b)
25
3
33
1 2 3
;
3 3 5
x y x y
x y x y
−=
−−
+=
−−
ĐS:
1
2
x
y
=
=
.
c)
3 2 16
2 3 11;
xy
xy
+=
=
ĐS:
4
25
x
y
=
=
.
d)
22
22
13
3 2 6.
xy
xy
+=
=
ĐS:
( 2;3),( 2; 3),(2; 3),(2;3)S =
.
Toaùn 9 Taøi lieäu daïy hoïc
72
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Xác định
,ab
để h phương trình
32
()
ax by
a b x ay b
−=
+ + =
có nghim là
(3; 1)
.
ĐS:
11
,
44
ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Xác định
,ab
để đường thng
( ): (2 3 ) 3d y a b x a= +
đường thng
( ): 2( ) 2 0d x a b y
+ =
đi qua điểm
(1;3)A
. ĐS:
51
,
63
ab==
.
Toaùn 9 Taøi lieäu daïy hoïc
73
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 19. Xác định
,ab
để đường thng
( ): 2 2 1d y ax b= +
đi qua hai điểm
(1;3), ( 2;5)AB
.
ĐS:
17
,
33
ab= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 20. Hãy xác định hàm s bc nht tha mãn mỗi điều kin sau:
a) Đồ th hàm s đi qua hai điểm
(2;1), (1;2)AB
; ĐS:
3yx= +
.
b) Đồ th hàm s đi qua hai điểm
( ) ( )
5 2;2 , 2 5; 2CD +
; ĐS:
5yx= +
.
c) Đồ th hàm s đi qua điểm
(3; 2)E
cắt đường thng
( ): 3 2d y x
= +
tại điểm hoành đ
bng
2
. ĐS:
28yx=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
74
Bài 21. Xác định giá tr ca
m
để các đường thẳng sau đồng quy:
1
3 11
( ):
22
d y x=−
,
2
43
( ):
55
d y x=−
3
( ): 3 1d mx y m =
. ĐS:
7
3
m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 22. Xác định
m
để đường thng
( ): ( 3) 2d y m x= +
đường thng
( ): 2 1 0d x y
=
ct
nhau ti một điểm:
a) Nm trên trc hoành; ĐS:
1m =−
.
b) Nm trên trc tung; ĐS:
m
.
c) Thuc góc phần tư thứ nht; ĐS:
5
1
2
m
.
d) Nằm trên đường thng
1
( ): 2d y x=−
. ĐS:
2m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 23. Tìm giao điểm của hai đường thng
( ): (2 5)d y a x b=
đường thng
( ): 3 0d ax by
+ =
biết rng
d
đi qua điểm
(1;2)A
()d
đi qua điểm
( 2;3)B
.ĐS:
( 1;0)M
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
75
Bài 5. GII BÀI TOÁN BNG CÁCH LẬP PHƯƠNG TRÌNH
A. KIN THC TRNG TÂM
Các bước gii bài toán bng cách lập phương trình
c 1. Lp h phương trình.
Chn các n số, đặt điều kiện và đơn vị phù hp cho n s;
Biu diễn các đại lượng chưa biết qua n s;
Thiết lp h phương trình biểu th mi quan h gia n s các đại lượng đã biết;
c 2. Gii h phương trình vừa lập được;
c 3. Đối chiếu nghim của phương trình với điu kin ca n s (nếu có) c 1, t đó
đưa ra kết lun cn tìm.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Bài toán v quan h gia các s
Thc hiện các bước gii trong phn kiến thc trng tâm.
Chú ý: vi a, b, c là các ch s t 0 đến 9, ta có
S t nhiên có hai ch s:
10ab a b
.
S t nhiên có ba ch s:
100 10abc a b c
.
Ví d 1. Cho mt s t nhiên có hai ch s, biết tng hai ch s ca s đó bằng
13
và nếu chia ch
s hàng chục cho hàng đơn vị thì được thương là
2
1
. Tìm s đó. ĐS:
94
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 2. Cho hai s t nhiên biết tng ca chúng
33
nếu ly s ln chia cho s thì được
thương là
4
3
. Tìm hai s đã cho. ĐS:
27
6
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
76
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho mt s t nhiên có hai ch s,
2
ln ch s hàng chc lớn hơn
3
ln ch s hàng đơn
v
1
. Nếu đổi ch hai ch s ca s đó cho nhau ta đưc mt s mi nh hơn số đã cho
18
đơn
v. Tìm s đó. ĐS:
53
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 4. Tng ch s ng đơn vị
5
ln ch s hàng chc ca mt s hai ch s
21
. Nếu
đổi ch ch s hàng chục hàng đơn v cho nhau thì được s mi lớn hơn số ban đầu
27
đơn
v. Tìm s đó. ĐS:
36
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
77
Dng 2: Bài toán v chuyển động
Chú ý các công thc:
S vt
, trong đó S là quãng đường, v là vn tc và t là thi gian.
Trong bài toán chuyển động trên mặt nước, ta có
Vn tc xuôi dòng = vn tc thc + vn tốc dòng nước.
Vn tốc ngược dòng = vn tc thc vn tốc dòng nước.
Vn tc thc luôn lớn hơn vận tốc dòng nước.
d 5. Một ô đi từ A đến B cách nhau
115
km gồm hai đoạn đường nha đường si. Thi
gian xe đi trên đoạn đường nha và si lần lượt
1
gi
2
gi. Tính vn tc của ô tô đi trên từng
đoạn đường, biết trên đoạn đường nha vn tc ô tô lớn hơn trên đoạn đường si là
25
km /h.
ĐS:
55
km/h và
53
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Mt ô tô xut phát t tỉnh A và đi đến tnh B vi vn tc là
30
km/h. Sau khi đến B người
đó quay trở v A vi vn tc
40
km/h. Tính thi gian của ô lúc đi lúc về, biết tng thi gian
c đi lẫn v
7
gi. ĐS:
4
gi
3
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
78
d 7. Một ô đi từ A đến B vi vn tc thi gian d định. Nếu người đó tăng vn tc thêm
20
km/h thì đến B sớm hơn dự định
1
gi Nếu người đó giảm vn tc
10
km/h thì đến B mun
hơn
1
gi. Tính vn tc, thi gian d định và độ dài quãng đường AB.
ĐS:
40
km/h,
3
gi,
120
km.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 8. Một người đi xe máy d định đi từ A đến B trong mt thi gian nhất định, nếu người này
tăng tốc thêm
15
km/h thì s đến B sớm hơn
1
gi, còn nếu xe chy vi vn tc giảm đi
15
km/h
thì s đến B chậm hơn
2
giờ. Tính quãng đường AB. ĐS:
180
km.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 9. Mt ca chy trên sông trong
3
gi xuôi dòng
38
km ngược dòng
64
km. Mt ln
khác cũng chạy trên khúc sông đó ca nô y chy trong
1
gi xuôi dòng
19
km ngược dòng
16
km. Hãy tính vn tc riêng ca ca nô và vn tốc dòng nước, biết rng các vn tốc này không đổi.
ĐS:
35
km/h và
3
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
79
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 10. Hai bến sông A, B cách nhau
200
km. Mt ca xuôi dòng t bên A đến bến B ri
ngược t B tr v A hết tng thi gian là
9
gi. Biết thi gian ca nô xuôi dòng
5
km bng thi gian
ca nô ngược dòng
4
km. Tính vn tc của ca nô khi nước yên lng và vn tc của dòng nước.
ĐS:
45
km/h và
5
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 11. Hai xe khi hành cùng mt c t hai tnh A B cách nhau
100
km, đi ngược chiu
gp nhau sau
2
gi. Nếu xe th nht khởi hành trước xe th hai
2
gi
30
phút thì hai xe gp nhau
khi xe th hai đi được
30
phút. Tìm vn tc ca mi xe. ĐS:
30
km/h và
20
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
80
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Hai địa điểm A B cách nhau
120
km. Một xe đạp và xe máy khởi hành cùng lúc đi t
A đến B, sau
3
gi thì khong cách gia hai xe
30
km. Tìm vn tc hai xe, biết thời gian đ đi
hết quãng đường AB của xe đạp nhiều hơn xe máy
2
gi. ĐS:
30
km/h và
20
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 13. Mt ô mt xe máy cùng khi hành t A để đi đến B vi vn tc mỗi xe không đổi
trên toàn b quãng đường AB dài
200
km. Do vn tc xe ô tô lớn hơn vận tc xe máy
30
km/h nên
ô tô đến sớm hơn xe máy
6
gi. Tính vn tc mi xe. ĐS:
50
km/h và
20
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Mt xe khách và mt xe Du lch khi hành cùng mt lúc t Nội đi đến Hi Phòng. Xe
Du lch vn tc lớn hơn xe khách
10
km/h, do đó xe đã đến Hải Phòng trước xe khách
30
phút. Tính vn tc mi xe, biết khong cách gia Hà Ni và Hi Phòng là
100
km.
ĐS:
50
km/h và
40
km/h.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
81
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Cho hai stng bng
57
. Bn ln ca s lớn hơn
2
ln ca s ln
6
. Tìm hai s đã
cho. ĐS:
20
37
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Tìm
2
s t nhiên, biết rng tng ca chúng bng
112
nếu ly s ln chia cho s nh thì
được thương là
4
, s dư là
2
. ĐS:
90
22
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
82
Bài 3. Cho mt s hai ch s, nếu đổi ch hai ch s của ta được mt s mi lớn hơn số đã
cho là
18
. Tng ca s đã cho và số mi to thành là
132
. Tìm s đã cho. ĐS:
57
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Một ô đi t A đến B vi vn tc thi gian d định. Nếu người đó tăng vận tc thêm
25
km/h thì đến B sớm hơn d định
1
gi. Nếu người đó giảm vn tc
20
km/h thì đến B muộn hơn
2
gi. Tính vn tc, thi gian d định và độ dài quãng đường AB.
ĐS:
50
km/h,
3
gi,
150
km.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Hai xe khi hành cùng mt lúc t hai tnh A và B, cách nhau
120
km, đi ngược chiu gp
nhau sau
3
gi. Nếu xe th nht khởi hành trước xe th hai
2
gi
40
phút thì hai xe gp nhau khi
xe th hai đi được
1
gi. Tìm vn tc ca mi xe. ĐS:
30
km/h và
10
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
83
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Mt ca nô chy trên sông, xuôi dòng
66
km và ngược dòng
54
km hết tt c
4
gi. Mt ln
khác cũng chạy trên khúc sông đó, xuôi dòng
11
km ngược dòng
18
km hết tt c
1
gi. Hãy
tính vn tốc khi xuôi dòng và ngược dòng ca ca nô, biết vn tốc dòng nước và vn tc riêng ca ca
nô không đổi. ĐS:
30
km/h và
3
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Mt ô và mt xe y cùng khi hành t A đ đi đến B vi vn tc mỗi xe không đổi trên
toàn b quãng đường AB dài
280
km. Do vn tc xe ô tô lớn hơn vận tc xe máy là
30
km/h nên ô
tô đến sớm hơn xe máy
3
gi. Tính vn tc mi xe. ĐS:
70
km/h và
40
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
84
Bài 6. GII BÀI TOÁN BNG CÁCH LẬP PHƯƠNG TRÌNH (TT)
A. KIN THC TRNG TÂM
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dng 1: Bài toán v công vic làm chung và làm riêng
Lưu ý sử dng các kết qu sau:
Nếu gi (hoc ngày) làm xong công vic thì mi gi (hoặc ngày) làm được công
vic đó.
Nếu trong gi làm đưc công vic thì gi làm đưc công vic.
d 1. Hai đội công nhân cùng làm 1 đoạn đưng trong
30
ngày thì xong. Mi ngày, phn vic
đội A làm được gp hai lần đội B. Hi nếu làm mt mình thì mỗi đội làm xong đoạn đường đó
trong bao lâu. ĐS:
45
ngày và
90
ngày.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 2. Hai đi công nhân cùng làm mt công vic. Nếu hai đội làm chung thì hoàn thành sau
12
ngày. Nếu mỗi đội làm riêng thì đi I s hoàn thành công vic chậm hơn đội II là
10
ngày. Hi nếu
làm riêng thì mỗi đội phải làm trong bao nhiêu ngày để hoàn thành công việc đó?
ĐS:
30
ngày và
20
ngày.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
85
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 3. Để hoàn thành mt công vic, hai t làm chung d kiến hoàn thành sau
4
gi. Trên
thc tế sau
3
gi hai t làm chung thì t I b điều đi làm việc khác, t II hoàn thành nt công vic
còn li trong
3
gi. Hi nếu mi t làm riêng thì sau bao lâu s hoàn thành công vic?
ĐS:
6
gi
12
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 4. Hai người th quét sơn một tòa nhà. Nếu h cùng làm trong
12
ngày thì xong công trình.
Tuy nhiên thc tế hai người làm cùng nhau trong
4
ngày tngười th nht được chuyển đi làm
công việc khác, người th hai làm mt mình trong
14
ngày na mi xong. Hi nếu làm riêng thì
mỗi người hoàn thành công việc đó trong bao lâu. ĐS:
28
ngày và
21
ngày.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
86
d 5. Hai vòi nước cùng chy vào mt b không nước thì sau
4
gi đầy b. Nếu lúc đầu ch
vòi I chy mt mình trong
1
giờ, sau đó mở thêm vòi II cùng chy trong
3
gi nữa thì được
5
6
b.
Tính thi gian mi vòi chy mt mình đầy b. ĐS:
12
gi
6
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 6. Hai vòi nước cùng chy vào b trng trong
12
gi thì đầy b. Nếu vòi I chy trong
3
gi
ri khóa li, vòi II chy tiếp trong
4
gi thì được
2
7
b. Hi mi vòi chy riêng trong bao lâu thì
đầy b? ĐS:
21
gi
28
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Bài toán v năng suất lao động
Chú ý công thc
.S N t
. Trong đó
S: lưng công việc làm đưc.
N: năng suất lao động (tc khối lượng công vic hoàn thành trong một đơn vị thi
gian).
t: thời gian để hoàn thành công vic.
Toaùn 9 Taøi lieäu daïy hoïc
87
d 7. Một phân xưởng theo kế hoch cn phi sn xut
140
sn phm trong mt s ngày quy
định. Do mỗi ngày phân xưởng đó sn xuất vượt mc
2
sn phẩm nên đã hoàn thành sớm hơn dự
định
8
ngày. Hi mỗi ngày phân xưởng phi sn xut bao nhiêu sn phm? ĐS:
5
sn phm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 8. Một xưởng may lp kế hoch may mt hàng, theo d định mi ngày may xong
60
áo.
Nhưng nhờ ci tiến k thuật, xưởng đã may được
120
áo mỗi ngày. Do đó xưởng không nhng
hoàn thành trước thi hn
8
ngày còn may thêm
240
áo. Hi theo kế hoch phân xưởng phi
may bao nhiêu áo? ĐS:
1200
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Bài toán v t l phần trăm
Nếu đại lượng a được tăng
%m
thì ta đưc mt mt lưng mi là
.%a a m
.
d 9. Theo kế hoch hai t sn xut
800
sn phm trong thi gian nhất định. Do ci tiến k
thut t I đã vượt mc
18%
, t II vượt mc
25%
. Do vy trong thời gian quy định hai t vượt mc
165
sn phm. Hi s sn phẩm được giao theo kế hoch ca mi t là bao nhiêu?
ĐS:
500
sn phm và
300
sn phm.
Toaùn 9 Taøi lieäu daïy hoïc
88
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Trong tháng đầu hai t công nhân sn xuất được
300
chi tiết máy. Sang tháng th hai t I
sn xuất vượt mc
25%
, t II vượt mc
20%
. Do đó cuối tháng c hai t sn xuất được
370
chi
tiết máy. Hi rằng trong tháng đầu mi t sn xuất được bao nhiêu chi tiết máy.
ĐS:
200
chi tiết máy và
100
chi tiết máy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 4: Bài toán v ni dung hình hc
S dng các công thc tính chu vi, din tích các hình (tam giác, hình ch nht,
hình vuông,…) hoặc vn dng tính cht đc bit của các hìnhy để thiết lập đưc
h phương trình biểu th mi quan h gia các n. T đó, tìm được các đại lượng
trong bài toán.
Ví d 11. Cho mt hình ch nht. Nếu tăng độ dài mi cnh ca nó lên
1
cm thì din tích ca hình
ch nhật tăng thêm
19
cm
2
. Nếu chiu rộng tăng thêm
1
cm, chiu dài giảm đi
2
cm thì din tích
hình ch nht giảm đi
8
cm
2
. Tính chiu dài và chiu rộng ban đầu ca hình ch nht.
ĐS:
10
m và
8
m.
Toaùn 9 Taøi lieäu daïy hoïc
89
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 12. Mt miếng đất hình ch nht chu vi
160
m. Nếu tăng chiều rng thêm
10
m gim
chiều dài đi
10
m thì din ch miếng đất tăng thêm
100
m
2
. Tính chiu dài chiu rộng ban đầu
ca mảnh đất. ĐS:
50
m và
30
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 13. Mt mảnh vườn hình ch nhật độ dài đường chéo
10
m, chiu dài lớn hơn chiều
rng là
2
m. Tính chiu dài và chiu rng mảnh vườn đó. ĐS:
8
m và
6
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
90
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Một khu đất hình ch nhật có độ dài đưng chéo là
13
m, chiu dài lớn hơn chiều rng là
7
m. Tính chiu dài và chiu rng của khu đất đó. ĐS:
12
m và
5
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 5: Bài toán v ni dung sp xếp chia đều
S dng tính cht v chia hết và chia có dư.
Lưu ý: Nếu chia s a cho s b có thường là q và dư r thì
a bq r
.
d 15. Trong mt bui tọa đàm, một lp
25
khách mời đến giao lưu. lớp đã
45
hc
sinh nên phi thêm mt dãy ghế na và mi y ghế xếp thêm hai ch ngi. Biết mỗi y đều
s người ngồi như nhau và ngồi không quá năm người. Hi lp học lúc đầu có bao nhiêu dãy ghế?
ĐS:
9
dãy ghế.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
91
d 16. Người ta cn ch mt s ng hàng. Nếu xếp vào mi xe
10
tn thì còn tha li
3
tn,
nếu xếp vào mi xe
13
tn thì còn th ch thêm
12
tn na. Hi bao nhiêu xe tham gia ch
hàng? ĐS:
5
xe.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Để hoàn thành công vic hai t làm chung trong
8
gi. Tuy nhiên sau
6
gi làm chung t
hai được điều đi làm việc khác, t mt hoàn thành nt công vic còn li trong
6
gi. Hi hai t làm
riêng sau bao lâu hoàn thành xong công vic. ĐS:
12
gi
24
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Nếu hai vòi nước cùng chy vào b sau
6
gi thì đầy. Nếu m vòi th nht
2
gi đóng lại,
sau đó mở vòi th hai
5
gi thì
được
8
15
b. Hi mi vòi chy mt mình thì sau bao lâu b đầy. ĐS:
10
gi
15
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
92
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Nếu hai vòi nước cùng chy vào b sau
4
gi thì đươc
5
6
b. Nếu lúc đầu ch m vòi th
nht chy mt mình trong
3
giờ, sau đó mở thêm vòi th hai chy trong
3
gi thì đầy b. Hi mi
vòi chy mt mình thì sau bao lâu b đầy. ĐS:
8
gi
12
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Một đội máy cày d định mi ngày y
0,6
ha. Khi thc hin mỗi ngày y đưc
0,78
ha.
vy đội không những đã y xong trước thi hn
2
ngày còn y thêm
0,6
ha na. Tính
diện tích đội phi cày theo d định. ĐS:
7,2
ha.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
93
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Một xưởng may theo kế hoch cn phi sn xut
160
cái áo trong mt s ngày quy đnh. Do
mỗi ngày phân xưởng đó sản xuất vượt mc
4
cái áo nên phân xưởng đã hoàn thành sớm hơn dự
định
2
ngày. Hi mỗi ngày phân xưởng phi sn xut bao nhiêu sn phm theo d định? ĐS:
16
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Năm ngoái, hai đơn vị sn xut nông nghip thu hoạch được
680
tấn thóc. Năm nay đơn vị
th nhất vượt mc
18%
, đơn vị th hai làm vượt mc
20%
so với năm ngoái. Do đó cả hai đơn vị
thu hoạch vượt mc
129
tn thóc. Hỏi năm ngoái mỗi đơn vị thu hoạch được bao nhiêu tn thóc.
ĐS:
350
sn phm và
330
sn phm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Tháng th nht hai t sn xuất được
700
sn phm. Sang tháng th hai t I vượt
18%
, t II
vượt
30%
. Do đó cuối tháng c hai t sn xuất được
880
sn phm. Tính xem trong tháng th nht
mi t sn xuất được bao nhiêu sn phm. ĐS:
250
450
.
Toaùn 9 Taøi lieäu daïy hoïc
94
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Mt miếng đất hình ch nht có chu vi
60
m. Nếu tăng chiều rng thêm
2
m gim chiu
dài đi
5
m thì din tích miếng đất giảm đi
20
m
2
. Tính chiu dài và chiu rng ban đầu ca mnh
đất. ĐS:
20
m và
10
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho mt miếng đất hình ch nht. Nếu ng chiều rng thêm
1
m tăng chiều dài thêm
2
m thì din tích miếng đất tăng lên
37
m
2
. Nếu gim chiu rng thêm
1
m và tăng chiu dài thêm
1
m thì din tích miếng đất giảm đi
6
m
2
. Tính chiu dài và chiu rộng ban đầu ca mảnh đất.
ĐS:
15
m và
10
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
95
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Mt mảnh vườn hình ch nhật độ dài đường chéo
30
m, chiu dài lớn hơn chiều rng
6
m. Tính chiu dài và chiu rng mảnh vườn đó. ĐS:
24
m và
18
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Một đoàn xe vận ti d định điều mt s xe cùng loại đi vận chuyn
60
tn hàng. Lúc sp
khởi hành, đoàn xe được giao ch thêm
25
tn nữa, do đó phải điều thêm
1
xe cùng loi và mi xe
phi ch thêm
2
tn. Tính s xe phải điều theo d định. Biết mi xe ch s hàng như nhau và số xe
nh hơn
10
. ĐS:
4
xe.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
96
ÔN TẬP CHƯƠNG III
A. KIN THC TRNG TÂM
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Bài 1. Gii các h phương trình sau:
a)
24
3 2 7
xy
xy
+=
+=
ĐS:
(1;2)
.
b)
61
1
32
3.
x y x y
x y x y
−=
+−
+=
+−
ĐS:
(2;1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Gii các h phương trình sau:
a)
23
3 2 1
xy
xy
+=
−=
; ĐS:
(1;1)
.
b)
15 6
9
34
7
xy
xy
−=
+=
. ĐS:
(1;1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
97
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho h phương trình
22
.
xy
mx y m
+=
−=
a) Tìm
m
để h phương trình có một nghim duy nht, tìm nghim duy nhất đó. ĐS:
1
2
m −
.
b) Tìm
m
để h phương trình vô nghiệm. ĐS:
1
2
m =−
.
c) Tìm
m
để h phương trình vô số nghim. ĐS: không tn ti.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho h phương trình
1
3.
xy
x my
−=
+=
a) Gii h phương trình với
1m =
. ĐS:
( ; ) (2;1)xy=
.
b) Tìm
m
để h phương trình có một nghim duy nht, tìm nghim duy nhất đó. ĐS:
1m −
.
c) Tìm
m
để h phương trình vô nghiệm. ĐS:
1m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
98
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Mt mảnh đất hình ch nht chu vi
80
m. Nếu tăng chiều dài thêm
3
m, chiu rng thêm
5
m thì din tích ca mảnh đất tăng thêm
195
m
2
. Tính chiu dài, chiu rng ca mảnh đất.
ĐS:
30
m và
10
m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Một khu vườn hình ch nht có chu vi bng
48
m. Nếu tăng chiều rng lên bn ln và chiu
dài lên ba ln thì chu vi của khu vườn s
162
m. Hãy tìm din tích của khu vườn ban đầu.
ĐS:
135
m
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
99
Bài 7. Hai xí nghip theo kế hoch phi làm tng cng
360
dng c. Thc tế, xí nghiệp I vượt mc
kế hoch 10%, nghiệp II vượt mc kế hoch 15%, do đó cả hai xí nghiệp đã làm được
404
dng
c. Tính s dng c mi xí nghip phi làm theo kế hoch.
ĐS: xí nghip I:
200
; xí nghip II:
160
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Theo kế hoch hai t sn xut
600
sn phm trong mt thi gian nhất định. Do áp dụng
thut mi nên t I đã t mc 18% t II đã vượt mc 21%. vy trong thời gian quy định h
đã hoàn thành vượt mc
120
sn phm. Hi s sn phẩm được giao ca mi t theo kế hoch?
ĐS:
200
,
400
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Để hoàn thành mt công vic hai t phi làm chung trong
6
gi. Sau
2
gi làm chung thì t
hai b điều chuyển đi làm vic khác, t mt hoàn thành nt công vic n li trong
10
gi. Hi nếu
mi t làm riêng thì sau bao lâu s hoàn thành công vic? ĐS:
15
gi
10
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
100
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Hai người th cùng làm mt công vic trong
7
gi
12
phút thì xong công vic. Nếu người
th nht làm trong
5
giờ, người th hai làm trong
6
gi thì c hai người làm được
3
4
công vic.
Hi mỗi người làm mt mình công việc đó thì mấy gi xong? ĐS:
12
gi,
18
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Quãng đường t
A
đến
B
dài
90
km. Một người đi xe y từ
A
đến
B
. Khi đến
B
,
người đó nghỉ
30
phút ri quay tr v
A
vi vn tc lớn hơn lúc đi
9
km/h. Thi gian k t lúc
bắt đầu đi từ
A
đến lúc tr v đến
A
5
gi. Tính vn tốc xe máy lúc đi từ
A
đến
B
.
ĐS:
27
km/h và
21
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
101
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Mt ô và mt xe máy cùng khi hành t
A
để đi đến
B
dài
120
km vi vn tc mi xe
không đổi trên toàn b quãng đường. Do vn tc ô lớn hơn vận tc xe y
10
km/h nên ô
đến
B
sớm hơn xe máy
24
phút. Tính vn tc mi xe. ĐS:
60
km/h và
50
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 13. Mt ca chy trên sông trong
8
gi, xuôi dòng
81
km ngược dòng
105
km. Mt ln
khác cũng chạy trên khúc sông đó ca chy trong
4
gi, xuôi dòng
54
km ngược dòng
42
km. Tính vn tốc khi xuôi dòng ngược dòng ca ca nô, biết rng vn tốc dòng nước vn tc
riêng của ca nô là không đổi. ĐS:
27
km/h và
21
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Một ca đi xuôi dòng
48
km rồi đi ngược dòng
22
km. Biết rng thời gian đi xuôi dòng
lớn hơn thời gian đi ngược dòng
1
gi vn tốc đi xuôi lớn hơn vận tốc đi ngược
5
km/h.
Tính vn tốc ca nô lúc đi ngược dòng. ĐS:
11
km/h hoc
10
km/h.
Toaùn 9 Taøi lieäu daïy hoïc
102
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 15. Gii các h phương trình sau:
a)
24
3 2 7
xy
xy
+=
+=
; ĐS:
( ; ) (1;2)xy=
.
b)
11
2
21
23
1.
21
xy
xy
+=
−−
−=
−−
ĐS:
19 8
( ; ) ;
73
xy

=


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Cho h phương trình
10
2 3 6
mx y
xy
+=
−=
.
a) Gii h phương trình với
1m =
. ĐS:
36 14
( ; ) ;
55
xy

=


.
Toaùn 9 Taøi lieäu daïy hoïc
103
b) Tìm
m
để h có nghim duy nht và tìm nghim duy nhất đó.
ĐS:
2
3
m −
;
36 28 6
( ; ) ;
3 2 3 2
m
xy
mm
+

=

++

.
c) Tìm
m
để h phương trình vô nghiệm. ĐS:
2
3
m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Cho mt hình ch nht. Nếu tăng đ dài mi cnh ca lên
1
cm thì din tích ca hình
ch nht s tăng thêm
13
cm
2
. Nếu gim chiều dài đi
2
cm, chiu rộng đi
1
cm thì din tích ca
hình ch nht s gim
15
cm
2
. Tính chiu dài và chiu rng ca hình ch nhật đã cho.
ĐS:
7
cm và
5
cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Trong tuần đầu hai t sn xuất được
1500
b qun áo. Sang tun th hai t mt sn xut
vượt mc
25
%, t hai gim mc 8% nên trong tun này c hai t sn xuất đưc
1677
b qun áo.
Hi tuần đầu, mi t sn xuất được bao nhiêu b? ĐS:
900
600
.
Toaùn 9 Taøi lieäu daïy hoïc
104
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 19. Hai vòi nước cùng chy vào b thì sau
4
gi
48
phút đầy b. Nếu vòi mt chy trong
4
gi, vòi hai chy trong
3
gi thì c hai vòi chảy được
3
4
b. Tính thi gian mi vòi chảy đầy b.
ĐS:
8
gi
12
gi.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 20. Mt xe khách và mt xe du lch khi hành đồng thi t
A
để đi đến
B
. Biết vn tc ca xe
du lch lớn hơn vận tc xe khách
20
km/h. Do đó xe du lịch đến
B
trước xe khách
50
phút.
Tính vn tc mi xe, biết quãng đường
AB
dài
100
km. ĐS:
60
km/h và
40
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
105
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 21. Mt tàu tun tra chy ngược dòng
60
km, sau đó chạy xuôi dòng
48
km trên cùng mt
dòng sông vn tốc ng nước
2
km/h. Tính vn tc ca tàu tuần tra khi nước yên lng, biết
thời gian xuôi dòng ít hơn ngược dòng
1
gi. ĐS:
22
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
106
ĐỀ KIỂM TRA CHƯƠNG 3 MÔN TOÁN 9 ĐỀ S 1
A. PHN TRC NGHIM
Khoanh tròn vào ch cái đứng trước câu tr lời đúng.
Câu 1. Tìm nghim tng quát của phương trình
2 1 0xy
.
A.
()
21
xt
t
yt
. B.
()
21
xt
t
yt
.
C.
2
()
1
xt
t
yt
. D.
()
1
xt
t
yt
.
Câu 2. Cho h phương trình
10
2 3 7
xy
xy
. Khẳng định nào dưới đây đúng?
A. H vô nghim. B. H có nghim duy nht.
C. H vô s nghim. D. Không xác định được.
Câu 3. Tìm gtr ca tham s
a
để đường thng
: 2 1 0d x y
song song với đường thng
2
: ( 2) 1d y a x a
.
A.
1a
. B.
2a
. C.
2a
. D. không có
a
.
Câu 4. Xác định
a
,
b
để đồ th hàm s
y ax b
đi qua hai điểm
(0;1)A
( ;2)Bl
.
A.
2, 1ab
. B.
1, 1ab
.
C.
2, 1ab
. D.
1, 1ab
.
Câu 5. Tìm giá tr ca tham s
m
để ba đường thng
21yx
,
2xy
,
( 1) 5a x y
đổng quy.
A.
0a
. B.
4a
. C.
3a
. D.
5a
.
Câu 6. H phương trình
23
24
xy
xy
có nghim là
A.
(1;2)
. B.
(2; 1)
. C.
(2;1)
. D.
( 1;2)
.
Câu 7. Cho h phương trình
24
5
x by
bx ay
. Tính giá tr ca biu thc
22
T a b
biết h đã cho
nhn
(1; 2)
làm mt nghim.
A.
7T
. B.
25T
. C.
5T
. D.
7T
.
Toaùn 9 Taøi lieäu daïy hoïc
107
Câu 8. Tìm giá tr ca
m
để nghim ca h phương trình
23
21
xy
xy
cũng là nghiệm của phương
trình
(2 1) 5 2m x y m
.
A.
4
3
m
. B.
4
3
m
. C.
1m
. D.
6m
.
B. PHN T LUN
Câu 9. Gii các h phương trình sau:
a)
3 4 7
2 1 0
xy
xy
; b)
2( 1) 4( 1) 3
3( 1) ( 1) 1
xy
xy
;
c)
( 1)( 1) 1
(4 1)(3 6) (6 1)(2 3).
x y xy
x y x y
Câu 10. Hai vòi nước cùng chy vào mt b không nước thì sau
12
gi đầy bể. Người ta m
hai vòi trong
4
gi rồi khóa vòi II để vòi I chy tiếp
14
gi na mới đầy b. Hi nếu mi vòi
chy mt mình thì bao lâu mới đầy b?
Câu 11. Cho phương trình trình
2mx y m
vi
m
là tham s.
a) Vi
1m
, tìm nghim tng quát và v đường thng biu din tp nghiệm cùa phương trình trên
h trc tọa độ.
b) Tìm
m
để phương trình đã cho cùng phương trình
1x y m
mt nghim chung duy
nht. Tìm nghiệm đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
108
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
109
ĐỀ KIỂM TRA CHƯƠNG 3 – MÔN TOÁN 9 ĐỀ S 2
A. PHN TRC NGHIM
Khoanh tròn vào ch cái đứng trước câu tr lời đúng.
Câu 1. Trong các phương trình dưới đây, phương trình nào là phương trình bậc nht hai n?
A.
10xy
. B.
( 1) 0x y y
.
C.
2
20x
. D.
2 ( 1) 3 1x x y
.
Câu 2. Tp nghim của phương trình
4 3 1xy
được biu din bởi đường thng
A.
41yx
. B.
41
33
yx
. C.
41yx
. D.
31
43
yx
.
Câu 3. Tìm
m
sao cho điếm
(2;1)M
thuộc đồ th hàm s
3 5 0mx y
.
A.
3m
. B.
4m
. C.
4m
. D.
3m
.
Câu 4. Cho ba đường thng
1
: 3 0d x y
,
2
:4d x y
,
3
: 0,5 5,5d x y
. Khẳng định
nào sau đây là đúng?
A.
1
d
2
d
ct nhau tại điểm
( 1;3)
. B.
1
d
2
d
ct nhau tại điểm
(1; 2)
.
C.
1
d
2
d
ct nhau tại điểm
1
3;
2
. D.
1
d
2
d
không ct nhau.
Câu 5. Phương trình đường thẳng đi qua hai điếm
(0;1)A
(1; 3)B
A.
12yx
. B.
20xy
. C.
21yx
. D.
21yx
.
Câu 6. Tìm tọa độ giao điểm của hai đường thng
2 1 0xy
43yx
A.
21
;
33
. B.
21
;
33
. C.
21
;
33
. D.
( 1;2)
.
Câu 7. Tìm giá tr ca tham s
a
để h phương trình
( 1) 1
( 1) 2
a x y a
x a y
vô nghim.
A.
0a
. B.
2a
. C.
1a
. D.
1a
.
Câu 8. Tìm giá tr ca tham s
a
để hai h phương trình
2 3 8
31
xy
xy
tương
đương.
A.
1a
. B.
2a
. C.
2a
. D.
4a
.
Toaùn 9 Taøi lieäu daïy hoïc
110
B. PHN T LUN
Câu 9. Gii các h phương trình
a)
2
2 3 0
xy
xy
; b)
12
3
34
1
xy
xy
; c)
14
13
2( 1) ( 1) 7.
xx
yy
xy
Câu 10. Mt ô mt xe máy cùng khi hành t
A
để đi đến
B
vi vn tc ca mi xe không
đổi trên toàn b quãng đưng
AB
dài
120
km. Do vn tc xe ô lớn hơn vận tc xe y
10
km/h nên xe ô tô đến
B
sớm hơn xe máy
36
phút. Tính vn tc ca mi xe.
Câu 11. Cho h phương trình
1
3
x my
mx y
vi
m
là tham s.
a) Gii h phương trình đã cho với
1m
.
b) Chng minh rng h phương trình đã cho luôn nghim vi mi giá tr ca
m
. Gi s
00
;xy
là nghim ca h. Chng minh rng
22
0 0 0 0
30x y x y
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
111
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
112
Bài 1. HÀM S
2
0y ax a
A. KIN THC TRNG TÂM
Nếu
0a
thì hàm s
2
y ax=
( 0)a
đồng biến khi
0x
và nghch biến khi
0x
.
Nếu
0a
thì hàm s
2
y ax=
( 0)a
đồng biến khi
0x
và nghch biến khi
0x
.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Tính giá tr ca hàm s ti một điểm cho trước
Thay giá tr ca
x
vào hàm s để tìm
y
.
Ví d 1. Cho hàm s
2
( ) 5y f x x==
.
a) Tìm giá tr ca hàm s khi
x
nhn các giá tr lần lượt là
1
;
0
;
2
4 12
.
ĐS:
(1) 5f =
;
(0) 0f =
;
( 2) 20f −=
;
(4 12) 140 80 3f =
.
b) Tìm các giá tr ca
a
, biết rng
( ) 15 10 2fa=−
. ĐS:
( 2 1)a =
.
c) Tìm điều kin ca
b
, biết rng
( ) 8 3f b b−
. ĐS:
1b
hoc
3
5
b
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho hàm s
2
()y f x x= =
.
a) Tìm giá tr ca hàm s khi
x
nhn các giá tr lần lượt là
2
;
0
;
3
6 2 5+
.
ĐS:
(2) 4f =−
;
(0) 0f =
;
( 3) 9f =
;
(6 2 5) 56 24 5f + =
.
Chương
4
Toaùn 9 Taøi lieäu daïy hoïc
113
b) Tìm các giá tr ca
a
biết rng
( ) 11 6 2fa= +
. ĐS:
(3 2)a =
.
c) Tìm điều kin ca
b
, biết rng
( ) 2 3f b b−
. ĐS:
1b
hoc
3b −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Biết rng din tích một tam giác đều cnh
a
được cho bi công thc
2
3
4
Sa=
.
a) Tính diện tích tam giác đều khi
a
nhn các giá tr lần lượt là
1
;
4
;
8
13 4 3
.
ĐS:
3 217 3 312
;4 3;16 3;
44
.
b) Nếu chiu dài
a
tăng ba lần thì din tích s tăng bao nhiêu lần? ĐS:
9
.
c) Tìm
a
, biết rng
11,63S =
cm
2
(làm tròn kết qu đến ch s thp phân th hai) ĐS:
5,18
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
114
Ví d 4. Viết công thc tính din tích hình vuông cnh
a
ri thc hin các yêu cu sau:
a) Tính din tích hình vuông khi
a
nhn các giá tr lần lượt là
2
;
5
;
7
3 2 3+
.
ĐS:
4;25;49;21 12 3+
.
b) Nếu độ dài
a
tăng bốn ln thì din tích s tăng lên bao nhiêu lần? ĐS:
16
.
c) Tìm
a
, biết rng
152,4S =
cm
2
(làm tròn kết qu đến ch s thp phân th ba) ĐS:
12,345
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Quãng đường chuyển động
S
(đơn vị tính bng mét) ca mt vật rơi từ đ cao
200
m ph
thuc vào thi gian
t
(đơn vị tính bằng giây) được cho bi công thc
2
2St=
.
a) Hi sau các khong thi gian lần lượt là
2
giây và
4
giây, vt này cách mặt đất bao nhiêu mét?
ĐS:
192
;
168
.
b) Sau thi gian bao nhiêu lâu thì vt tiếp đất? ĐS:
10
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
115
d 6. Mt khách du lịch chơi trò Bungee t mt y cu cách mặt đất
120
m. Quãng đường
chuyển động
S
(tính bng mét) ca người rơi phụ thuc vào thi gian
t
(tính bằng giây) được cho
bi công thc
2
4St=
.
a) Hi sau khong thi gian
3
giây du khách cách mặt đất bao nhiêu mét? ĐS:
84
.
b) Sau khong thi gian bao lâu thì du khách cách mặt đất
56
mét? ĐS:
4
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Xét tính đồng biến, nghch biến ca hàm s
Xét hàm s
2
( 0)y ax a
. Ta có
Nếu
0a
thì hàm s
2
y ax=
( 0)a
đồng biến khi
0x
và nghch biến khi
0x
.
Nếu
0a
thì hàm s
2
y ax=
( 0)a
đồng biến khi
0x
và nghch biến khi
0x
.
Ví d 7. Cho hàm s
2
(2 1)y m x=−
vi
1
2
m
. Tìm
m
để hàm s:
a) Đồng biến vi
0x
. ĐS:
1
2
m
.
b) Nghch biến vi
0x
. ĐS:
1
2
m
.
c) Có giá tr
4y =
khi
1x =−
. ĐS:
5
2
m =
.
d) Có giá tr ln nht là
0
. ĐS:
1
2
m
.
e) Có giá tr nh nht là
0
. ĐS:
1
2
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
116
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Cho hàm s
2
(3 4)y m x=+
vi
4
3
m
. Tìm
m
để hàm s:
a) Đồng biến vi
0x
. ĐS:
4
3
m −
.
b) Nghch biến vi
0x
. ĐS:
4
3
m −
.
c) Có giá tr
3y =−
khi
1x =
. ĐS:
7
3
m =−
.
d) Có giá tr ln nht là
0
. ĐS:
4
3
m −
.
e) Có giá tr nh nht là
0
. ĐS:
4
3
m −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
117
Ví d 9. Cho hàm s
22
( 4 6)y m m x= + +
.
a) Chng minh vi mi tham s
m
hàm s luôn nghch biến vi mi
0x
đồng biến vi mi
0x
.
b) Tìm các giá tr ca tham s
m
để khi
2
3
x =
thì
4
3
y =
. ĐS:
1
3
m
m
=−
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Cho hàm s
22
( 6 12)y m m x= +
.
a) Chng minh vi mi tham s
m
hàm s luôn nghch biến vi mi
0x
đồng biến vi mi
0x
.
b) Tìm các giá tr ca tham s
m
để khi
1
2
x =
thì
5
4
y =−
. ĐS:
32
32
m
m
=+
=−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Cho hàm s
2
1
()
4
y f x x==
.
a) Tìm các giá tr ca hàm s khi
x
nhn các giá tr lần lượt là
2
;
0
;
1
6 2 5
.
Toaùn 9 Taøi lieäu daïy hoïc
118
ĐS:
(2) 1f =
;
(0) 0f =
;
1
( 1)
4
f −=
;
(6 2 5) 14 6 5f =
.
b) Tìm các giá tr ca
a
, biết rng
9
( ) 5
4
fa=+
. ĐS:
( 5 2)−
.
c) Tìm điều kin ca
b
, biết rng
( ) 1f b b−
. ĐS:
2b
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Biết rng th tích ca mt khi tr chiu cao
h
đơn vị mét, bán kính đáy bằng
r
(đơn
v mét) được cho bi công thc
2
V h r
=
.
a) Tính th tích khi tr khi
r
nhn các giá tr lần lượt
3
;
7
;
9
23+
, biết rng
2,5h =
m
(làm tròn kết qu đến ch s thp phân th hai, ly
3,14
=
) ĐS:
70,65
;
384,65
;
635,85
;
109,34
.
b) Nếu bán kính
r
tăng hai lần thì th tích s tăng lên bao nhiêu lần? ĐS:
4
.
c) Tìm
r
, biết rng
70,66V =
m
3
,
2,5h =
m (làm tròn kết qu đến ch s thp phân th hai) ĐS:
2,00
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
119
Bài 3. Mt bn hc sinh buc mt qu nng vào mt si dây không dãn và quay nó quanh một điểm
c định vi vn tc
v
(m/s) Khi đó lực để duy trì chuyển động tròn ca vật được cho bi công thc
2
mv
F
r
=
. Trong đó
m
là khối lượng ca vật (đơn vị kg),
r
bán kính qu đo tròn (khong cách
gia qu nặng và điểm c định, đơn vị mét) Biết si dây dài
1
m.
a) Tính khối lượng ca vt, biết khi vt chuyển động vi vn tc
8
m/s thì
320F =
N. ĐS:
40
.
b) Biết si dây ch chịu được lc ti da
1000
N, hi si dây b đứt khi vn tc quay bng
15
m/s không? ĐS: Không b đứt.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho hàm s
2
(3 2)y m x=+
vi
2
3
m
. Tìm
m
để hàm s:
a) Đồng biến vi
0x
. ĐS:
2
3
m −
.
b) Nghch biến vi
0x
. ĐS:
2
3
m −
.
c) Có giá tr
4y =−
khi
1x =
. ĐS:
2m =−
.
d) Có giá tr ln nht là
0
. ĐS:
2
3
m −
.
e) Có giá tr nh nht là
0
. ĐS:
2
3
m −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
120
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hàm s
22
( 4 7)y m m x= +
.
a) Chng minh vi mi tham s
m
hàm s luôn nghch biến vi mi
0x
đồng biến vi mi
0x
.
b) Tìm các giá tr ca tham s
m
để khi
1
2
x =−
thì
3y =
. ĐS:
1
5
m
m
=−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
121
Bài 2. ĐỒ TH CA HÀM S
( )
2
0y ax a=
A. KIN THC TRNG TÂM
Đồ th ca hàm s
2
y ax=
( 0)a
là mt parabol đi qua gc ta độ
O
, nhn
Oy
làm trc đối xng
(
O
đỉnh ca parabol).
Nếu
0a
thì đồ th nm phía trên trc hoành,
O
đim thp nht ca đồ th.
Nếu
0a
thì đồ th nm phía dưới trc hoành,
O
đim cao nht ca đồ th.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: V đồ th hàm s
c 1: Lp bng c giá tr đặc biệt tương ng gia
x
y
ca hàm s
2
( 0)y ax a
.
c 2: Biu diễn các điểm đặc bit trên mt phng tọa độ v đồ th Parabol ca hàm
s đi qua các điểm đó.
d 1. Cho hàm s
2
( ) ( 2)y f x m x= =
(
m
là tham s). Tìm
m
để:
a) Đồ th hàm s đi qua điểm
13
;
22
A



. ĐS:
8m =
.
b) Đồ th hàm s đi qua điểm
00
( ; )xy
vi
00
( ; )xy
là nghim ca h phương trình
5 2 5
32
xy
xy
+=
+=
.
ĐS:
7m =
.
c) V đồ th hàm s vi các giá tr
m
tìm được trên cùng mt mt phng tọa độ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
122
Ví d 2. Cho hàm s
2
( ) ( 1)y f x m x= = +
(
m
là tham s). Tìm
m
để:
a) Đồ th hàm s đi qua điểm
( )
2; 6B
. ĐS:
5
2
m =−
.
b) Đồ th hàm s đi qua điểm
00
( ; )xy
vi
00
( ; )xy
là nghim ca h phương trình
35
23
xy
xy
+=
+=
.
ĐS:
1m =
.
c) V đồ th hàm s vi các giá tr
m
tìm được trên cùng mt mt phng tọa độ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho hàm s
2
2
a
yx=
( 0)a
có đồ th là parabol
()P
.
a) Xác định
a
để
()P
đi qua điểm
( 3;6)A
. ĐS:
4a =
.
b) Vi giá tr
a
vừa tìm được trên, hãy:
i) V
()P
trên mt phng tọa độ.
ii) Tìm các điểm trên
()P
có hoành độ bng
3
.
iii) Tìm các điểm trên
()P
cách đều hai trc tọa độ. ĐS:
(3;18)B
;
11
;
22



;
11
;
22



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
123
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho hàm s
22
( 2)y m x=−
( 2)m
có đồ th là parabol
()P
.
a) Xác định
m
để
()P
đi qua điểm
( 2;4)A
. ĐS:
2m =
.
b) Vi giá tr
m
vừa tìm được trên, hãy:
i) V
()P
trên mt phng tọa độ.
ii) Tìm các điểm trên
()P
có hoành độ bng
3
.
iii) Tìm các điểm trên
()P
cách đều hai trc tọa độ. ĐS:
(3;18)B
;
11
;
22



;
11
;
22



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
124
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Cho hàm s
2
1
8
yx=
có đồ th là parabol
()P
.
a) V
()P
trên mt phng tọa độ.
b) Trong các điểm
3
2;
8
A



;
1
2;
2
B



;
(0; 2)C
, điểm nào thuc
P
, điểm nào không thuc
()P
?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho hàm s
2
7yx=−
có đồ th là parabol
()P
.
a) V
()P
trên mt phng tọa độ.
b) Trong các điểm
(2; 28)A
;
( 1;7)B
;
(0; 2)C
, điểm nào thuc
P
, điểm nào không thuc
()P
?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
125
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Tọa độ giao điểm của Parabol và đường thng
Cho Parabol
2
( ) : ( 0)P y ax a
đường thng
:d y mx n
. Để m tọa độ giao
điểm (nếu có) của (P) và d, ta làm như sau
ớc 1: Xét phương trình hoành độ giao điểm ca (P) và d:
2
ax mx n
. (*)
c 2: Giải phương trình (*) ta tìm đưc nghim (nếu có). T đó ta m đưc tọa độ
giao điểm ca (P) và d.
Chú ý: S nghim của phương trình (*) đúng bằng s giao điểm ca (P) và d, c th
Nếu (*) vô nghim thì d không ct (P).
Nếu (*) có nghim kép thì d tiếp xúc vi (P).
Nếu (*) có hai nghim phân bit thì d ct (P) tại hai điểm phân bit.
Ví d 7. Cho parabol
2
( ): 2P y x=
và đường thng
:3d y x= +
.
a) V
()P
d
trên cùng mt mt phng tọa độ.
b) Xác định tọa độ giao điểm ca
()P
d
. ĐS:
39
(1;2); ;
22
AB



.
c) Dựa vào đồ th, hãy gii bất phương trình
2
23xx +
. ĐS:
1
3
2
x
x
−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
126
Ví d 8. Cho parabol
2
( ): 3P y x=−
và đường thng
: 6 3d y x=+
.
a) V
()P
d
trên cùng mt mt phng tọa độ.
b) Xác định tọa độ giao điểm ca
()P
d
. ĐS:
( 1; 3)−−
.
c) Dựa vào đồ th, hãy gii bất phương trình
2
3 6 3 0xx+ +
. ĐS:
1x −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho hàm s
2
yx=
có đồ th là parabol
()P
.
a) V
()P
trên mt phng tọa độ.
b) Dựa vào đồ th, hãy bin lun s nghim của phương trình
2
20xm =
theo
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
127
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Cho hàm s
2
2yx=−
có đồ th là parabol
()P
.
a) V
()P
trên mt phng tọa độ.
b) Dựa vào đồ th, hãy bin lun s nghim của phương trình
2
2 2 1 0xm + =
theo
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Cho parabol
2
1
( ):
4
P y x=
và đường thng
d
có phương trình
y x m=+
. Tìm
m
để:
a)
d
()P
có điểm chung duy nht. ĐS:
1m =
.
b)
d
()P
ct nhau tại hai điểm phân bit. ĐS:
1m
.
c)
d
()P
không có điểm chung. ĐS:
1m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
128
Ví d 12. Cho parabol
2
( ): 2P y x=
và đường thng
d
có phương trình
3y x m=+
. Tìm
m
để:
a)
d
()P
có điểm chung duy nht. ĐS:
9
16
m =−
.
b)
d
()P
ct nhau tại hai điểm phân bit. ĐS:
9
16
m −
.
c)
d
()P
không có điểm chung. ĐS:
9
16
m −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Cho hàm s
22
( ) ( 1)y f x m x= =
(
m
là tham s). Tìm
m
để:
a) Đồ th hàm s đi qua điểm
1
;2
2
A



. ĐS:
3m =
.
b) Đồ th hàm s đi qua điểm
00
( ; )xy
vi
00
( ; )xy
là nghim ca h phương trình
3 2 3
21
xy
xy
+=
+=
.
ĐS:
2m =
.
c) V đồ th hàm s vi các giá tr
m
tìm được trên cùng mt mt phng tọa độ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
129
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho hàm s
2
( 0)
3
a
y x a=
có đồ th là parabol
()P
.
a) Xác định
a
để
()P
đi qua điểm
( 5;5)A
. ĐS:
2a =
.
b) Vi giá tr vừa tìm được trên, hãy:
i) V
()P
trên mt phng tọa độ.
ii) Tìm các điểm trên
()P
có hoành độ bng
4
.
iii) Tìm các điểm trên
()P
cách đều hai trc tọa độ. ĐS:
(4;24)B
;
33
;
22



;
33
;
22



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
130
...........................................................................................................................................................................................................................................................................
Bài 3. Cho hàm s
2
1
5
yx=
có đồ th là parabol
()P
.
a) V
()P
trên mt phng tọa độ.
b) Trong các đim
2
1;
5
A



;
6
2;
5
B



;
39
;
2 20
C



, điểm nào thuc
()P
, điểm nào không thuc
()P
?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho parabol
2
1
( ):
2
P y x=−
và đường thng
: 2 2d y x=+
.
a) V
()P
d
trên cùng mt mt phng tọa độ.
b) Xác định tọa độ giao điểm ca
()P
d
. ĐS:
( 2; 2)−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
131
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hàm s
2
3yx=
có đồ th là parabol
()P
.
a) V
()P
lên mt phng tọa độ.
b) Dựa vào đồ th, hãy bin lun s nghim của phương trình
2
3 2 0xm =
theo
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho parabol
2
1
( ):
2
P y x=
và đường thng
d
có phương trình
y x m= +
. Tìm
m
để:
a)
d
()P
có điểm chung duy nht. ĐS:
1
2
m =−
.
b)
d
()P
ct nhau ti hai điểm phân bit. ĐS:
1
2
m −
.
c)
d
()P
không có điểm chung. ĐS:
1
2
m −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
132
--- HT ---
Bài 3. PHƯƠNG TRÌNH BẬC HAI MT N
A. KIN THC TRNG TÂM
Phương trình bc hai mt n (hay còn gi phương trình bc hai) phương trình dng:
2
0 ( 0)ax bx c a+ + =
trong đó
,,abc
nhng s thc cho trước được gi là h s,
x
n
s.
Chú ý: Gii phương trình bc hai mt n đi tìm tp nghim ca phương trình bc hai mt
n đó.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Nhn dng và tìm h s của phương trình bậc hai mt n
Đưa phương trình đã cho về dng
2
0ax bx c
, t đó đưa ra kết lun v dng
phương trình và các hệ s.
Lưu ý: Phương trình bậc hai có h s a khác 0.
Ví d 1. Đưa các phương trình sau về dng
2
0ax bx c+ + =
và ch rõ các h s
,,abc
.
a)
2
30x−=
. ĐS:
2
30x + =
, vi
1, 0, 3a b c= = =
. .
b)
2
31x x x = +
. ĐS:
2
4 1 0xx =
, vi
1, 4, 1a b c= = =
.
c)
2
3 4 2 2x x x = +
. ĐS:
( )
2
3 4 2 2 0xx + =
, vi
3, 4 2, 2a b c= = =
.
d)
2
( 1) 3( 1)xx = +
. ĐS:
2
5 2 0xx =
, vi
1, 5, 2a b c= = =
.
Ví d 2. Đưa các phương trình sau về dng
2
0ax bx c+ + =
và ch rõ các h s
,,abc
.
a)
2
30xx−=
. ĐS:
2
30xx + =
, vi
1, 3, 0a b c= = =
.
b)
2
3 2 3x x x =
. ĐS:
2
5 3 0xx + =
, vi
1, 5, 3a b c= = =
.
c)
22
3 4 2 2x x x =
. ĐS:
( )
2
3 2 4 2 0xx + =
, vi
3 2, 4, 2a b c= = =
.
d)
2
( 1) 2( 1)xx+ =
. ĐS:
2
30x +=
, vi
1, 0, 3a b c= = =
.
Ví d 3. Phương trình nào sau dây đưa được v phương trình bậc
2
? Xác định h s
a
của phương
trình đó (
m
là hng s)
a)
2
1 mx x+=
. ĐS:
2
1 0; 1x mx a = =
.
b)
2
1 mx m+=
. ĐS: Không đưa được v phương trình bậc
2
.
c)
2 2 2
4 2 1m x mx x = +
. ĐS:
( )
2 2 2
2 4 1 0, 2m x mx a m+ = = +
.
Toaùn 9 Taøi lieäu daïy hoïc
133
d)
22
( 1) 1m x mx =
. ĐS: Không đưa được v phương trình bậc
2
.
Ví d 4. Phương trình nào sau dây đưa được v phương trình bậc
2
? Xác định h s
a
của phương
trình đó (
m
là hng s)
a)
2
x x m=−
. ĐS:
2
0, 1x x m a = =
.
b)
2
m m mx=−
. ĐS: Không đưa được v phương trình bậc
2
.
c)
2 2 2
( 1) 3m x mx x =
. ĐS:
2 2 2
( 2) 0, 2m x mx a m+ = = +
.
d)
2
( 1) (1 )m x x mx = +
. ĐS: Không đưa được v phương trình bậc
2
.
Dng 2: S dng các phép biến đổi, giải phương trình bậc hai mt ẩn cho trước
Cách 1: Đưa phương trình đã cho về dng tích.
Cách 2: Đưa phương trình đã cho v phương trình vế trái ca phương trình đó là bình
phương, còn vế phi là mt hng s.
Ví d 5. Giải các phương trình sau:
a)
2
20xx−=
. ĐS:
0; 2xx==
.
b)
2
32xx=
. ĐS:
2
0;
3
xx==
.
c)
2
3 12 0x + =
. ĐS:
2; 2xx= =
.
d)
2
3 2 0xx + =
. ĐS:
1; 2xx==
.
Ví d 6. Giải các phương trình sau:
a)
2
30xx−=
. ĐS:
0; 3xx==
.
b)
2
2xx=
. ĐS:
0; 2xx==
.
c)
2
20x −=
. ĐS:
2; 2xx= =
.
d)
2
20xx+ =
. ĐS:
1; 2xx= =
.
Ví d 7. Giải các phương trình sau:
a)
2
( 1) 4x+=
. ĐS:
1; 3xx= =
.
b)
2
23xx+=
. ĐS:
1; 3xx= =
.
c)
2
2 4 7 0xx+ =
. ĐS:
33
1; 1
22
xx= =
.
Toaùn 9 Taøi lieäu daïy hoïc
134
d)
2
4 8 5 0xx+ =
. ĐS:
15
;
22
xx= =
.
Ví d 8. Giải các phương trình sau:
a)
2
( 2) 9x−=
. ĐS:
1; 5xx= =
.
b)
2
45xx−=
. ĐS:
1; 5xx= =
.
c)
2
2 8 5 0xx + =
. ĐS:
33
2; 2
22
xx= + = +
.
d)
2
4 16 9 0xx =
. ĐS:
19
;
22
xx= =
.
Ví d 9. Giải các phương trình sau:
a)
2
1
0
4
xx + =
. ĐS:
1
2
x =
.
b)
2
2xx−=
. ĐS:
1; 2xx= =
.
c)
2
2 2 5 0xx =
. ĐS:
11 1 11 1
;
22
xx
+ +
==
.
d)
2
10xx + =
. ĐS: PT vô nghim.
Ví d 10. Giải các phương trình sau
a)
2
9
30
4
xx + =
. ĐS:
1
2
x =
.
b)
2
3 4 0xx =
. ĐS:
1; 2xx= =
.
c)
2
2 6 3 0xx + =
. ĐS:
11 1 11 1
;
22
xx
+ +
==
.
d)
2
3 3 0xx + =
. ĐS: PT vô nghim.
Ví d 11. Giải các phương trình sau
a)
2
9
30
4
xx + =
. ĐS:
3
2
x =
.
b)
2
3 4 0xx =
. ĐS:
1; 4xx= =
.
c)
2
2 6 3 0xx + =
. ĐS:
3 3 3 3
;
22
xx
+ +
==
.
Toaùn 9 Taøi lieäu daïy hoïc
135
d)
2
3 3 0xx + =
. ĐS: PT vô nghim.
Ví d 12. Tìm giá tr ca tham s
m
để phương trình sau có nghiệm bng
1
a)
22
4x m x+=
. ĐS:
3m =
.
b)
22
( 3) 0x m x m + + =
. ĐS:
2, 1mm= =
.
Ví d 13. Vi giá nào ca
m
thì phương trình sau có nghiệm bng
1
a)
22
40xm + =
. ĐS:
5m =
.
b)
2
4 5 0 0m mx+ = =
. ĐS:
1, 5mm= =
.
C. BÀI TP VN DNG
Bài 1. Đưa các phương trình sau về dng
2
0ax bx c+ + =
và tính tng
T a b c= + +
a)
2
25 4 0x−=
. ĐS:
21T =
.
b)
2
4 5 2x x x = +
. ĐS:
0T =
.
c)
2
( 1) 3 4 0xx + =
. ĐS:
1T =
.
d)
2
( 3) 2 2x x x x =
. ĐS:
2T =−
.
Bài 2. Giải các phương trình sau
a)
2
4 9 0x −=
. ĐS:
3
2
x =
.
b)
2
2 2 0xx−=
. ĐS:
0; 2 2xx==
.
c)
2
2 2 2xx−=
. ĐS:
2x =
.
d)
2
8 5 0xx + =
. ĐS: PT vô nghim.
Bài 3. Giải các phương trình sau
a)
2
20xx+=
. ĐS:
0, 2xx= =
.
b)
2
50x −=
. ĐS:
5x =
.
c)
2
2 8 0xx+ =
. ĐS:
2, 4xx= =
.
d)
2
2 4 5 0xx+ =
. ĐS:
7
1
2
x =
.
Bài 4. Vi giá nào ca
m
thì phương trình sau có nghiệm là
1
Toaùn 9 Taøi lieäu daïy hoïc
136
a)
22
4 25 0xm−=
. ĐS:
2
5
m =
.
b)
22
3 3 0x mx m + =
. ĐS: Không tìm được
m
.
Toaùn 9 Taøi lieäu daïy hoïc
137
NG DN GII
Ví dụ 1. Đưa các phương trình sau v dng
2
0ax bx c+ + =
ch rõ các h s
,,abc
.
a)
2
30x−=
. b)
2
31x x x = +
.
c)
2
3 4 2 2x x x = +
. d)
2
( 1) 3( 1)xx = +
.
Li gii.
a) Biến đổi PT
2
30x−=
thành
2
30x + =
, vi
1, 0, 3a b c= = =
.
b) Biến đổi PT
2
31x x x = +
thành
2
4 1 0xx =
, vi
1, 4, 1a b c= = =
.
c) Biến đổi PT
2
3 4 2 2x x x = +
thành
( )
2
3 4 2 2 0xx + =
, vi
3, 4 2, 2a b c= = =
.
d) Biến đổi PT
2
( 1) 3( 1)xx = +
thành
2
5 2 0xx =
, vi
1, 5, 2a b c= = =
.
Ví dụ 2. Đưa các phương trình sau v dng
2
0ax bx c+ + =
ch rõ các h s
,,abc
.
a)
2
30xx−=
. b)
2
3 2 3x x x =
.
c)
22
3 4 2 2x x x =
. d)
2
( 1) 2( 1)xx+ =
.
Li gii.
a) Biến đổi PT
2
30xx−=
thành
2
30xx + =
, vi
1, 3, 0a b c= = =
.
b) Biến đổi PT
2
3 2 3x x x =
thành
2
5 3 0xx + =
, vi
1, 5, 3a b c= = =
.
c) Biến đổi PT
22
3 4 2 2x x x =
thành
( )
2
3 2 4 2 0xx + =
, vi
3 2, 4, 2a b c= = =
.
d) Biến đổi PT
2
( 1) 2( 1)xx+ =
thành
2
30x +=
, vi
1, 0, 3a b c= = =
.
Ví dụ 3. Phương trình nào sau dây đưa đưc v phương trình bc
2
? c định h s
a
ca
phương trình đó (
m
là hng s)
a)
2
1 mx x+=
. b)
2
1 mx m+=
.
c)
2 2 2
4 2 1m x mx x = +
. d)
22
( 1) 1m x mx =
.
Li gii.
a) Biến đổi
2
1 mx x+=
thành
2
1 0; 1x mx a = =
.
b)
2
1 mx m+=
không đưa được v phương trình bc
2
.
c) Biến đổi
2 2 2
4 2 1m x mx x = +
thành
( )
2 2 2
2 4 1 0, 2m x mx a m+ = = +
.
Toaùn 9 Taøi lieäu daïy hoïc
138
d)
22
( 1) 1m x mx =
không đưa được v phương trình bc
2
.
Ví dụ 4. Phương trình nào sau dây đưa đưc v phương trình bc
2
? c định h s
a
ca
phương trình đó (
m
là hng s)
a)
2
x x m=−
. b)
2
m m mx=−
.
c)
2 2 2
( 1) 3m x mx x =
. d)
2
( 1) (1 )m x x mx = +
.
Li gii.
a)
22
0, 1x x m x x m a= = =
.
b)
2
m m mx=−
không đưa được v phương trình bc
2
.
c)
2 2 2 2 2 2
( 1) 3 ( 2) 0, 2m x mx x m x mx a m = + = = +
.
d)
2
( 1) (1 )m x x mx = +
không đưa được v phương trình bc
2
.
Ví dụ 5. Gii các phương trình sau:
a)
2
20xx−=
. b)
2
32xx=
.
c)
2
3 12 0x + =
. d)
2
3 2 0xx + =
.
Li gii.
a) Biến đổi
2
20xx−=
thành
( 2) 0 0x x x = =
hoc
20x−=
, t đóm được
0; 2xx==
.
b) Biến đổi
2
32xx=
thành
( 3 2) 0x x x o = =
hoc
3 2 0x−=
, t đó m được
2
0;
3
xx==
.
c) Biến đổi
2
3 12 0x + =
. thành
3( 2)( 2) 0xx + =
hoc đưa v
2
4,x =
t đó m được
2; 2xx= =
.
d) Biến đổi
2
3 2 0xx + =
thành
( 1)( 2) 0 1 0x x x = =
hoc
20x−=
, t đó m được
1; 2x==
.
Ví dụ 6. Gii các phương trình sau:
a)
2
30xx−=
. b)
2
2xx=
.
c)
2
20x −=
. d)
2
20xx+ =
.
Li gii.
a) Biến đổi
2
30xx−=
thành
( 3) 0xx−=
, t đóm được
0; 3xx==
.
Toaùn 9 Taøi lieäu daïy hoïc
139
b) Biến đổi
2
2xx=
thành
( 2) 0xx−=
, t đóm được
0; 2xx==
.
c) Biến đổi
2
20x −=
thành
( 2)( 2) 0xx+ =
, t đóm được
2; 2xx= =
.
d) Biến đổi
2
20xx+ =
thành
( 1)( 2) 0xx + =
, t đóm được
1; 2xx= =
.
Ví dụ 7. Gii các phương trình sau:
a)
2
( 1) 4x+=
. b)
2
23xx+=
.
c)
2
2 4 7 0xx+ =
. d)
2
4 8 5 0xx+ =
.
Li gii.
a) Ta có PT
2
( 1) 4x+=
1
12
3.
x
x
x
=
+ =
=−
b) Biến đổi
2
23xx+=
ta được
2
1
( 1) 4
3.
x
x
x
=
+ =
=−
Cách khác: đưa PT v dng tích
( 1)( 3) 0xx + =
.
c) Biến đổi
2
2 4 7 0xx+ =
ta được
22
9
2 4 7 0 ( 1)
2
x x x+ = + =
, t đó m được
33
1; 1
22
xx= =
.
d) Biến đổi PT
2
4 8 5 0xx+ =
thành
22
59
2 ( 1)
44
x x x+ = + =
, t đóm được
15
;
22
xx= =
.
Ví dụ 8. Gii các phương trình sau:
a)
2
( 2) 9x−=
. b)
2
45xx−=
.
c)
2
2 8 5 0xx + =
. d)
2
4 16 9 0xx =
.
Li gii.
a) Ta có PT
2
( 2) 9x−=
1
23
5.
x
x
x
=−
=
=
b) Biến đổi
2
45xx−=
ta được
2
1
( 2) 9
5.
x
x
x
=−
=
=
Cách khác: đưa PT v dng tích
( 1)( 5) 0xx+ =
.
Toaùn 9 Taøi lieäu daïy hoïc
140
c) Biến đổi
2
2 8 5 0xx + =
ta được
22
3
2 8 5 0 ( 2)
2
x x x + = =
, t đó m được
33
2; 2
22
xx= + = +
.
d) Biến đổi PT
2
4 16 9 0xx =
thành
22
9 25
4 ( 2)
44
x x x = =
, t đó m được
19
;
22
xx= =
.
Ví dụ 9. Gii các phương trình sau:
a)
2
1
0
4
xx + =
. b)
2
2xx−=
.
c)
2
2 2 5 0xx =
. d)
2
10xx + =
.
Li gii.
a) Ta có PT
2
1
0
4
xx + =
2
2
1 1 1
2 0 0
2 4 2
x x x

+ = =


, t đóm được
1
2
x =
.
b) Biến đổi
2
2xx−=
thành
2
2
1 9 1 9
4 4 2 4
x x x

+ = =


, t đóm được
1; 2xx= =
.
Cách khác: chuyn vế đưa PT v dng tích
( 1)( 2) 0xx+ =
.
c) Biến đổi PT đã cho
2
2 2 5 0xx =
thành
2
2
5 1 11
2 2 4
x x x

= =


, t đó m được
11 1 11 1
;
22
xx
+ +
==
.
d) Biến đổi PT đã cho
2
10xx + =
thành
2
13
24
x

=


PT vô nghim.
Ví dụ 10. Gii các phương trình sau
a)
2
9
30
4
xx + =
. b)
2
3 4 0xx =
.
c)
2
2 6 3 0xx + =
. d)
2
3 3 0xx + =
.
Li gii.
a) Ta có PT
2
9
30
4
xx + =
2
2
1 1 1
2 0 0
2 4 2
x x x

+ = =


, t đóm được
1
2
x =
.
Toaùn 9 Taøi lieäu daïy hoïc
141
b) Biến đổi
2
3 4 0xx =
thành
2
2
1 9 1 9
4 4 2 4
x x x

+ = =


, t đóm được
1; 2xx= =
.
Cách khác: chuyn vế đưa PT v dng tích
( 1)( 2) 0xx+ =
.
c) Biến đổi PT đã cho
2
2 6 3 0xx + =
thành
2
2
5 1 11
2 2 4
x x x

= =


, t đó m được
11 1 11 1
;
22
xx
+ +
==
.
d) Biến đổi PT đã cho
2
3 3 0xx + =
thành
2
13
24
x

=


PT vô nghim.
Ví dụ 11. Gii các phương trình sau
a)
2
9
30
4
xx + =
. b)
2
3 4 0xx =
.
c)
2
2 6 3 0xx + =
. d)
2
3 3 0xx + =
.
Li gii.
a) Ta có PT
2
9
30
4
xx + =
2
2
3 9 3
2 0 0
2 4 2
x x x

+ = =


, t đóm được
3
2
x =
.
b) Biến đổi
2
3 4 0xx =
thành
2
2
9 25 3 25
3
4 4 2 4
x x x

+ = =


, t đóm được
1; 4xx= =
.
Cách khác: chuyn vế đưa PT v dng tích
( 1)( 4) 0xx+ =
.
c) Biến đổi PT đã cho
2
2 6 3 0xx + =
thành
2
2
3 3 3
3
2 2 4
x x x

= =


, t đó m được
3 3 3 3
;
22
xx
+ +
==
.
d) Biến đổi PT đã cho
2
3 3 0xx + =
thành
2
33
24
x

=


PT vô nghim.
Ví dụ 12. Tìm giá tr ca tham s
m
để phương trình sau có nghim bng
1
a)
22
4x m x+=
. b)
22
( 3) 0x m x m + + =
.
Li gii.
a) PT có nghim là
2
1 1 4m + =
, t đóm được
3m =
.
b) PT có nghim là
2
1 1 ( 3) 0mm + + =
, biến đổi thành
( 2)( 1) 0mm + =
suyra
2, 1mm= =
.
Toaùn 9 Taøi lieäu daïy hoïc
142
Ví dụ 13. Vi giá nào ca
m
thì phương trình sau có nghim bng
1
a)
22
40xm + =
. b)
2
4 5 0 0m mx+ = =
.
Li gii.
a) PT có nghim là
2
1 1 4 0m + =
, t đóm được
5m =
.
b) PT có nghim là
2
1 4 5 0 0mm + = =
, biến đổi thành
( 1)( 5) 0mm + =
suyra
1, 5mm= =
.
Bài 1. Đưa các phương trình sau v dng
2
0ax bx c+ + =
và tính tng
T a b c= + +
a)
2
25 4 0x−=
. b)
2
4 5 2x x x = +
.
c)
2
( 1) 3 4 0xx + =
. d)
2
( 3) 2 2x x x x =
.
Li gii.
a) Phương trình
2
25 4 0x−=
tr thành
2
4 25 0 4; 0; 25x a b c + = = = =
. T đó m được
21T =
.
b) Phương trình
2
4 5 2x x x = +
tr thành
2
2 0 0x x T+ = =
c) Phương trình
2
( 1) 3 4 0xx + =
tr thành
2
5 5 0 1x x T + = =
.
d) Phương trình
2
( 3) 2 2x x x x =
tr thành
( )
2
1 2 0 2x x T = =
.
Bài 2. Gii các phương trình sau
a)
2
4 9 0x −=
. b)
2
2 2 0xx−=
.
c)
2
2 2 2xx−=
. d)
2
8 5 0xx + =
.
Li gii.
a) Biến đổi
2
4 9 0x −=
thành
2
93
42
xx= =
.
b) Biến đổi
2
2 2 0xx−=
thành
( 2 2) 0 0; 2 2x x x x = = =
.
c) Biến đổi
2
2 2 2xx−=
thành
( )
2
2 0 2xx = =
.
d) Biến đổi
2
8 5 0xx + =
thành
( )
2
2 2 2 3 2 3x x x + = =
PT vô nghim.
Bài 3. Gii các phương trình sau
a)
2
20xx+=
. b)
2
50x −=
.
Toaùn 9 Taøi lieäu daïy hoïc
143
c)
2
2 8 0xx+ =
. d)
.
Li gii.
a) Biến đổi
2
20xx+=
thành
( 2) 0 0, 2x x x x+ = = =
.
b) Biến đổi
2
50x −=
thành
2
55xx= =
.
c) Biến đổi
2
2 8 0xx+ =
thành
( 2)( 4) 0 2, 4x x x x + = = =
.
Cách khác: Biến đổi thành
2
( 1) 9x+ =
kết qu.
d) Biến đổi
2
2 4 5 0xx+ =
thành
22
7
2( 2 ) 5 ( 1)
2
x x x+ = + =
. T đó m được
77
1, 1
22
xx= =
.
Bài 4. Vi giá nào ca
m
thì phương trình sau có nghim là
1
a)
22
4 25 0xm−=
. b)
22
3 3 0x mx m + =
.
Li gii.
a) Điu kin
2
2
4 25 0
5
mm = =
.
b) Điu kin
2
1 3 3 0mm + + =
.
Biến đổi thành
2
11
2 12
m

+ =


PT vô nghim. Không tìm được
m
.
--- HT ---
Bài 4. CÔNG THC NGHIM CỦA PHƯƠNG TRÌNH BẬC HAI
A. KIN THC TRNG TÂM
Xét phương trình bc hai n
x
:
2
0 ( 0)ax bx c a+ + =
. Vi bit thc
2
4,b ac =
ta có
a) Trường hp
1
. Nếu
0
thì phương trình vô nghim.
b) Trường hp
2
. Nếu
0=
thì phương trình có nghim kép:
12
2
b
xx
a
= =
.
c) Trường hp
3
. Nếu
0
thì phương trình có hai nghim phân bit:
1,2
2
b
x
a
=
.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: S dng công thc nghiệm để giải phương trình bậc hai mt n cho trước
ớc 1: xác định các h s
,,a b c
.
Toaùn 9 Taøi lieäu daïy hoïc
144
c 2: S dng công thc nghiệm để giải phương trình.
d 1. Xác định các h s
, , ;abc
tính bit thc
,
t đó áp dụng công thc nghiệm để gii các
phương trình sau:
a)
2
3 2 0xx + =
. ĐS:
12
1; 2xx==
.
b)
2
2 1 0xx + + =
. ĐS:
12
1
1;
2
xx
==
.
c)
2
4 4 0xx + =
. ĐS:
12
2xx==
.
d)
2
40xx + =
. ĐS: PT vô nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 2. Xác định các h s
, , ;abc
tính bit thc
,
t đó áp dụng công thc nghiệm để gii các
phương trình sau:
a)
2
20xx =
. ĐS:
12
1; 2xx= =
.
b)
2
5 6 0xx + =
. ĐS:
12
1; 6xx= =
.
c)
2
4 4 1 0xx + =
. ĐS:
12
1
2
xx==
.
d)
2
3 4 0xx + =
. ĐS: PT vô nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
145
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Giải các phương trình sau :
a)
2
2 2 0,5 0xx + =
. ĐS:
12
1
2
xx==
.
b)
2
2 2 2 0xx+ + =
. ĐS:
12
2xx= =
.
c)
2
31xx =
. ĐS: PT vô nghim.
d)
2
2( 2) 4xx−=
. ĐS:
1,2
22x =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Giải các phương trình sau :
a)
2
10xx + =
. ĐS: PT vô nghim.
Toaùn 9 Taøi lieäu daïy hoïc
146
b)
2
2 3 3 0xx + =
. ĐS:
12
3xx==
.
c)
2
82xx+=
. ĐS:
12
2
2;
3
xx= =
.
d)
2
51xx =
. ĐS:
12
5 1 5 1
;
22
xx
+
==
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: S dng công thc nghiệm, xác định s nghim của phương trình dạng bc hai
Xét phương trình dạng bc hai:
2
0ax bx c
. (*)
Phương trình (*) có hai nghiệm phân bit khi và ch khi
0
0
a
.
Phương trình (*) có nghiệm kép khi và ch khi
0
0
a
.
Phương trình (*) có đúng một nghim khi và ch khi
0
0
a
b
.
Phương trình (*) có vô nghiệm khi và ch khi
0, 0, 0
0, 0
a b c
a
.
Toaùn 9 Taøi lieäu daïy hoïc
147
Ví d 5. Cho phương trình
2
3 1 0 (mx x + =
m là tham sô). Tìm
m
để phương trình:
a) Có hai nghim phân bit. ĐS:
9
, 0
4
mm
.
b) Có nghim kép. ĐS:
9
4
m =
.
c) Vô nghim. ĐS:
9
4
m
.
d) Có đúng một nghim. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho phương trình
2
2 1 0 (mx x + =
m là tham s). Tìm
m
để phương trình:
a) Có hai nghim phân bit. ĐS:
1, 0mm
.
b) Có nghim kép. ĐS:
1m =
.
c) Vô nghim. ĐS:
1m
.
d) Có đúng một nghim. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
148
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Gii và bin luận phương trình dạng bc hai
Gii bin luận phương trình bậc hai theo tham s m tìm tp nghim của phương
trình tùy theo s thay đổi ca m.
Xét phương trình dạng bc hai:
2
0ax bx c
vi
2
4b ac
.
Nếu
0a
, ta bin luận phương trình bậc nht.
Nếu
0a
, ta bin luận phương trình bậc hai theo .
Ví d 7. Gii và bin luận các phương trình sau: (
m
là tham s)
a)
2
0x x m + =
. b)
2
(2 1) 0mx m x m + + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Gii và bin luận các phương trình sau:(
m
là tham s)
a)
2
20x x m + =
. b)
2
10mx x + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
149
...........................................................................................................................................................................................................................................................................
Dng 4: Mt s bài toán v tính s nghim của phương trình bậc hai
Dựa vào điều kin ca để phương trình bậc hai
2
0( 0)ax bx c a
có nghim.
d 9. Chng t rng khi một phương trình
2
0ax bx c+ + =
các h s
a
c
trái du thì
phương trình đó luôn có nghiệm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Không tính
,
hãy gii thích vì sao các phương trình sau đây có nghiệm
a)
2
3 2 5 0xx+ =
. b)
2
3 2 1 0xx + + =
.
c)
22
5 2 1 2 2x x m x+ = +
. d)
2
2 0 ( 0)mx x m m+ =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Xác định các h s
, , ;abc
tính bit thc
,
t đó áp dụng công thc nghiệm để gii các
phương trình sau:
a)
2
5 6 0xx + =
. ĐS:
12
2; 3xx==
.
b)
2
3 2 1 0xx + =
. ĐS:
12
1
1;
3
xx= =
.
c)
2
2 2 2 0xx + =
. ĐS:
12
1; 2xx==
.
d)
2
2 4 0xx + =
. ĐS: PT vô nghim .
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
150
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Giải các phương trình sau
a)
2
3xx−=
. ĐS:
1,2
1 13
2
x
=
.
b)
2
31x x x =
. ĐS:
1,2
25x =
.
c)
2
2( 1)xx=+
. ĐS:
1,2
13x =
.
d)
2
3( 1) 0xx =
. ĐS: PT vô nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho phương trình
2
2 0 (mx x + =
m
là tham s?)
. Tìm
m
để phương trình:
a) Có hai nghim phân bit. ĐS:
1
, 0
8
mm
.
b) Có nghim kép. ĐS:
1
8
m =
.
Toaùn 9 Taøi lieäu daïy hoïc
151
c) Vô nghim. ĐS:
1
8
m
.
d) Có đúng một nghim. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Gii và bin luận các phương trình sau:(
m
là tham s)
a)
2
0x x m =
. b)
2
30mx x−+=
.
Bài 5. Chng minh rng vi mi giá tr ca
m
thì phương trình sau luôn có nghiệm.
a)
2
( 2) 2 0x m x m + + =
. b)
2
2 ( 1) 0x mx m + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
152
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 5. CÔNG THC NGHIM THU GN
A. KIN THC TRNG TÂM
Xét phương trình bc hai n
x
:
2
0,( 0).ax bx c a+ + =
Khi
2bb
=
, gi bit thc
2
b ac

=
, ta có
a) Trường hp
1
: Nếu
0

thì phương trình vô nghim.
b) Trường hp
2
: Nếu
0
=
thì phương trình có nghim kép
12
.
b
xx
a
==
c) Trường hp
3
: Nếu
0

thì phuơng trình có hai nghim phân bit
1,2
.
b
x
a

=
Toaùn 9 Taøi lieäu daïy hoïc
153
Chú ý: Ta thường s dng bit thc
khi phương trình bc hai đã cho vi h s
b
chn
dng
2bb
=
, khi đó các phép tính toán trong bài toán đơn gin hơn.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: S dng công thc nghim thu gn, giải phương trình bậc hai
ớc 1: Xác định các h s
, ',a b c
.
c 2: S dng công thc nghim thu gọn để giải phương trình.
Ví d 1. Xác định các h s
a
,
b
,
c
, tính bit thc
, t đó áp dng công thc nghim thu gọn để
giải các phương trình sau
a)
2
3 4 1 0xx + =
. ĐS:
1
1;
3



.
b)
2
4 4 1 0xx + + =
. ĐS:
1 2 1 2
;
22

−+




.
c)
2
3 2 2 4 0xx + =
. ĐS: Vô nghim.
d)
2
8 2 0xx + =
. ĐS:
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 2. Xác định các h s
a
,
b
,
c
, tính bit thc
, t đó áp dụng công thc nghim thu gn
để giải các phương trình sau
a)
2
6 5 0xx + =
. ĐS:
1;5
.
b)
2
3 4 2 0xx + =
. ĐS:
4 10 4 10
;
33

+




.
c)
2
2 3 4 0xx =
. ĐS:
3 7; 3 7−+
.
Toaùn 9 Taøi lieäu daïy hoïc
154
d)
2
20 5 0xx + =
. ĐS:
5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 3. Đưa về dng
2
20ax b x c
+ + =
, t đó giải các phương trình sau bng công thc nghim
thu gn
a)
2
24xx−=
. ĐS:
2 6;2 6 .−+
.
b)
22
3 2 3 2x x x =
. ĐS:
3.
.
c)
2
2( 2) 2 5xx = +
. ĐS:
3 3 3 3
;
22

−+




.
d)
2
8( 8) ( 2)xx =
. ĐS: Vô nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
155
d 4. Đưa về dng
2
20ax b x c
+ + =
, t đó giải các phương trình sau bng công thc nghim
thu gn
a)
2
45xx =
. ĐS:
1;5
.
b)
2
83xx=−
. ĐS: Vô nghim..
c)
22
2 3 2 1x x x =
. ĐS:
3 2; 3 2 +
.
d)
2
( 5 ) 2 5 15xx =
. ĐS:
25
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: S dng công thc nghim thu gọn, xác định s nghim của phương trình bậc hai
Xét phương trình dạng bc hai:
2
0ax bx c
.
Phương trình có hai nghiệm phân bit khi và ch khi
0
0
a
.
Phương trình có nghiệm kép khi và ch khi
0
0
a
.
Phương trình có đúng một nghim khi và ch khi
0
0
a
b
.
Phương trình vô nghiệm khi và ch khi
0, 0, 0
0, 0
a b c
a
.
Ví d 5. Cho phương trình
2
6 1 0mx x =
, (
m
là tham s) Tìm
m
để phương trình
a) Có hai nghim phân bit. ĐS:
90m
.
b) Có nghim kép. ĐS:
9m =−
.
Toaùn 9 Taøi lieäu daïy hoïc
156
c) Vô nghim. ĐS:
9m −
.
d) Có đúng một nghim. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho phương trình
2
4 1 0mx x =
, (
m
là tham s) Tìm
m
để phương trình
a) Có hai nghim phân bit. ĐS:
40m
.
b) Có nghim kép. ĐS:
4m =−
.
c) Vô nghim. ĐS:
9m −
.
d) Có đúng một nghim. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Gii và bin lun phương trình dạng bc hai
Xét phương trình dạng bc hai:
2
0ax bx c
vi bit thc
2
b ac
.
Nếu
0a
, ta đưa về bin luận phương trình bậc nht.
Nếu
0a
, ta bin luận phương trình bc hai theo
'
.
Toaùn 9 Taøi lieäu daïy hoïc
157
Ví d 7. Gii và bin luận các phương trình sau (
m
là tham s)
a)
2
2 4 0mx x+ =
. b)
22
4( 1) 4 0x m x m + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Gii và bin luận các phương trình sau (
m
là tham s)
a)
2
6 2 0mx x + =
. b)
22
2( 2) 0x m x m + + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. S dng công thc nghim thu gọn để giải các phương trình sau
a)
2
10 16 0xx + =
. ĐS:
2;8
.
b)
2
3 4 2 0xx + =
. ĐS:
2;8
.
c)
2
6 2 2 0xx + =
. ĐS:
2 10 2 10
;
33
+ +
.
Toaùn 9 Taøi lieäu daïy hoïc
158
d)
2
40 10 0xx + =
. ĐS:
10
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Giải các phương trình sau
a)
2
83xx−=
. ĐS:
4 19;4 19−+
.
b)
2
3 7 1x x x =
. ĐS:
5 6; 5 6 +
.
c)
2
( 2) 2(1 )xx =
. ĐS: vô nghim.
d)
2
6( 2 3)xx=−
. ĐS:
32
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho phuơng trình
22
2( 1) 1 0x m x m + + =
, (
m
là tham s) Tìm
m
để phương trình
a) Có hai nghim phân bit. ĐS:
0m
.
Toaùn 9 Taøi lieäu daïy hoïc
159
b) Có nghim kép. ĐS:
0m =
.
c) Vô nghim. ĐS:
0m
.
d) Có đúng một nghim. ĐS: không tn ti.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Gii và bin luận phương trình
2
2( 1) 1 0mx m x m + =
, (
m
là tham s)
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 6. H THC VI-ÉT VÀ NG DNG
A. KIN THC TRNG TÂM
1. H thc Vi-ét và ng dng
Xét phương trình bc hai
2
0( 0)ax bx c a+ + =
. Nếu
1
x
,
2
x
là nghim ca phương trình thì
Toaùn 9 Taøi lieäu daïy hoïc
160
12
12
.
b
S x x
a
c
P x x
a
= + =
==
2. ng dng ca h thc Vi-ét
Nhm nghim phương trình bc hai. Xét phương trình bc hai
2
0,( 0)ax bx c a+ + =
.
Nếu
0abc+ + =
thì phương trình có mt nghim là
1
1x =
, nghim kia là
2
.
c
x
a
=
Nếu
0a b c + =
thì phương trình có mt nghim là
1
1x =−
, nghim kia là
2
.
c
x
a
=
Tìm hai s khi biết tng và tích ca chúng. Nếu hai s có tng bng
S
ch bng
P
thì hai
s đó là nghim ca phương trình
.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Không giải phương trình, tính giá trị ca biu thức đối xng gia các nghim
ớc 1: Tìm điều kiện để phương trình có nghiệm
0
0
a
. T đó áp dụng h thc Vi-ét
12
b
S x x
a
12
c
P x x
a
.
c 2: Biến đổi biu thức đối xng gia các nghim của đ bài theo tng
12
xx
12
xx
ri áp dụng bước 1.
Ví d 1. Đối vi mỗi phương trình sau, ký hiệu
1
x
,
2
x
hai nghiệm phương trình (nếu có). Không
giải phương trình hãy điền vào ch trng
a)
2
4 5 0xx+ =
,
=
,
12
xx+ =
,
12
xx =
.
b)
2
4 4 1 0xx+ + =
,
=
,
12
xx+ =
,
12
xx =
.
c)
2
3 3 0xx =
,
=
,
12
xx+ =
,
12
xx =
.
d)
2
7 5 0xx + =
,
=
,
12
xx+ =
,
12
xx =
.
d 2. Đối vi mỗi phương trình sau, ký hiu
1
x
,
2
x
hai nghiệm phương trình (nếu có) Không
giải phương trình hãy điền vào ch trng
a)
2
3 4 0xx+ =
,
=
,
12
xx+ =
,
12
xx =
.
b)
2
6 9 0xx + =
,
=
,
12
xx+ =
,
12
xx =
.
c)
2
2 5 0xx−−=
,
=
,
12
xx+ =
,
12
xx =
.
d)
2
5 1 0xx =
,
=
,
12
xx+ =
,
12
xx =
.
Toaùn 9 Taøi lieäu daïy hoïc
161
Ví d 3. Không giải phương trình sau, tính tổng và tích các nghiệm phương trình sau
a)
2
3 5 0xx =
. ĐS:
3, 5SP= =
.
b)
2
5 7 12 0xx+ =
. ĐS:
7 12
,
55
SP= =
.
c)
2
4 7 2 0xx =
. ĐS:
71
,
42
SP= =
.
d)
2
3 21 12 0xx =
. ĐS:
7 3, 4 3SP= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Không giải phương trình sau, tính tổng và tích các nghiệm phương trình sau
a)
2
2 5 0xx =
. ĐS:
2, 5SP= =
.
b)
2
5 3 7 0xx + + =
. ĐS:
37
,
55
SP= =
.
c)
2
5 7 3 0xx =
. ĐS:
73
,
55
SP= =
.
d)
2
2 10 2 0xx =
. ĐS:
5 2, 2SP= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 5. Gi
1
x
,
2
x
hai nghim của phương trình
2
2 1 0xx =
. Không giải phương trình y
tính giá tr ca các biu thc sau
a)
22
12
A x x=+
. ĐS:
6
. b)
22
1 2 1 x
B x x x x=+
. ĐS:
2
.
c)
12
11
C
xx
=+
. ĐS:
2
. d)
21
12
xx
D
xx
=+
. ĐS:
6
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
162
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 6. Gi
1
x
,
2
x
hai nghim của phương trình
2
30xx =
. Không giải phương trình hãy
tính giá tr ca các biu thc sau
a)
22
12
A x x=+
. ĐS:
7
. b)
22
1 2 1 x
B x x x x=+
. ĐS:
3
.
c)
12
11
C
xx
=+
. ĐS:
1
3
. d)
21
12
xx
D
xx
=+
. ĐS:
7
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Giải phương trình bằng cách nhm nghim
S dng h thc Vi-ét.
Ví d 7. Xét tng
abc++
hoc
a b c−+
ri tính nhm các nghim của phương trình sau
a)
2
3 2 0xx + =
. ĐS:
1;2
. b)
2
3 7 10 0xx+ =
. ĐS:
10
1;
3



.
c)
2
3 4 1 0xx+ + =
. ĐS:
1
1;
3

−−


. d)
2
3 1 3 0xx + =
. ĐS:
33
1;
3





.
Toaùn 9 Taøi lieäu daïy hoïc
163
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Xét tng
abc++
hoc
a b c−+
ri tính nhm các nghim của phương trình sau
a)
2
3 4 0xx+ =
. ĐS:
1; 4
. b)
2
2 7 5 0xx+ + =
. ĐS:
5
1;
2

−−


.
c)
2
6 5 1 0xx =
. ĐS:
1
1;
6



. d)
2
2 1 2 0xx+ + =
. ĐS:
1; 1 2−+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. S dụng định lý Vi-ét tính nhm nghim của phương trình
a)
2
7 10 0xx + =
. ĐS:
2;5
. b)
2
7 10 0xx+ + =
. ĐS:
2; 5−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
164
...........................................................................................................................................................................................................................................................................
Ví d 10. S dụng định lý Vi-ét tính nhm nghim của phương trình
a)
2
5 6 0xx+ + =
. ĐS:
2; 3−−
. b)
2
5 6 0xx + =
. ĐS:
2;3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Cho phương trình
2
10x mx m + =
. Chứng minh phương trình đã cho luôn mt nghim
không ph thuc vào
m
. Tìm nghim còn li. ĐS:
1; 1m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 12. Cho phương trình
2
10x mx m + + + =
. Chứng minh phương trình đã cho luôn mt
nghim không ph thuc vào
m
. Tìm nghim còn li. ĐS:
1; 1m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Tìm hai s khi biết tng và tích ca chúng
Để tìm hai s
,xy
khi biết tng
S x y
và tích
P xy
, ta làm như sau
c 1: Giải phương trình
2
0X Sx P
để tìm các nghim
12
,XX
.
c 2: Suy ra các s
,xy
cn tìm là
12
,,x y X X
hoc
21
,,x y X X
.
Ví d 13. Tìm hai s
u
v
trong mỗi trường hp sau
a)
5uv+=
14uv =−
. ĐS:
2
7
.
b)
5uv+=
24uv =−
. ĐS:
3
8
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
165
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Tìm hai s
u
v
trong mỗi trường hp sau
a)
6uv+ =
16uv =−
. ĐS:
2
8
.
b)
1uv+=
1
4
uv =
. ĐS:
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 15. Lập phuơng trình bậc hai có hai nghim là
21
21+
. ĐS:
2
2 2 1 0xx + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 16. Lập phuơng trình bậc hai có hai nghim là
5
7
. ĐS:
2
2 35 0xx+ =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 17. Cho phương trình
2
3 1 0xx + =
hai nghim là
1
x
2
x
. Lập phương trình bc hai
hai nghim là
12
11
xx
+
22
12
xx+
. ĐS:
2
10 21 0xx + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
166
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18. Cho phương trình
2
4 2 0xx + =
có hai nghim là
1
x
2
x
. Lập phương trình bậc hai có
hai nghim là
1
1
x
2
1
x
. ĐS:
2
2 4 1 0xx + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 4: Phân tích tam giác bc hai thành nhân t
Xét tam thc bc hai
2
,( 0)ax bx c a
. Nếu phương trình bc hai
2
0ax bx c
có hai nghim
12
,xx
thì tam thức được phân tích thành
2
12
ax bx c a x x x x
.
Ví d 19. Phân tích đa thức sau thành nhân t
a)
2
23xx+−
. ĐS:
( 1)( 3)xx−+
.
b)
2
3 2 1xx−−
. ĐS:
1
3( 1)
3
xx

−+


.
c)
2
( 2 1) 2xx + +
. ĐS:
( )
( 1) 2xx−−
.
d)
2
1x mx m +
. ĐS:
( 1)( 1)x x m +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 20. Phân tích đa thức sau thành nhân t
a)
2
34xx−−
. ĐS:
( 1)( 4)xx+−
.
Toaùn 9 Taøi lieäu daïy hoïc
167
b)
2
4 3 1xx−−
. ĐS:
1
4( 1)
4
xx

−+


.
c)
2
( 3 1) 3xx + +
. ĐS:
( )
( 1) 3xx−−
.
d)
2
1x mx m
. ĐS:
( 1)( 1)x x m+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 5: Xét du các nghim của phương trình bậc hai
Xét phương trình bậc hai mt n
2
0,( 0)ax bx c a
. Khi đó
Phương trình có hai nghiệm trái du khi và ch khi
0P
.
Phương trình có hai nghiệm cùng du khi và ch khi
0
0P
.
Phương trình có hai nghiệm dương phân biệt khi và ch khi
0
0
0
S
P
.
Phương trình có hai nghiệm âm phân bit khi và ch khi
0
0
0
S
P
.
Ví d 21. Cho phương trình
2
2( 2) 1 0x m x m + + =
. Tìm
m
để phương trình
a) Có hai nghim trái du. ĐS:
1m
.
b) Có hai nghim phân bit. ĐS: mi
m
.
c) Có hai nghim phân bit cùng du. ĐS:
1m
.
d) Có hai nghiệm dương phân biệt. ĐS:
1m
.
Toaùn 9 Taøi lieäu daïy hoïc
168
e) Có hai nghim âm phân bit. ĐS: không tn ti
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 22. Cho phương trình
2
2 1 0x mx m =
. Tìm
m
để phương trình
a) Có hai nghim trái du. ĐS:
1m −
.
b) Có hai nghim phân bit. ĐS: mi
m
.
c) Có hai nghim phân bit cùng du. ĐS:
1m −
.
d) Có hai nghiệm dương phân biệt. ĐS: không tn ti.
e) Có hai nghim âm phân bit. ĐS:
1m −
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
169
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 6: Xác định điều kin ca tham s để phương trình bậc hai nghim tha mãn h thc
cho trước
ớc 1: Điều kiện để phương trình có nghiệm
0
.
c 2: T h thức cho trước và h thc Vi-ét, ta tìm được điều kin ca tham s.
Ví d 23. Cho phương trình
2
40x x m + =
. Tìm các giá tr ca tham s
m
để phương trình hai
nghim phân bit
1
x
,
2
x
tha mãn
22
12
10xx+=
. ĐS:
3m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 24. Cho phương trình
2
2 1 0x x m + =
. Tìm các giá tr ca tham s
m
để phương trình
hai nghim phân bit
1
x
,
2
x
tha mãn
22
1 2 1 2
1x x x x+=
. ĐS:
3
2
m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
170
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Không giải các phương trình, tính tổng và tích các nghiệm phương trình sau
a)
2
5 7 0xx =
. ĐS:
5, 7SP= =
.
b)
2
3 12 0xx + =
. ĐS:
.
c)
2
2 4 8 0xx =
. ĐS:
2 2, 4 2SP= =
.
d)
2
6 5 2xx−=
. ĐS:
51
,
63
SP= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Gi
1
x
,
2
x
là hai nghim của phương trình
2
3 5 0xx =
. Không giải phương trình hãy tính
giá tr ca các biu thc
a)
1 2 1 2
3( )A x x x x= + +
. ĐS:
4
. b)
22
12
B x x=+
. ĐS:
19
.
c)
2
12
()C x x=−
. ĐS:
29
. d)
21
12
.
xx
D
xx
=+
ĐS:
19
5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Tính nhm các nghim của phương trình sau
Toaùn 9 Taøi lieäu daïy hoïc
171
a)
2
5 6 0xx =
. ĐS:
1; 6−−
.
b)
2
2 7 5 0xx+ + =
. ĐS:
1;5
.
c)
2
( 5 1) 2 5 0xx+ + =
. ĐS:
1;2 5−−
.
d)
2
2 15 0xx + =
. ĐS: vô nghim.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Tìm hai s
u
v
trong mỗi trường hp sau
a)
5uv+=
14uv =−
. ĐS:
2
7
.
b)
4uv+ =
21uv =−
. ĐS:
3
7
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Lập phương trình bậc hai có hai nghim là
31
31+
. ĐS:
2
2 3 2 0xx + =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
172
Bài 6. Cho phương trình
2
5 2 0xx =
có hai nghim là
1
x
2
x
. Lập phương trình bậc hai có hai
nghim là
1
1
x
2
1
x
. ĐS:
2
2 5 1 0xx+ =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Phân tích các đa thức sau thành nhân t
a)
2
34xx+−
. ĐS:
( 1)( 4)xx−+
.
b)
2
4 5 1xx++
. ĐS:
1
4( 1)
4
xx

++


.
c)
2
( 2 1) 2xx+
. ĐS:
( )
( 1) 2xx−+
.
d)
2
( 1)x m x m + +
. ĐS:
( 1)( )x x m−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho phương trình
2
2( 2) 1 0x m x m + + =
. Tìm
m
để phương trình
a) Có hai nghim phân bit. ĐS: mi
m
.
b) Có hai nghim phân bit trái du. ĐS:
1m
.
c) Có hai nghim phân bit cùng du. ĐS:
1m
.
d) Có hai nghiệm dương phân biệt. ĐS:
1m
.
Toaùn 9 Taøi lieäu daïy hoïc
173
e) Có hai nghim âm phân bit. ĐS: không tn ti
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho phương trình
2
2( 1) 2 0.x m x m + =
Tìm
m
để phương trình
a) Có nghim. ĐS: mi
m
.
b) Có mt nghim bng
2
. Tìm nghim còn li. ĐS:
2m =
,
2
0x =
.
c) Có hai nghim phân bit
1
x
,
2
x
tha mãn
22
12
8xx+=
. ĐS:
0m =
hoc
5
2
m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 7. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
Toaùn 9 Taøi lieäu daïy hoïc
174
A. KIN THC TRNG TÂM
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
Phương trình trùng phương là phương trình có dng
42
0( 0).ax bx c a+ + =
Cách gii: Đưa phương trình trùng phương v dng phương trình bc hai bng cách đặt n
ph.
Bước 1. Đặt
2
( 0)t x t=
;
Bước 2. Gii phương trình bc hai
2
0at bt c+ + =
tìm nghim ca phương trình trùng
phương.
2. PHƯƠNG TRÌNH CHA N MU THC
Phương trình cha n mu là phương trình có dng
12
12
()
( ) ( )
0.
( ) ( ) ( )
n
n
fx
f x f x
g x g x g x
+ ++ =
Cách gii:
Bước 1.m điu kin xác định ca phương trình;
Bước 2. Quy đồng mu thc ri kh mu thc;
Bước 3. Gii phương trình bc hai va nhn được;
Bước 4. Kim tra điu kin và kết lun nghim ca phương trình.
3. PHƯƠNG TRÌNH TÍCH
Phương trình tích là phương trình có dng
12
( ) ( ) ( ) 0.
n
f x f x f x =
Cách gii:
1
2
12
( ) 0
( ) 0
( ) ( ) ( ) 0
( ) 0.
n
n
fx
fx
f x f x f x
fx
=
=
=
=
Để gii mt s phương trình trước hết cn đặt n ph, thu gn v dng phương trình bc hai hoc
đưa v dng phương trình tích.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Giải phương trình trùng phương
ớc 1: Đặt
2
( 0)t x t
.
c 2: Giải phương trình bậc hai
2
0at bt c
.
c 3: Vi mi
0t
, giải phương trình
2
xt
.
Ví d 1. Gii các phương trình sau:
a)
42
2 1 0xx + =
; ĐS:
1S =
.
b)
42
4 3 1 0xx+ =
; ĐS:
1
2
S

=


.
c)
42
3 10 3 0xx+ + =
; ĐS:
S =
.
d)
42
( 1) 4( 1) 3 0xx + =
. ĐS:
0;2;1 3S =
.
Toaùn 9 Taøi lieäu daïy hoïc
175
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Giải các phương trình sau:
a)
42
2 1 0xx+ + =
; ĐS:
S =
.
b)
42
2 6 8 0xx =
; ĐS:
2S =
.
c)
42
3 10 7 0xx + =
; ĐS:
7
1;
3
S


=



.
d)
42
( 1) 4( 1) 3 0xx+ + + =
. ĐS:
0; 2; 1 3S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
176
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Giải các phương trình sau:
a)
42
12xx+=
; ĐS:
1S =
.
b)
42
23xx−=
; ĐS:
3S =
.
c)
4 2 2
2 3 4 5x x x =
; ĐS:
5
1;
2
S


=



.
d)
42
( 1) 4( 1) 3xx =
. ĐS:
0;2;1 3S = +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Giải các phương trình sau:
a)
4 2 2
31x x x+ =
; ĐS:
S =
.
Toaùn 9 Taøi lieäu daïy hoïc
177
b)
42
34xx−=
; ĐS:
2S =
.
c)
4 2 2
3 5 5 7x x x−=−
; ĐS:
7
1;
3
S


=



.
d)
42
( 1) 4( 1) 3xx+ = +
. ĐS:
2;0; 1 3S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Giải các phương trình sau:
a)
42
0,1 0,2 0,1 0xx+ + =
; ĐS:
S =
.
b)
42
6,3 7,3 0xx =
; ĐS:
7,3S =
.
c)
42
3 4,1 1,1 0xx + =
; ĐS:
11
1;
30
S


=



.
d)
2
2
7
8x
x
+=
. ĐS:
1; 7S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
178
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Giải các phương trình sau:
a)
42
0,1 0,2 0,1 0xx + =
; ĐS:
0,1S =
.
b)
42
6,9 7,9 0xx+ =
; ĐS:
1S =
.
c)
42
3,3 4,4 1,1 0xx+ + =
; ĐS:
S =
.
d)
2
2
6
5x
x
+=
. ĐS:
1; 6S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
179
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Giải phương trình chứa n mu
ớc 1: Tìm điều kiện xác định của phương trình.
ớc 2: Quy đồng mu thc hai vế ri kh mu.
c 3: Giải phương trình bậc hai va nhận được.
c 4: Kiểm tra điều kin và kết lun nghim ca phương trình.
Ví d 7. Giải các phương trình sau:
a)
2
22
11
x x x
xx
=
++
; ĐS:
0;4S =
.
b)
3 14
1
21
x
xx
+
+=
−−
; ĐS:
9
3;
2
S

=


.
c)
2
31
1 ( 1)( 3)
x x x
x x x
+
=
+ + +
. ĐS:
S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Giải các phương trình sau:
a)
2
43
11
x x x
xx
+
=
−−
; ĐS:
1;0S =−
.
Toaùn 9 Taøi lieäu daïy hoïc
180
b)
4 16
1
21
x
xx
+
+=
−−
; ĐS:
3;5S =
.
c)
2
3 9 14
1 ( 1)( 2)
x x x
x x x
++
=
+ + +
. ĐS:
7
2
S

=


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Giải các phương trình sau:
a)
12
1
11xx
+=
−+
; ĐS:
0;3S =
.
b)
27
4
12
x
xx
+=
−−
; ĐS:
S =
.
c)
2
2 8 1
( 2)( 3) 3
xx
x x x
+−
=
+ +
; ĐS:
S =
.
d)
2 1 2 3
1 3 ( 1)( 3)
xx
x x x x
+
+=
+ +
. ĐS:
3;1S =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
181
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Giải các phương trình sau:
a)
14
1
21xx
+=
−+
; ĐS:
1;5S =
.
b)
1
3
2 1 2
x
xx
+=
−−
; ĐS:
11 21
10
S


=



.
c)
2
11
( 2)( 3) 3
xx
x x x
−−
=
; ĐS:
1S =
.
d)
14
1 2 ( 1)( 2)
xx
x x x x
+
+=
+ + + +
. ĐS:
3;1S =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
182
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Giải các phương trình sau:
a)
3 2 2
32
3 4 2 2 3
11
x x x x x
x x x
+
=
+ +
; ĐS:
1;2S =−
.
b)
2
4 3 2
3 4 1
11
xx
x x x x
+−
=
+ + +
. ĐS:
3S =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Giải các phương trình sau:
a)
3 2 2
32
1
11
x x x x x
x x x
+
=
+ +
; ĐS:
1
3
S

=−


.
b)
22
4 3 2
2
11
x x x
x x x x
+−
=
+ + +
. ĐS:
2S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
183
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Giải phương trình tích
c 1: Chuyển phương trình đã cho về dng
11
( ) ( ) ( ) 0
n
f x f x f x
.
c 2: Giải phương trình
1
2
12
( ) 0
( ) 0
( ) ( ) ( ) 0
( ) 0
n
n
fx
fx
f x f x f x
fx
.
Ví d 13. Giải các phương trình sau:
a)
( 1)( 2)( 3) 0x x x =
; ĐS:
1;2;3S =
.
b)
32
6 11 6 0x x x + =
; ĐS:
1;2;3S =
.
c)
32
3 3 1 0x x x + =
; ĐS:
1S =
.
d)
32
3 2 6 0x x x+ =
. ĐS:
3; 2S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
184
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Giải các phương trình sau:
a)
( 1)( 4) 0x x x =
; ĐS:
0;1;4S =
.
b)
32
10x x x + =
; ĐS:
1S =
.
c)
32
5 4 0x x x + =
; ĐS:
0;1;4S =
.
d)
32
3 2 6 0x x x + =
. ĐS:
3S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 15. Giải các phương trình sau:
a)
22
( 4)( 3 ) 0x x x x+ + =
; ĐS:
0;3S =
.
Toaùn 9 Taøi lieäu daïy hoïc
185
b)
2 2 2
( 2) (2 2) 0x x x + + =
; ĐS:
0;3S =
.
c)
2 2 2
( 4 ) 4( 4 )x x x x−=−
; ĐS:
0;4;2 2 2S =
.
d)
2 2 3
( 3) 5 15 0x x x + =
; ĐS:
5 37
3;
2
S


=



.
e)
3
( 2) 1 ( 1)( 1)x x x x+ + = +
. ĐS:
2S =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 16. Giải các phương trình sau:
a)
22
( 2 1)( 4 ) 0x x x x + =
; ĐS:
0;1;4S =
.
Toaùn 9 Taøi lieäu daïy hoïc
186
b)
2 2 2
( 1) 4 0xx+ =
; ĐS:
1S =
.
c)
2 2 2
( 5 ) 6( 5 )x x x x+ = +
; ĐS:
6; 5;0;1S =
.
d)
2 2 3
(2 3) 10 15 0x x x+ =
; ĐS:
3
1;
2
S

=


.
e)
3
( 1) 1 ( 1)( 2)x x x x+ + =
. ĐS:
0S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 4: Giải phương trình bằng phương pháp đặt n ph
ớc 1: Tìm điều kiện xác định của phương trình (nếu cn).
ớc 2: Đặt n phụ, điều kin ca n ph và giải phương trình theo n ph thu được.
c 3: Tìm nghiệm ban đầu, đối chiếu với điều kin (nếu có) và kết lun.
Lưu ý: Nếu điều kin ca n ph phc tp thì th không cần tìm điều kin c th nhưng sau
khi tìm được n chính thì cn th li.
Ví d 17. Giải các phương trình sau:
Toaùn 9 Taøi lieäu daïy hoïc
187
a)
2
( 1) 3( 1) 2 0xx + =
; ĐS:
2;3S =
.
b)
2 2 2
( 2 3) 5( 2 3) 6 0x x x x + + + =
; ĐS:
0;1;2S =
.
c)
2 2 2
(2 2) 10 5 16 0x x x x+ + + =
; ĐS:
3
;1
2
S

=−


.
d)
42
( 1) 4( 1) 3 0xx + =
; ĐS:
0;2;1 3S =
.
e)
22
( 2 1)( 2 2) 2x x x x+ + =
; ĐS:
3; 2;0;1S =
.
f)
2
2
3
20
( 1) 1
xx
xx
+ =
++
; ĐS:
2S =−
.
g)
31
3 10 0
1
xx
xx
+
+ + =
+
. ĐS:
13
;
44
S

=


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
188
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18. Giải các phương trình sau:
a)
2
( 2) 3( 2) 2 0xx+ + + =
; ĐS:
1;0S =−
.
b)
2 2 2
( 2 ) 5( 2 ) 6 0x x x x + =
; ĐS:
1 2;1 7S =
.
c)
2 2 2
( 2) 2 2 4 0x x x x+ + + =
; ĐS:
2; 1;0;1S =
.
d)
42
(2 1) 4(2 1) 3 0xx+ + + =
; ĐS:
13
1;0;
2
S

−

=−



.
e)
22
( 1)( 1) 3x x x x+ + + =
; ĐS:
2;1S =−
.
f)
2
2
20
( 1) 1
xx
xx
+ =
++
; ĐS:
2
3
S

=−


.
g)
21
2 5 0
1
xx
xx
+
+ + =
+
. ĐS:
21
;
33
S

=


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
189
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 19. Giải các phương trình sau:
a)
22x x x =
; ĐS:
1;4S =
.
b)
2 3 7 0xx =
. ĐS:
4S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 20. Giải các phương trình sau:
a)
26x x x+ = +
; ĐS:
4S =
.
b)
1 7 0xx =
. ĐS:
10S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
190
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Giải các phương trình sau:
a)
42
20xx =
; ĐS:
2S =
.
b)
42
3 2 0xx + =
; ĐS:
1; 2S =
.
c)
42
2 5 2 0xx + =
; ĐS:
1
2;
2
S

=


.
d)
42
( 2) 6( 2) 5 0xx+ + + =
. ĐS:
1; 3; 2 5S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Giải các phương trình sau:
Toaùn 9 Taøi lieäu daïy hoïc
191
a)
4 2 2
31x x x−=+
; ĐS:
1S =
.
b)
42
2xx+=
; ĐS:
1S =
.
c)
4 2 2
46x x x =
; ĐS:
1; 6S =
.
d)
42
( 2) 3( 2) 2xx+ = +
. ĐS:
1; 2S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Giải các phương trình sau:
a)
42
0,1 0,8 0,7 0xx + =
; ĐS:
1; 7S =
.
b)
42
3 4,4 1,4 0xx+ + =
; ĐS:
S =
.
c)
42
3,3 4,3 0xx+ =
; ĐS:
1S =
.
d)
2
2
1
2x
x
+=
. ĐS:
1S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
192
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Giải các phương trình sau:
a)
2
42
2 1 2 1
x x x
xx
+
=
++
; ĐS:
2;0S =−
.
b)
13
2
21
x
xx
+
+=
−+
; ĐS:
5
1;
4
S

=


.
c)
2
2 3 4
1 ( 1)( 3)
x x x
x x x
+−
=
+
. ĐS:
2S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
193
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Giải các phương trình sau:
a)
13
1
31xx
+=
++
; ĐS:
7S =
.
b)
21
3
2 1 2
x
xx
+=
−−
; ĐS:
5
1;
4
S

=


.
c)
2
11
( 2)( 5) 5
xx
x x x
−−
=
+
; ĐS:
1;3S =−
.
d)
1 1 3 4
1 2 ( 1)( 2)
xx
x x x x
++
+=
. ĐS:
3 37
2
S


=



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Giải các phương trình sau:
Toaùn 9 Taøi lieäu daïy hoïc
194
a)
3 2 2
32
1
11
x x x x x
x x x
+ +
=
+ +
; ĐS:
1S =−
.
b)
2
4 3 2
21
11
xx
x x x x
+−
=
+ + +
; ĐS:
S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Giải các phương trình sau:
a)
( 3)( 5) 0x x x =
; ĐS:
0;3;5S =
.
b)
32
8 15 0x x x + =
; ĐS:
0;3;5S =
.
c)
32
6 12 8 0x x x + =
; ĐS:
2S =
.
d)
32
4 3 2 0x x x+ =
. ĐS:
5 17
1;
2
S

−

=



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
195
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Giải các phương trình sau:
a)
22
( )( 3 ) 0x x x x =
; ĐS:
0;1;3S =
.
b)
2 2 2
( 2 ) ( 2) 0x x x + =
; ĐS:
3 17
2
S


=



.
c)
2 2 2
( 2 ) 3( 2 )x x x x =
; ĐS:
1;0;2;3S =−
.
d)
2 2 3
( 1) 5 5 0x x x+ =
; ĐS:
5 21
2
S


=



.
e)
3
( 1) 1 ( 1)(2 1)x x x x+ + = +
. ĐS:
1S =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Giải các phương trình sau:
Toaùn 9 Taøi lieäu daïy hoïc
196
a)
2
(3 1) 3(3 1) 2 0xx+ + + =
; ĐS:
1
0;
3
S

=


.
b)
2 2 2
( ) 5( ) 6 0x x x x+ + + + =
; ĐS:
S =
.
c)
2 2 2
( ) 2 2 3 0x x x x+ + + =
; ĐS:
15
2
S

−

=



.
d)
42
( 4) 7( 4) 6 0xx+ + + =
; ĐS:
5; 3; 4 6S =
.
e)
22
( 2 1)( 2 2) 2x x x x+ + + + =
; ĐS:
2;0S =−
.
f)
2
2
3
20
( 1) 1
xx
xx
+ =
++
; ĐS:
2S =−
.
g)
21
20
12
xx
xx
+
+ =
+
; ĐS:
1S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
197
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Giải các phương trình sau:
a)
2 2 3x x x−=−
; ĐS:
1;9S =
.
b)
2 2 2 0xx =
. ĐS:
2;6S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 8. GII BÀI TOÁN BNG CÁCH LP PHƯƠNG TRÌNH
Toaùn 9 Taøi lieäu daïy hoïc
198
A. KIN THC TRNG TÂM
Các bước gii bài toán bng cách lp phương trình
Bước 1. Lp phương trình
Chn n sđặt điu kin thích hp cho n s;
Biu din các d kin chưa biết qua n s;
Lp phương trình biu th tương quan gia n s và các d kin đã biết;
Bước 2. Gii phương trình;
Bước 3. Đối chiếu nghim ca phương trình vi điu kin ca n s (nếu có) vi đề i để
đưa ra kết lun.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dng 1: Toán có ni dung hình hc
Vi hình ch nht: Din tích = chiu dài x chiu rng
Chu vi = (chiu dài + chiu rng) x 2.
Vi hình tam giác: Din tích =
1
2
x cạnh đáy x chiều cao.
Chu vi = tng 3 cnh.
d 1. Mt tam giác có chiu cao bng
3
4
cạnh đáy. Nếu chiều cao tăng thêm
3
dm cạnh đáy
giảm đi
3
dm thì din tích của nó tăng thêm
12
dm
2
. Tính chiu cao và cạnh đáy của tam giác.
ĐS:
33
44
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 2. Mt mảnh vườn hình ch nht din tích
720
m
2
. Nếu tăng chiều dài thêm
10
m
gim chiu rng
6
m thì din tích mảnh vườn không đổi. Tính chiu dài và chiu rng mảnh vườn.
ĐS:
30
24
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
199
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2: Bài toán có quan h v s
S t nhiên có hai ch s:
10ab a b
S t nhiên có ba ch s:
100 10abc a b c
.
Ví d 3. Cho mt s t nhiên có hai ch s. Tng hai ch s ca chúng bng
10
. Tích hai ch s y
nh hơn số đã cho là
12
. Tìm s đã cho. ĐS:
28
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Tích ca hai s t nhiên liên tiếp lớn hơn tổng ca chúng là
109
. Tìm hai s đó.
ĐS:
11
12
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
200
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Bài toán v năng suất lao động
Khối lượng công việc = Năng suất Thi gian hoàn thành.
d 5. Một phân xưởng theo kế hoch cn phi sn xut
1100
sn phm trong mt s ngày quy
định. Do mỗi ngày phân xưởng đó sản xuất vượt mc
5
sn phẩm nên phân ởng đã hoàn thành
kế hoch sớm hơn thời gian quy định
2
ngày. Hi mỗi ngày phân xưởng phi sn xut bao nhiêu
sn phm? ĐS:
50
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 6. Một người d định sn xut
120
sn phm trong mt thi gian nhất định. Do tăng năng
sut
4
sn phm mi giờ, nên đã hoàn thành sớm hơn dự định
1
giờ. Hãy nh năng suất d kiến
của người đó. ĐS:
20
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
201
Dng 4: Bài toán v công vic làm chung, làm riêng
Ta thường xem khối lượng công vic là một đơn vị.
Năng suất 1 + Năng suất 2 = Tổng năng suất.
d 7. Hai người cùng làm chung mt công vic trong
12
5
gi thì xong. Nếu mỗi người làm mt
mình thì thời gian để người th nht hoàn thành công việc ít hơn người th hai
2
gi. Hi nếu
làm mt mình thì mỗi người phi làm trong bao nhiêu gi để xong công vic? ĐS:
4
6
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 8. Hai vòi nước cùng chy vào mt b không nước chảy đầy b trong
4
gi
48
phút.
Nếu chy riêng thì vòi th nht có th chảy đầy b nhanh hơn vòi thứ hai
4
gi. Hi nếu chy riêng
thì mi vòi s chảy đầy b trong bao lâu? ĐS:
8
12
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 5: Bài toán v chuyển động
Quãng đường = Vn tc thi gian.
Toaùn 9 Taøi lieäu daïy hoïc
202
d 9. Hai ô cùng khi hành cùng mt lúc t hai đnh
A
B
cách nhau
160
km, đi ngược
chiu nhau và gp nhau sau
2
gi. Tìm vn tc ca mi ô tô biết rng nếu ô tô đi t
A
tăng vậc tc
thêm
10
km/h s bng hai ln vn tốc ô tô đi từ
B
. ĐS:
50
30
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Mt ô và mt xe máy cùng khi hành t
A
để đi đến
B
vi vn tc mỗi xe không đổi
trên toàn b quãng đường
AB
dài
120
km. Do vn tc xe ô lớn hơn vận tc xe y
10
km/h
nên ô tô đến sớm hơn xe máy
36
phút. Tính vn tc mi xe. ĐS:
50
40
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 6: Bài toán chuyển động có vn tc cn
Vn tc xuôi = Vn tc thc + Vn tc cn.
Vn tốc ngược = Vn tc thc Vn tc cn.
Ví d 11. Mt ca nô xuôi t
A
đến
B
vi vn tc xuôi dòng là
30
km/h, sau đó lại ngược t
B
v
A
. Thời gian xuôi ít hơn thời gian ngược là
1
gi
20
phút. Tính khong cách gia hai bến
A
B
biết vn tốc dòng nước là
5
km/h và vn tc riêng của ca nô khi xuôi và ngược dòng là không đổi.
ĐS:
80
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
203
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 12. Mt tàu thy chy trên khúc sông dài
120
km, c đi về mt
6
gi
45
phút. Tính vn
tc ca tàu thủy khi nước yên lng, biết rng vn tc của dòng nước là
4
km/h. ĐS:
36
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 7: Các dng toán khác
d 13. Hai giá sách
450
cun. Nếu chuyn
50
cun t giá th nht sang giá th hai thì s
sách trên giá th hai bng
4
5
s sách giá th nht. Tính s sách trên mi giá. ĐS:
300
150
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
204
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 14. hai thùng du cha tt c
160
t du. Biết rng nếu rót t thùng th nht sang thùng
th hai
20
lít du thì s du hai thùng bng nhau. Tính s dầu ban đầu mi thùng.
ĐS:
100
60
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1. Mt tha rung nh ch nht din tích
100
m
2
. Tính độ dài các cnh ca tha rung.
Biết rng nếu tăng chiều rng ca tha rung lên
2
m gim chiu dài ca tha ruộng đi
5
m thì
din tích ca tha rung s tăng thêm
5
m
2
. ĐS:
5
20
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho mt s có hai ch s. Tng hai ch s ca chúng bng
9
. Tích hai ch s y nh hơn số
đã cho là
58
. Tìm s đã cho. ĐS:
72
.
Toaùn 9 Taøi lieäu daïy hoïc
205
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Một đội xe theo kế hoch ch hết
140
tn ng trong mt s ngày quy định. Do mi ngày
đội đó chở vượt mc
5
tấn nên đội đã hoàn thành kế hoch sớm hơn thời gian quy định
1
ngày
ch thêm được
10
tn. Hi theo kế hoch đội xe ch hàng hết bao nhiêu ngày? ĐS:
7
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Hai đội xe ch cát để san lp một khu đt. Nếu hai đội cùng làm thì trong
18
ngày thì xong
công vic. Nếu đội th nht làm
6
ngày, sau đó đội th hai làm tiếp
8
ngày thì được
2
5
công vic.
Hi nếu mỗi đội làm mt mình thì mt bao nhiêu ngày? ĐS:
45
30
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
206
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Quãng đường t A đến B dài
90
km. Một người đi xe máy từ A đến B. Khi đến B, người đó
ngh
30
phút ri quay tr v A vi vn tc ln hơn lúc đi
9
km/h. Thi gian k t lúc bắt đầu đi
t A đến lúc tr v A là
5
gi. Tính vn tốc xe máy lúc đi từ A đến B. ĐS:
36
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Mt tàu tun tra chạy ngược dòng
60
km, sau đó chạy xuôi dòng
48
km trên cùng mt dòng
sông vn tốc dòng nước
2
km/h. Tính vn tc ca tàu tuần tra khi nước n lng, biết thi
gian xuôi dòng ít hơn thời gian ngược dòng
1
gi. ĐS:
22
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Hùng và Long có tt c
40
viên bi. Nếu Hùng cho Long
6
viên, thì s bi ca Long gp
3
s
bi ca Hùng. Tính s bi ban đầu ca Long và Hùng. ĐS:
24
16
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
207
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
208
ÔN TẬP CHƯƠNG IV
A. KIN THC TRNG TÂM
Xem li phn kiến thc trng tâm của các bài đã học.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Bài 1. V đồ th hàm s
2
1
6
yx=
2
1
6
yx=−
trên cùng mt h trc tọa độ.
a) Qua điểm
(0; 6)A
k đường thng song song vi trc
Ox
. cắt đồ th hàm s
2
1
6
yx=−
ti
hai điểm
B
C
. Tìm hoành độ ca
B
C
. ĐS:
{ 6;6}
.
b) Tìm trên đồ th hàm s
2
1
6
yx=
điểm
B
cùng hoành độ vi
B
, điểm
C
cùng hoành độ
vi
C
. Đường thng
BC

có song song vi
Ox
không? Vì sao? Tìm tung độ ca
B
C
.
ĐS:
6
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho hàm s
23yx=−
2
yx=−
.
a) V đồ th ca hai hàm s này trong cùng mt mt phng tọa độ.
b) Tìm tọa độ các giao điểm của hai đồ th. ĐS:
(1; 1)
;
( 3; 9)−−
.
Toaùn 9 Taøi lieäu daïy hoïc
209
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Giải các phương trình sau
a)
2
3 5 2 0xx + =
; ĐS:
12
2
1;
3
xx==
.
b)
42
3 5 2 0xx + =
; ĐS:
2
1;
3
x





.
c)
22
3 4( 1) ( 1) 3x x x+ = +
; ĐS:
12
1; 4xx= =
.
d)
2
3 3 6x x x+ + = +
; ĐS:
12
2 3 1; 3xx= =
.
e)
2
25
5 3 6
x x x +
−=
; ĐS:
5
5;
6
x

−


.
f)
2
10 2
22
xx
x x x
=
−−
. ĐS:
{ 1 11; 1 11}x +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
210
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Giải các phương trình sau
a)
2
9 8 1 0xx+ =
; ĐS:
12
1
1;
9
xx= =
.
b)
42
9 8 1 0xx+ =
; ĐS:
1
3
x =
.
c)
2
5 3 1 2 11x x x + = +
; ĐS:
12
1; 2xx= =
.
d)
2
2 2 2 1 0xx + =
; ĐS:
2
5
x



.
e)
2
2 4 11 2
1 ( 2)( 1)
x x x
x x x
+
=
+
; ĐS:
2
5
x



.
f)
32
4 6 0x x x+ + =
. ĐS:
{ 3; 2;1}x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
211
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Giải các phương trình sau bằng phương pháp đặt n ph.
a)
( ) ( )
2
22
3 2 1 0x x x x+ + =
; ĐS:
12
1 5 1 5
;
22
xx
+ +
==
.
b)
( )
2
22
4 2 4 4 0x x x x + + =
; ĐS:
4; 0xx==
.
c)
57x x x = +
; ĐS:
49x =
.
d)
1
10 3
1
xx
xx
+
=
+
. ĐS:
52
;
43
xx= =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
212
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Giải các phương trình sau bằng phương pháp đặt n ph.
a)
( ) ( )
2
22
2 2 3 2 1 0x x x x + + =
; ĐS:
22
;1
2
S


=



.
b)
2
11
4 3 0xx
xx
+ + + =
; ĐS:
35
2
S


=



.
c)
( )
2
22
2 2 4 3 0x x x x + =
; ĐS:
{ 1;3}S =
.
d)
22
3 1 3x x x x+ + = +
. ĐS:
1 13
1;0;
2
S

−

=−



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
213
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho phương trình
2
10x mx m =
(
m
là tham s) Tìm
m
để phương trình:
a) Có mt nghim bng
5
. Tìm nghim còn li; ĐS:
1x =−
.
b) Có hai nghim phân biệt cùng dương; ĐS:
m
.
c) Có hai nghim trái dấu, trong đó nghiệm âm có giá tr tuyệt đối lớn hơn nghiệm dương;
ĐS:
10m
.
d) Có hai nghim cùng du; ĐS:
2; 1mm
.
e) Có hai nghim
12
, xx
tha mãn
33
12
1xx+ =
. ĐS:
1m =−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
214
...........................................................................................................................................................................................................................................................................
Bài 8. Cho phương trình
2
2( 1) 4 0x m x m + + =
(
m
là tham s)
a) Tìm
m
để phương trình có nghiệm kép. Tìm nghiệm kép đó. ĐS:
1; 2mx==
.
b) Tìm
m
để phương trình có một nghim bng
4
và tìm nghim còn lại khi đó. ĐS:
2m =
.
c) Tìm
m
để phương trình:
i) Có hai nghim trái du; ĐS:
0; 2mx==
.
ii) Có hai nghim cùng du; ĐS:
0m
.
iii) Có hai nghiệm dương; ĐS:
0m
.
iv) Có hai nghim âm; ĐS:
m
..
v) Có hai nghim
12
, xx
tha mãn
12
22xx =
. ĐS:
0m =
hoc
3m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
215
...........................................................................................................................................................................................................................................................................
Bài 9. Cho parabol
2
( ): 2P y x=
và đường thng
:1d y x=+
.
a) V đồ th ca
()P
()d
trên cùng mt h trc tọa độ.
b) Bằng phép tính, xác định tọa độ giao điểm
, AB
ca
d
()P
. Tính độ dài đoạn thng
AB
.
ĐS:
(1;2)A
;
11
;
22
B



;
10
2
AB =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Tìm tọa độ giao đim
A
B
của đồ th m s
23yx=+
2
yx=
. Gi
D
C
ln
t là hình chiếu vuông góc ca
A
B
lên trc hoành. Tính din tích t giác
ABCD
.
ĐS:
20S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Một đội th m phi khai thác
216
tn than trong mt thi gian nhất định. Ba ngày đầu,
mỗi ngày đội khai thác theo đúng đnh mức. Sau đó, mi ngày h đều khai thác vượt định mc
8
tấn. Do đó h khai thác đưc
232
tấn xong trước thi hn
1
ngày. Hi theo kế hoch mi ngày
đội th phi khai thác bao nhiêu tn than? ĐS:
24
tn.
Toaùn 9 Taøi lieäu daïy hoïc
216
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Khong cách gia hai bến sông
A
B
30
km. Mt ca-đi từ
A
đến
B
, ngh
40
phút
B
, ri li tr v bến
A
. Thi gian k t lúc đi đến lúc tr v đến
A
6
gi. Tính vn tc
ca ca-nô khi nước yên lng, biết rng vn tc của dòng nước là
3
km/h. ĐS:
12
km/h.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 13. Cho phương trình
2
20mx x m+ + =
vi
m
là tham s.
a) Tìm
m
để phương trình có hai nghiệm dương. ĐS:
10m
.
b) Tìm
m
để phương trình có hai nghiệm âm. ĐS:
01m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
217
Bài 14. Cho phương trình
22
2( 1) 6 0x m x m + =
(
m
là tham s)
a) Giải phương trình khi
3m =
. ĐS:
1; 3xx==
.
b) Tìm
m
để phương trình có hai nghiệm
12
, xx
tha mãn
22
12
16xx+=
. ĐS:
0m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Trên mt phng tọa độ
Oxy
cho parabol
2
( ):P y x=−
đường thng
:2d y x=−
ct
nhau tại hai điểm
, AB
. Tìm tọa độ các điểm
, AB
tính din tích
OAB
(trong đó
O
gc ta
độ, hoành độ giao điểm
A
lớn hơn hoành độ giao điểm
B
) ĐS:
3S =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Cho parapol
2
1
( ):
4
P y x=
và đường thng
:1d y mx=+
.
a) Chng minh vi mi giá tr ca
m
đường thng
d
()P
luôn ct nhau tại hai điểm phân bit.
b) Gi
, AB
là giao điểm ca
d
()P
. Tính din tích tam giác
OAB
theo
m
(
O
là gc tọa độ) .
ĐS:
2
21
AOB
Sm=+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Mt xe lửa đi t Nội vào Bình sơn (Quảng Ngãi) Sau đó
1
gi, mt xe lửa khác đi từ
Bình Sơn ra Nội vi vn tc lớn hơn vận tc ca xe la th nht
5
km/h. Hai xe gp nhau ti
mt ga chính gia quãng đường. Tìm vn tc ca mi xe, gi thiết rằng quãng đường t Ni -
Bình Sơn dài
900
km. ĐS:
45; 50
km/h.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
218
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Một đội xe theo kế hoch ch hết
140
tn hàng trong mt s ngày quy định. Do mi ngày
đội đó vưt mc
5
tấn nên đội đã hoàn thành sớm hơn thời gian quy định
1
ngày và ch thêm được
10
tn hàng. Hi theo kế hoạch đội xe ch hết hàng trong bao nhiêu ngày? ĐS:
7
ngày.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
219
ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ S 1
A. PHN TRC NGHIM
Câu 1. Phương trình
2
4 3 0xx + =
có tp nghim là
A.
{ 1; 3}−−
. B.
{1;3}
. C.
1
1;
3



. D.
1
1;
3



.
Câu 2. Phương trình nào sau đây có hai nghiệm phân bit?
A.
2
10x +=
. B.
2
6 2 0xx =
. C.
2
4 4 1 0xx + =
. D.
2
2 2 1 0xx + =
.
Câu 3. Cho đường thng
: 2 1d y x=−
parabol
2
( ):P y x=
. Khi đó đường thng
d
ct
()P
ti
s giao điểm là
A.
1
. B.
2
. C.
3
. D.
0
.
Câu 4. Cho phương trình
2
10x mx =
. Khẳng định nào sau đây đúng?
A. Phương trình có vô số nghim. B. Có hai nghim cùng du.
C. Phương trình có một nghim
0x =
. D. Phương trình có hai nghiệm trái du.
B. PHN T LUN
Bài 1. Giải các phương trình sau
a)
2
6 5 0xx + =
; b)
2
42xx−=
.
Bài 2. Cho đường thng
:2d y x m=+
và parabol
2
( ):P y x=
.
a) V
()P
d
trên cùng mt trc tọa độ khi
1m =
.
b) Tìm
m
để
d
ct
()P
tại hai điểm phân biệt có hoành độ dương.
Bài 3. Cho phương trình
2
40x x m + =
. Tìm
m
để phương trình:
a) Có hai nghim phân bit.
b) Có hai nghim trái du.
c) Có hai nghim phân bit
12
, xx
sao cho
22
1 2 1 2
7x x x x+ = +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
220
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
221
ĐỀ KIỂM TRA CHƯƠNG IV – ĐỀ S 2
A. PHN TRC NGHIM
Câu 1. Cho hàm s
2
1
2
yx=−
kết luận nào sau đây đúng?
A. Hàm s luôn nghch biến. B. Hàm s luôn đồng biến.
C. Giá tr ca hàm s luôn âm.
D. Hàm s nghch biến khi
0x
, đồng biến khi
0x
.
Câu 2. Đim
( 2; 1)A −−
thuộc đồ th hàm s nào?
A.
2
4
x
y =−
. B.
2
2
x
y =
. C.
2
2
x
y =−
. D.
2
4
x
y =
.
Câu 3. Phương trình
2
20xx =
có nghim là
A.
1x =
2x =
. B.
1x =−
2x =
.
C.
1x =
2x =−
. D. Vô nghim.
Câu 4. Gi
12
, xx
là nghim của phương trình
2
2 3 5 0xx =
. Kết qu đúng
A.
1 2 1 2
35
;
22
x x x x+ = =
. B.
1 2 1 2
35
;
22
x x x x+ = =
.
C.
1 2 1 2
35
;
22
x x x x+ = =
. D.
1 2 1 2
35
;
22
x x x x+ = =
.
B. PHN T LUN
Bài 1. Giải các phương trình sau
a)
2
11 0xx =
; b)
2
5 6 0xx+ + =
.
Bài 2. Mt tàu tun tra chạy ngược dòng
60
km, sau đó chạy xuôi dòng
48
km trên cùng mt dòng
sông vn tốc dòng nước
2
km/h. Tính vn tc ca tàu tuần tra khi nước n lng, biết thi
gian xuôi dòng ít hơn ngược dòng
1
gi.
Bài 3. Cho parabol
2
( ):P y x=
và đường thng
:4d y mx=+
.
a) Cho
1m =
v
( ), Pd
trên cùng h trc tọa độ.
b) Chng minh rng
d
ct
()P
tại hai điểm phân bit vi mi giá tr ca
m
.
c) Gi
1 1 2 2
( ; ); ( ; )A x y B x y
là hai giao điểm ca
( ), Pd
. Tìm giá tr ca
m
sao cho
2 2 2
12
7yy+=
.
Toaùn 9 Taøi lieäu daïy hoïc
222
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
| 1/222